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1. Introduction

The purpose of this paper is to investigate the existence of nontrivial solutions and positive solutions
to the following nonlinear fourth-order two-point boundary value problem{

u(4)(t) = λ f (t, u(t)), 0 ≤ t ≤ 1,
u(0) = u

′

(0) = u(1) = u
′′

(1) = 0,
(P)

where λ is a positive parameter, f : [0, 1] × R → R is continuous. One function u ∈ C[0, 1] is called a
positive solution of problem (P) if u is a solution of (P) and u(t) > 0, 0 < t < 1.

Fourth-order two-point boundary value problems appear in beam analysis (See [1–15]). The
deflection of an elastic beam rigidly fastened on the left and simply supported on the right leads to
problem (P). The existence and multiplicity of positive solutions for the elastic beam equations have
been studied extensively when the nonlinear term satisfies

f (t, u) ≥ 0, ∀u ≥ 0, (1)
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see for example [1–3,6–9,11] and references therein. Agarwal and Chow [1] investigated the problem
(P) by using contraction mapping and iterative methods. Bai [3] applied upper and lower solution
method and Yao [11] used Guo-Krasnosel’skii fixed point theorem of cone expansion-compression
type. However there are only a few papers concerned with the non-positone or semipositone elastic
beam equations. Yao [12] considered the existence of positive solutions of semipositone elastic beam
equations by using a special cone and the fixed point theorem of cone expansion-compression type.
In this paper, we assume that there exists a constant b > 0 such that f (t, u) ≥ −b for all t ∈ [0, 1]
and u(t) ∈ R, which implies that problem (P) is semipositone. We obtain the existence of nontrivial
solutions and positive solutions to the semipositone boundary value problem (P) under some conditions
concerning the first eigenvalue corresponding to the relevant linear operator by the topological method
and the fixed point theory of superlinear operators.

2. Preliminaries

In this section, we give some preliminaries required in our subsequent discussions.
Let E be an ordered Banach space in which the partial ordering ≤ is induced by a cone P ⊂ E, θ the

zero element of E. For the concepts and properties about the cone we refer to [16, 17, 18].
Lemma 1. (see [19]). Let Ω ⊂ E be a bounded open set, θ ∈ Ω, and A : Ω → E a completely
continuous operator. If

Ax , µx, ∀x ∈ ∂Ω, µ ≥ 1,

then deg(I − A,Ω, θ) = 1.

Lemma 2. (see [19]). Let Ω ⊂ E be a bounded open set and A : Ω → E a completely
continuous operator. If there exists u0 ∈ E\{θ} such that

u − Au , µu0, ∀u ∈ ∂Ω, µ ≥ 0,

then deg(I − A,Ω, θ) = 0.

The following is the famous Leray-Schauder theorem.

Lemma 3. (see [18]). Let Ω ⊂ E be a bounded open set, θ ∈ Ω and A : Ω → E a completely
continuous operator with Aθ = θ. Suppose that the Frechet derivative A

′

θ of A at θ exists and 1 is not
an eigenvalue of A

′

θ. Then there exists r0 > 0 such that for any 0 < r < r0,

deg(I − A,Tr, θ) = deg(I − A
′

θ,Tr, θ) = (−1)κ,

where κ is the sum of algebraic multiplicities for all eigenvalues of A
′

θ lying in the interval (0, 1) and
Tr = {x ∈ E | ‖x‖ < r}.

Let G(t, s) be the Green’s function of homogeneous linear problem u(4)(t) = 0, u(0) = u
′

(0) = u(1) =

u
′′

(1) = 0, which can be explicitly given by

G(t, s) =


1

12
(1 − t)s2[3(1 − s) − (1 − t)2(3 − s)], 0 ≤ s ≤ t ≤ 1,

1
12

(1 − s)t2[3(1 − t) − (1 − s)2(3 − t)], 0 ≤ t ≤ s ≤ 1.
(2)
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By (2) and Yao [13] we have
(G1) G(t, s) = G(s, t), 0 ≤ t, s ≤ 1;

(G2)
1
6

s2(1 − s)t2(1 − t) ≤ G(t, s) ≤
1
4

t2(1 − t), 0 ≤ t, s ≤ 1;
By (G1)(G2),

G(t, s) ≥ 1
6 s2(1 − s)t2(1 − t)

≥ 1
4 s2(1 − s) 2

3 t2(1 − t)
≥ 1

4 s2(1 − s) 3
4 t3(1 − t)2

≥ 3
4 t3(1 − t)2G(s, τ)

= 3
4 t3(1 − t)2G(τ, s),

and we have
(G3) G(t, s) ≥

3
4

t3(1 − t)2G(τ, s), 0 ≤ t, s, τ ≤ 1.
It is well known that the problem (P) is equivalent to the integral equation

u(t) = λ

∫ 1

0
G(t, s) f (s, u(s))ds.

Let

(Au)(t) =

∫ 1

0
G(t, s) f (s, u(s))ds, (3)

(Bu)(t) =

∫ 1

0
G(t, s)u(s)ds. (4)

By the famous Krein-Rutmann theorem (See [16]) and similar to Lemma 3 in [20], we have

Lemma 4. Suppose that the linear operator B is defined by (4). Then the spectral radius
r(B) , 0 and B has a positive eigenfunction corresponding to its first eigenvalue λ1 = r−1(B).

3. Nontrivial solutions

In the sequel we always take E = C[0, 1] with the norm ‖u‖ = max0≤t≤1 |u(t)| and the cone P = {u ∈
C[0, 1] | u(t) ≥ 0, 0 ≤ t ≤ 1}.

Now let us list the following conditions which will be used in this paper:
(H1) There exists a constant α > 0 satisfying

lim inf
u→+∞

f (t, u)
u
≥ α, ∀t ∈ [0, 1]. (5)

(H2) There exists a constant β with 0 < β < α satisfying

lim sup
u→0

∣∣∣∣∣ f (t, u)
u

∣∣∣∣∣ ≤ β, ∀t ∈ [0, 1]. (6)

(H3) There exists a constant b > 0 such that

f (t, u) ≥ −b, ∀t ∈ [0, 1], u(t) ∈ R. (7)
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(H4) lim
u→+∞

f (t, u)
u

= +∞.

Theorem 5. Suppose that (H1)-(H3) hold. Then for any λ ∈ (λ1
α
, λ1
β

), problem (P) has at least
one nontrivial solution, where λ1 = r−1(B) and B is given by (4).

Proof. Let (Fu)(t) = f (t, u(t)) for all u ∈ E, then by (4), A = BF. Applying the Arzela-Ascoli
theorem and a standard argument, we can prove that (λA) : E → E is a completely continuous
operator. It is known to all that the nonzero fixed points of the operator λA are the nontrivial solutions
of the boundary value problem (P).

Now we show that there exists R0 > 0, such that for any R > R0,

u − λAu , µu∗,∀µ ≥ 0, u ∈ ∂TR, (8)

where u∗ is the positive eigenfunction of B corresponding to its first eigenvalue λ1 = r−1(B), TR = {u ∈
C[0, 1] | ‖u‖ < R} is a bounded open subset of E.

If (8) is not true, then there exist µ0 > 0 (if µ0 = 0, then Theorem 5 holds) and u0 ∈ ∂TR such that

u0 − λAu0 = µ0u∗. (9)

By (5) and (6), there exist l > 0, r0 > 0 and 0 < ε < min{αλ−λ1
λ
, λ1−βλ

λ
} such that

f (t, u) ≥ (α − ε)u − l, ∀t ∈ [0, 1], u ≥ 0, (10)

| f (t, u)| ≤ (β + ε)|u|, ∀t ∈ [0, 1], |u| ≤ r0. (11)

It follows from (7) that
f (t, u) ≥ −b ≥ (α − ε)u − b,∀t ∈ [0, 1], u ≤ 0. (12)

Take ω = max{b, l}, then by (10) and (12) we have f (t, u) ≥ (α − ε)u − ω,∀t ∈ [0, 1], u ∈ R. Let
α1 = α − ε, then

λAu = λBFu ≥ λα1Bu − u1, ∀u ∈ E, (13)

where u1 =
∫ 1

0
G(t, s)λωds. Take

δ =
2
3
λ1

∫ 1

0
s2(1 − s)u∗(s)ds > 0.

By (4) and (G2) we have

u∗(t) = λ1Bu∗(t) = λ1

∫ 1

0
G(t, s)u∗(s)ds

≥ λ1

∫ 1

0

1
6

s2(1 − s)t2(1 − t)u∗(s)ds

≥
1
6
λ1t2(1 − t)

∫ 1

0
s2(1 − s)u∗(s)ds

≥
2
3
λ1G(t, s)

∫ 1

0
s2(1 − s)u∗(s)ds

= δG(t, s).
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Let

P1 =

{
u ∈ P |

∫ 1

0
u∗(t)u(t)dt ≥ λ−1

1 δ‖u‖
}
.

For any u ∈ P, we have ∫ 1

0
u∗(t)(λBu)(t)dt =

∫ 1

0
u∗(t)[

∫ 1

0
G(t, s)λu(s)ds]dt

=

∫ 1

0
λu(s)[

∫ 1

0
G(s, t)u∗(t)dt]ds

=

∫ 1

0
λu(s)Bu∗(s)ds

≥ λ−1
1 δ

∫ 1

0
G(t, s)λu(s)ds

= λ−1
1 δ(λBu)(t).

And so
∫ 1

0
u∗(t)(λBu)(t)dt ≥ λ−1

1 δ‖λBu‖, i.e., (λB)(P) ⊂ P1. Since Fu0+ω ∈ P, then (λB)(Fu0+ω) ∈ P1

and µ0u∗ = µ0λ1Bu∗ ∈ P1. By (9) we have u0 + λBω = λAu0 + µ0u∗ + λBω = λB(Fu0 +ω) + µ0u∗ ∈ P1.

Thus ∫ 1

0
u∗(t)(u0 + λBω)(t)dt ≥ λ−1

1 δ‖u0 + λBω‖ ≥ λ−1
1 δ‖u0‖ − λ

−1
1 δ‖λBω‖. (14)

Take ε0 = α1λr(B) − 1 > 0. By (13) we have∫ 1

0
u∗(t)(λAu0)(t)dt ≥

∫ 1

0
u∗(t)α1(λBu0)(t)dt −

∫ 1

0
u∗(t)u1(t)dt

= α1λr(B)
∫ 1

0
u∗(t)u0(t)dt −

∫ 1

0
u∗(t)u1(t)dt

=

∫ 1

0
u∗(t)u0(t)dt + ε0

∫ 1

0
u∗(t)(u0 + λBω)(t)dt

−ε0

∫ 1

0
u∗(t)(λBω)(t)dt −

∫ 1

0
u∗(t)u1(t)dt.

Take R0 = λ1
ε0δ

[ε0δλ
−1
1 ‖λBω‖ + ε0

∫ 1

0
u∗(t)(λBω)(t)dt +

∫ 1

0
u∗(t)u1(t)dt]. For any ‖u0‖ = R > R0, by (14)

we have ∫ 1

0
u∗(t)(λAu0 − u0)(t)dt ≥ ε0[λ−1

1 δ‖u0‖ − λ
−1
1 δ‖λBω‖]

−ε0

∫ 1

0
u∗(t)(λBω)(t)dt −

∫ 1

0
u∗(t)u1(t)dt

> ε0δλ
−1
1 R0 − ε0δλ

−1
1 ‖λBω‖

−ε0

∫ 1

0
u∗(t)(λBω)(t)dt −

∫ 1

0
u∗(t)u1(t)dt

= 0.

But we see from (9) that ∫ 1

0
u∗(t)(u0 − λAu0)(t)dt =

∫ 1

0
u∗(t)µ0u∗(t)dt ≥ 0,
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which is a contradiction. So (8) is true. By Lemma 2 we have

deg(I − λA,TR, θ) = 0. (15)

Next we show that
(λA)u , µu, ∀u ∈ ∂Tr, µ ≥ 1, (16)

where 0 < r < min{r0,R0}. Assume on the contrary that there exist u0 ∈ ∂Tr and µ0 ≥ 1 such that
(λA)u0 = µ0u0. Since λA has no fixed point on ∂Tr, we have µ0 > 1. Let B1 = λ(β+ε)B, then r(B1) < 1.
By (11) we have |λAu0| ≤ (β + ε)λB|u0| = B1|u0|, then µ0|u0| ≤ B1|u0|, and therefore

µn
0|u0| ≤ Bn

1|u0|. (17)

Let D = {v | v ≥ |u0|}. It follows from (17) that {µ−n
0 Bn

1|u0| | n = 1, 2, · · · } ⊂ D. And u0 ∈ ∂Tr and θ ∈ Tr

imply that d = d(θ,D) > 0. Then one can have that

‖Bn
1‖ ≥

1
‖u0‖
‖Bn

1u0‖ ≥
d
‖u0‖

µn
0, n = 1, 2, · · · ,

which shows

r(B1) = lim
n→∞

(‖Bn
1‖)

1/n ≥ lim
n→∞

(
d
‖u0‖

µn
0

)1/n

= µ0 > 1.

This contradicts r(B1) < 1. So (16) holds. By Lemma 1, we have

deg(I − λA,Tr, θ) = 1. (18)

By (15) and (18), we have

deg(I − λA,TR\Tr, θ) = deg(I − λA,TR, θ) − deg(I − λA,Tr, θ) = −1.

Then λA has at least one fixed point in TR\Tr. This means that problem (P) has at least one nontrivial
solution. �

Remark 6. For any α > 0 and β = 0, the proof of Theorem 5 is valid. Then for any λ > 0,
problem (P) has at least one nontrivial solution.

Corollary 7. Suppose that (H1) and (H2) hold. Assume there exists a constant b∗ > 0 such
that

f (t, u) ≥ −
b∗

K
, ∀t ∈ [0, 1], u ≥ −

λ1b∗

β
,

where K = maxt∈[0,1]

∫ 1

0
G(t, s)ds. Then for any λ ∈ (λ1

α
, λ1
β

) problem (P) has at least one nontrivial
solution.

Proof. Let

f1(t, u) =

 f (t, u), ∀u ≥ −λ1b∗

β
, t ∈ [0, 1],

f (t,−λ1b∗

β
), ∀u < −λ1b∗

β
, t ∈ [0, 1],
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(A1u)(t) =

∫ 1

0
G(t, s) f1(s, u(s))ds.

Then all conditions of Theorem 5 hold for f1. By Theorem 5, λA1 has at least one nonzero fixed point
v∗(t), and

v∗(t) = λ

∫ 1

0
G(t, s) f1(s, v∗(s))ds ≥ −λ

b∗

K

∫ 1

0
G(t, s)ds ≥ −

λ1b∗

β
.

Thus

v∗(t) = λ

∫ 1

0
G(t, s) f1(s, v∗(s))ds = λ

∫ 1

0
G(t, s) f (s, v∗(s))ds = λAv∗(t).

This indicates v∗(t) is a nontrivial solution of problem (P). �

Theorem 8. Suppose that (H1) and (H3) hold. Let f (t, 0) ≡ 0,∀t ∈ [0, 1] and

lim
u→0

f (t, u)
u

= ρ. (19)

Then for any λ ∈ (λ1
α
,+∞) and λ , λ1

ρ
, problem (P) has at least one nontrivial solution.

Proof. From the proof of Theorem 5, if (H1) and (H3) hold, then there exists R0 > 0 such that
for any R > R0 and λ > λ1

α
(15) holds.

Since f (t, 0) ≡ 0,∀t ∈ [0, 1], then Aθ = θ. By (19) we have that the Frechet derivative A
′

θ of A at
θ exists and (A

′

θu)(t) =
∫ 1

0
G(t, s)ρu(s)ds. Notice that λ , λ1

ρ
, then 1 is not an eigenvalue of λA

′

θ. By
Lemma 3 there exists r0 > 0, for any 0 < r < min{r0,R0} ,

deg(I − λA,Tr, θ) = deg(I − λA
′

θ,Tr, θ) = (−1)κ , 0, (20)

where κ is the sum of algebraic multiplicities for all eigenvalues of λA
′

θ lying in the interval (0, 1).
By (15) and (20) λA has at least one nonzero fixed point. Thus problem (P) has at least one nontrivial

solution. �

4. Positive solutions

In many realistic problems, the positive solution is more significant. In this section we will study
this question.

Theorem 9. Suppose that (H4) holds. Then there exists λ∗ > 0 such that for any 0 < λ < λ∗

problem (P) has at least one positive solution.

Proof. Let D = [0, 1],D0 = [t1, t2] ⊂ (0, 1) ⊂ D, η = mint1≤t≤t2
3
4 t3(1 − t)2 > 0. By (H4) there

exist b1 > 0 and R1 > 0 such that

f (t, u) ≥ −b1,∀t ∈ [0, 1], u ≥ 0,

f (t, u) ≥ η−1Nb1,∀t ∈ [t1, t2], u ≥ R1, (21)
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where N > 1−(t2−t1)
t2−t1

is a natural number. Let

f2(t, u) =

{
f (t, u), u ≥ 0,
f (t,−u), u < 0.

Then
f2(t, u) ≥ −b1,∀t ∈ [0, 1], u ∈ R. (22)

Let

(A2u)(t) =

∫ 1

0
G(t, s) f2(s, u(s))ds.

Obviously, A2 : E → E is a completely continuous operator.
From Remark 6 and the proof of Theorem 5 there exists R0 > 0 , for any R > R0,

deg(I − λA2,TR, θ) = 0,∀λ > 0. (23)

Take 0 < r < R0. Let m = max0≤t≤1,|u|≤r | f2(t, u)|, M = max0≤s,t≤1 G(t, s), λ = r(mM)−1. For any
0 < λ < λ, u ∈ ∂Tr, we have

‖λA2u‖ = max
0≤t≤1
|

∫ 1

0
λG(t, s) f2(s, u(s))ds| < λMm = r = ‖u‖.

Thus
deg(I − λA2,Tr, θ) = 1, ∀ 0 < λ < λ. (24)

From (23) and (24) we have that for any 0 < λ < λ, there exists uλ ∈ C[0, 1] with ‖uλ‖ > r such that
uλ = λA2uλ. Now we show

lim
λ→0+, uλ=λA2uλ, ‖uλ‖>r

‖uλ‖ = +∞. (25)

In fact, if (25) doesn’t hold, then there exist λn > 0, uλn ∈ C[0, 1] such that λn → 0, r < ‖uλn‖ < c (c > 0
is a constant), and

uλn = λnA2uλn . (26)

Since A2 is completely continuous, then {uλn} has a subsequence (assume without loss of generality that
it is {uλn}) converging to u∗ ∈ C[0, 1]. Let n→ +∞ in (26), we have u∗ = θ, which is a contradiction of
‖uλn‖ > r > 0. Then (25) holds.

Next we show that there exists R = R(λ) > 0 such that if 0 < λ0 ≤ λ, ‖u0‖ ≥ R and u0 = λ0Au0, then
u0(t) ≥ 0. Take

R = R(λ) = max{2η−1R1, 2η−1λb1M, 2λb1M}. (27)

Assume that 0 < λ0 ≤ λ, ‖u0‖ ≥ R and u0 = λ0Au0. Take any t ∈ [t1, t2], by (G3) we have that for any
τ ∈ [0, 1],

u0(t) = λ0

∫ 1

0
G(t, s)[ f2(s, u0(s)) + b1]ds − λ0

∫ 1

0
b1G(t, s)ds

≥ λ0η

∫ 1

0
G(τ, s) f2(s, u0(s))ds − λb1M

= ηu0(τ) − λb1M.

(28)
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On account of the continuity of u0, there exists t∗ ∈ [0, 1] such that u0(t∗) = ‖u0‖. Take τ = t∗ in (28),
by (27) we have

u0(t) ≥ η‖u0‖ − λb1M ≥ ηR − λb1M
=

η

2R +
η

2R − λb1M ≥ η

2R ≥ R1.

Thus u0(t) ≥ R1, for any t ∈ [t1, t2]. By (21) we have

f2(s, u0(s)) ≥ η−1Nb1,∀s ∈ D0 = [t1, t2]. (29)

It follows from (G1) and (G3) that for any s ∈ [t1, t2] and t, τ ∈ [0, 1]

G(t, s) = G(s, t) ≥ ηG(τ, t) = ηG(t, τ). (30)

Take Di ⊂ D (i = 1, 2, · · · ,N) such that mesDi = mesD0,
N⋃

i=1
Di ⊃ D\D0. By (29) and (30) we have

that for any t ∈ D, s ∈ D0, τ ∈ Di (i = 1, 2, · · · ,N),

1
N

G(t, s) f2(s, u0(s)) ≥ b1G(t, τ). (31)

Notice that mesDi = mesD0(i = 1, 2, · · · ,N), then

1
N

∫
D0

G(t, s) f2(s, u0(s))ds ≥
∫

Di

b1G(t, τ)dτ, i = 1, 2, · · · ,N.

Thus ∫
D0

G(t, s) f2(s, u0(s))ds ≥
N∑

i=1

∫
Di

b1G(t, τ)dτ

≥

∫
D\D0

b1G(t, τ)dτ

=

∫
D\D0

b1G(t, s)ds.

(32)

By (32) and (21) we have that for any t ∈ [0, 1],

u0(t) = λ0

∫
D0

G(t, s) f2(s, u0(s))ds + λ0

∫
D\D0

G(t, s) f2(s, u0(s))ds ≥ 0.

For R in (27), by (25), there exists λ∗ < λ such that if 0 < λ ≤ λ∗, ‖uλ‖ ≥ r and uλ = λA2uλ, then
‖uλ‖ ≥ R, thus uλ(t) ≥ 0. By the definition of A2 and f2 we have

uλ(t) = λ

∫ 1

0
G(t, s) f2(s, uλ(s))ds = λ

∫ 1

0
G(t, s) f (s, uλ(s))ds = λAuλ(t).

So uλ(t) is a positive solution of problem (P). �

Remark 10. In Theorem 9 we obtain the existence of positive solutions for the semipositone
boundary value problem (P) without that assuming (1) holds.

Remark 11. Since we only study the existence of positive solutions for the boundary value
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problem (P), which is irrelevant to the value of f (t, u) when u ≤ 0, we only suppose that f (t, u) is
bounded below when u ≥ 0. The nonlinear term f (t, u) may be unbounded from below when u ≤ 0.

Example 12. Consider the fourth-order boundary value problem u(4)(t) = λ
[
(
√

t + 1)u3 −
3
√

u
]
, 0 ≤ t ≤ 1,

u(0) = u
′

(0) = u(1) = u
′′

(1) = 0.
(P1)

In this example, f (t, u) = (
√

t + 1)u3 −
3
√

u, then

lim
u→+∞

f (t, u)
u

= lim
u→+∞

(
(
√

t + 1)u2 −
1

3√
u2

)
= +∞,

which means that (H4) holds. By Theorem 9 there exists λ∗ > 0 such that for any 0 < λ < λ∗ BVP (P1)
has at least one positive solution.

Remark 13. In Example 12, the nonlinear term f doesn’t satisfy (1) and (H3), but the existence of
positive solutions of BVP (P1) is obtained by using our result.
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