Research article

Asymptotic expansion of a finite sum involving harmonic numbers

  • In the paper, we obtain asymptotic expansion of the finite sum of some sequences Sn=nk=1(n2+k)1 by using the Euler's standard one of the harmonic numbers.

    Citation: Ling Zhu. Asymptotic expansion of a finite sum involving harmonic numbers[J]. AIMS Mathematics, 2021, 6(3): 2756-2763. doi: 10.3934/math.2021168

    Related Papers:

    [1] Ali Hassani . Singular expansion of the wave kernel and harmonic sums on Riemannian symmetric spaces of the non-compact type. AIMS Mathematics, 2025, 10(3): 4775-4791. doi: 10.3934/math.2025219
    [2] Shelby Kilmer, Songfeng Zheng . A generalized alternating harmonic series. AIMS Mathematics, 2021, 6(12): 13480-13487. doi: 10.3934/math.2021781
    [3] Kwang-Wu Chen, Fu-Yao Yang . Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Mathematics, 2024, 9(7): 16885-16900. doi: 10.3934/math.2024820
    [4] Jiaye Lin . Evaluations of some Euler-type series via powers of the arcsin function. AIMS Mathematics, 2025, 10(4): 8116-8130. doi: 10.3934/math.2025372
    [5] Mayurachat Janthawee, Narakorn R. Kanasri . On the SEL Egyptian fraction expansion for real numbers. AIMS Mathematics, 2022, 7(8): 15094-15106. doi: 10.3934/math.2022827
    [6] Robert Reynolds, Allan Stauffer . Extended Prudnikov sum. AIMS Mathematics, 2022, 7(10): 18576-18586. doi: 10.3934/math.20221021
    [7] Wanxi Yang, Mao Li, Yulu Feng, Xiao Jiang . On the integrality of the first and second elementary symmetricfunctions of $1, 1/2^{s_2}, ...,1/n^{s_n}$. AIMS Mathematics, 2017, 2(4): 682-691. doi: 10.3934/Math.2017.4.682
    [8] Guoqing Wang . A generalization of Kruyswijk-Olson theorem on Davenport constant in commutative semigroups. AIMS Mathematics, 2020, 5(4): 2992-3001. doi: 10.3934/math.2020193
    [9] Utkal Keshari Dutta, Prasanta Kumar Ray . On the finite reciprocal sums of Fibonacci and Lucas polynomials. AIMS Mathematics, 2019, 4(6): 1569-1581. doi: 10.3934/math.2019.6.1569
    [10] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
  • In the paper, we obtain asymptotic expansion of the finite sum of some sequences Sn=nk=1(n2+k)1 by using the Euler's standard one of the harmonic numbers.



    In [1, p.458], Graham, Knuth and Patashnik proposed a problem: Find the asymptotic value of the sum

    Sn=ni=11n2+i=1n2+1+1n2+2++1n2+n (1.1)

    with an absolute error of O(n7). The following answer

    Sn=1n12n216n3+14n4215n5+112n6+O(1n7) (1.2)

    appeared in [1, p.459] and modestly be interpreted as probably correct.

    In this paper we obtained an asymptotic expression of Sn with absolute error O(1/n4l+1) (lN) by Euler's standard one of the harmonic numbers, and solved the above problem as a special case.

    Theorem 2.1. Let l a given natural number and B2w be an even-indexed Bernoulli number. Then as n,

    Sn=ni=11n2+i=1n2+1+1n2+2++1n2+n=1n12n2+4l1k=3k4mj=[k/4]Aknk+k=4i1il1j=i1Aknk+O(1n4l+1), (2.1)

    where

    Ak=(1)k1k+(1)k22+jw=1B2w2w(1)k(2w+1)(2w1)!(k(2w+1))!(k4w)! (2.2)

    for k3.

    Proof. Let γ be the Euler's constant and P2l+1(x) be a periodic Bernoulli polynomial. Then from Equation (7), Inequalities (8) and (9) in [2]:

    Hn=11+12++1n=lnn+γ+12nlk=1B2k2k1n2k+nP2l+1(x)x2l+1dx,
    |P2l+1(x)|2(2l+1)!(2π)2l+1r=11r2l+1,
    |nP2l+1(x)x2l+1dx|4nlπ(lnπe)2l,

    one can obtain the Euler's standard asymptotic expansion of the harmonic numbers: as n,

    Hn=lnn+γ+12nlk=1B2k2k1n2k+O(1n2l+1).  (2.3)

    By (2.3) we obtain

    Sn=Hn2+nHn2=ln(n2+n)lnn2+12(n2+n)li=1B2i2i1(n2+n)2ii=l+1B2i2i1(n2+n)2i(12n2li=1B2i2i1n4i)+i=l+1B2i2i1n4i+O(1n4l+2)=ln(1+1n)+12(n2+n)li=1B2i2i1(n2+n)2ii=l+1B2i2i1(n2+n)2i12n2+li=1B2i2i1n4i+i=l+1B2i2i1n4i+O(1n4l+2). (2.4)

    Since

    (a+t)n=(1)n1[(a+t)1](n1)(n1)!, aR, (2.5)

    and for 1<t<1,

    [ln(1+t)]=(1+t)1=k=0(1)ktk,ln(1+t)=k=0(1)kk+1tk+1=k=1(1)k1ktk,

    we have

    1n2+n=1n211+1n=k=0(1)k1nk+2,1(n2+n)2i=1n4i1(1+1n)2i=1(2i1)!k=2i1(1)kk!(k(2i1))!1nk+2i+1,

    and

    Sn=k=1(1)k1k1nk+12k=0(1)k1nk+2+li=1B2i(2i)!k=2i1(1)kk!(k(2i1))!1nk+2i+1+i=l+1B2i(2i)!k=2i1(1)kk!(k(2i1))!1nk+2i+112n2+li=1B2i2i1n4i+i=l+1B2i2i1n4i=k=1(1)k1k1nk+12k=0(1)knk+2+[l1i=1B2i(2i)!k=2i1(1)kk!(k(2i1))!1nk+2i+1B2l2l1n4l]12n2+[l1i=1B2i2i1n4i+B2l2l1n4l]
    =k=1(1)k1k1nk+12k=0(1)knk+2+l1i=1B2i(2i)!k=2i1(1)kk!(k(2i1))!1nk+2i+112n2+l1i=1B2i2i1n4i=k=1(1)k1k1nk+12k=0(1)knk+2+B22!k=1(1)kk!(k1)!1nk+3+B44!k=3(1)kk!(k3)!1nk+5+B66!k=5(1)kk!(k5)!1nk+7++B2l2(2l2)!k=2l3(1)kk!(k(2l3))!1nk+2l112n2+B221n4+B441n8+B661n12++B2l22l21n4l4
    =(1)011n+(1)121n2+k=3(1)k1k1nk+12(1)0n2+12k=1(1)knk+2+B22!k=1(1)kk!(k1)!1nk+3+B44!k=3(1)kk!(k3)!1nk+5+B66!k=5(1)kk!(k5)!1nk+7++B2l2(2l2)!k=2l3(1)kk!(k(2l3))!1nk+2l112n2+B221n4+B441n8+B661n12++B2l22l21n4l4
    =(1)011n+(1)121n2+12(1)0n212n2+k=3(1)k1k1nk+12k=1(1)knk+2+B22!k=1(1)kk!(k1)!1nk+3+B44!k=3(1)kk!(k3)!1nk+5+B66!k=5(1)kk!(k5)!1nk+7++B2l2(2l2)!k=2l3(1)kk!(k(2l3))!1nk+2l1+B221n4+B441n8+B661n12++B2l22l21n4l4
    =1n121n2+[k=3(1)k1k1nk+12k=1(1)k1nk+2]+B22!k=1(1)kk!(k1)!1nk+3+B44!k=3(1)kk!(k3)!1nk+5+B66!k=5(1)kk!(k5)!1nk+7++B2l2(2l2)!k=2l3(1)kk!(k(2l3))!1nk+2l1+B221n4+B441n8+B661n12++B2l22l21n4l4.

    Similarly, from the brackets above we can extract the cubic term of 1/n:

    Sn=1n121n216n3+[k=4(1)k1k1nk+12k=2(1)knk+2+B22!k=1(1)kk!(k1)!1nk+3]+B44!k=3(1)kk!(k3)!1nk+5+B66!k=5(1)kk!(k5)!1nk+7++B2l2(2l2)!k=2l3(1)kk!(k(2l3))!1nk+2l1+B221n4+B441n8+B661n12++B2l22l21n4l4.

    Carrying out this idea and according to k is a multiple of 4 or not, we can classify the coefficients of (1/nk) as follows:

    Sn=1n12n2+4l1k=3k4mj=[k/4][(1)k1k+(1)k22+jw=1B2w2w(1)k(2w+1)(2w1)!(k(2w+1))!(k4w)!]1nk+k=4i1il1j=i1[(1)k1k+(1)k22+2j2w=1B2w2w(1)k(2w+1)(2w1)!(k(2w+1))!(k4w)!]1nk+O(1n4l+1),

    which is equivalent to (2.1).

    By (2.1) and (2.2) we can obtain many concrete conclusions. Letting k=3,4,5,,13, in (2.2) gives

    (1) when k=3, we have

    A3=(1)23+12(1)=16;

    (2) when k=4, Then i=1 and we have

    A4=(1)34+(1)22=14;

    (3) when k=5, then j=1 and

    A5=(1)45+(1)32+162(1)21!2!1!=215;

    (4) when k=6, then j=1 and

    A6=(1)56+(1)42+162(1)31!3!2!=112;

    (5) when k=7, then j=1 and

    A7=(1)67+(1)52+162(1)41!4!3!=142;

    (6) when k=8, then i=2, j=1 and

    A8=(1)78+(1)62+162(1)51!5!4!=124;

    (7) when k=9, then j=2 and

    A9=(1)89+(1)72+162(1)61!6!5!+(130)4(1)43!4!1!=790;

    (8) when k=10, then j=2 and

    A10=(1)910+(1)82+162(1)71!7!6!+(130)4(1)53!5!2!=110;

    (9) when k=11, then j=2 and

    A11=(1)1011+(1)92+162(1)81!8!7!+(130)4(1)63!6!3!=111;

    (10) when k=12, then i=3, j=2 and

    A12=(1)1112+(1)102+162(1)91!9!8!+(130)4(1)73!7!4!=124;

    (11) when k=13, then i=3, j=2 and

    A13=(1)1213+(1)112+162(1)101!10!9!+(130)4(1)83!8!5!++1426(1)65!6!1!=892730;

    and so on. From this we can get the following corollary.

    Corollary 3.1. Let

    Sn=ni=11n2+i=1n2+1+1n2+2++1n2+n.

    Then as n,

    Sn=1n12n216n3+14n4215n5+112n6142n7124n8+790n9 110n10+111n11124n12892730n13+O(1n14). (3.1)

    As we can see, (3.1) affirms (1.2). Noting down

    Tn,k=ki=1Aini,

    from Theorem 2.1 we have that as n,

    Sn=ni=11n2+i=1n2+1+1n2+2++1n2+n=Tn,k+O(1nk+1), k3.

    The following is the error analysis table of Sn and Tn,k:

    n5102030,
    SnTn,63.8017×1072.7290×1092.0086×10111.1484×1012
    SnTn,83.1262×1086.8643×10111.4258×10133.7872×1015
    SnTn,101.6799×1098.6526×10134.3339×10165.0517×1018
    SnTn,131.5455×10111.096×10157.2370×10202.5462×1022

     | Show Table
    DownLoad: CSV

    which shows that Tn,k has a good approximation to Sn.

    One of the reviewers pointed out that the key formula (2.4) of this paper can be obtained by the other two methods. The following two notes benefit from the reviewer's reminder. I hope the three methods provided in this paper will be helpful for further research in related fields.

    Remark 4.1. Without referring to Euler-Maclaurin summation formula for the harmonic numbers Hn, we can obtain (2.4) when takinging f(t)=1/(n2+t) into the Euler-Maclaurin summation formula. In fact, by using the Euler-Maclaurin summation formula (see [3, p.45])

    nk=0f(k)=n0f(t)dt+12[f(0)+f(n)]+mk=1B2k(2k)![f(2k1)(n)f(2k1)(0)]+Rm,

    where

    Rm=nB2m+2(2m+2)!f(2m+2)(θn), 0<θ<1, n,mN

    and (2.5), the key formula (2.4) follows from the relations

    n0f(t)dt=ln(n2+n)lnn2=ln(1+1n),12[f(0)+f(n)]1n2=12(n2+n)12n2

    and

    Sn=nk=0f(k)1n2.

    Remark 4.2. The sum Sn can be written in the form

    Sn=ψ(n2+n+1)ψ(n2+1), ψ(z)=ddzlnΓ(z),

    where the gamma function Γ(z) is denoted by

    Γ(z)=0tz1etdt. (see [3,p.221])

    From known asymptotic expansion of the psi function ψ(z):

    ψ(z)lnz12zk=1B2k(2k)z2k, (see [3,p.224])

    and a property of ψ(z):

    ψ(z+1)=ψ(z)+1z, (see [3,p.224])

    the formula (2.4) follows.

    The author is thankful to reviewers for reviewers' careful corrections and valuable comments on the original version of this paper. This paper is supported by the Natural Science Foundation of China grants No.61772025.

    The author declares no conflict of interest in this paper.



    [1] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics: A foundation for computer science, 2 Eds., Amsterdam: Addison-Wesley Publishing Company, 1994.
    [2] D. E. Knuth, Euler's constant to 1271 places, Math. Comput., 16 (1962), 275–280.
    [3] A. Jeffrey, Handbook of mathematical formulas and integrals, 3 Eds., Elsevier Academic Press, 2004.
  • This article has been cited by:

    1. Yong-Guo Shi, Xiaoyu Luo, Zhi-jie Jiang, Asymptotics on a heriditary recursion, 2024, 9, 2473-6988, 30443, 10.3934/math.20241469
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2184) PDF downloads(43) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog