Research article

A generalization of Kruyswijk-Olson theorem on Davenport constant in commutative semigroups

  • Received: 22 January 2020 Accepted: 13 March 2020 Published: 20 March 2020
  • MSC : 11B75, 11A05

  • Let S be a finite commutative semigroup written additively. An element e of S is said to be idempotent if e+e=e. The Erdős-Burgess constant of the semigroup S is defined as the smallest positive integer such that any S-valued sequence T of length must contain one or more terms with the sum being an idempotent of S. If the semigroup S is a finite abelian group, the Erdős-Burgess constant reduces to the well-known Davenport constant in Combinatorial Number Theory. In this paper, we determine the value of the Erdős-Burgess constant for a direct sum of two finite cyclic semigroups in some cases, which generalizes the classical Kruyswijk-Olson Theorem on Davenport constant of finite abelian groups in the setting of commutative semigroups.

    Citation: Guoqing Wang. A generalization of Kruyswijk-Olson theorem on Davenport constant in commutative semigroups[J]. AIMS Mathematics, 2020, 5(4): 2992-3001. doi: 10.3934/math.2020193

    Related Papers:

    [1] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
    [2] Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357
    [3] N. E. Cho, G. Murugusundaramoorthy, K. R. Karthikeyan, S. Sivasubramanian . Properties of λ-pseudo-starlike functions with respect to a boundary point. AIMS Mathematics, 2022, 7(5): 8701-8714. doi: 10.3934/math.2022486
    [4] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [5] Mohammad Faisal Khan, Jongsuk Ro, Muhammad Ghaffar Khan . Sharp estimate for starlikeness related to a tangent domain. AIMS Mathematics, 2024, 9(8): 20721-20741. doi: 10.3934/math.20241007
    [6] Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906
    [7] Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee . On a subclass related to Bazilevič functions. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135
    [8] Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551
    [9] Huo Tang, Gangadharan Murugusundaramoorthy, Shu-Hai Li, Li-Na Ma . Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Mathematics, 2022, 7(4): 6365-6380. doi: 10.3934/math.2022354
    [10] Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423
  • Let S be a finite commutative semigroup written additively. An element e of S is said to be idempotent if e+e=e. The Erdős-Burgess constant of the semigroup S is defined as the smallest positive integer such that any S-valued sequence T of length must contain one or more terms with the sum being an idempotent of S. If the semigroup S is a finite abelian group, the Erdős-Burgess constant reduces to the well-known Davenport constant in Combinatorial Number Theory. In this paper, we determine the value of the Erdős-Burgess constant for a direct sum of two finite cyclic semigroups in some cases, which generalizes the classical Kruyswijk-Olson Theorem on Davenport constant of finite abelian groups in the setting of commutative semigroups.


    Let A denote the class of functions of the form:

    f(z)=z+n=2anzn, (1.1)

    which are analytic in the open unit disk U={z:|z|<1}. Also let S denote the subclass of A consisting of univalent functions in U. It is well-known that for fS, |a3a22|1. A classical theorem of Fekete-Szegö [8] states that for fS given by (1.1)

    |a3ηa22|{34η,ifη0,1+2exp(2η1η),if0<η<1,4η3,ifη1.

    The latter inequality is sharp in the sense that for each η there exists a function in S such that the equality holds. Later, Pfluger [24] has considered the complex values of η and provided the inequality

    |a3ηa22|1+2|exp(2η1η)|.

    Indeed, many authors have considered the Fekete-Szegö problem for various subclasses of A, the upper bound for |a3ηa22| is investigated by various authors [1,5,6,13,16,17], see also recent investigations on this subject by [7,11,21,22,23].

    A function fA is said to be in the class S of starlike functions in U, if

    (zf(z)f(z))>0  (zU).

    On the other hand, a function fA is said to be in the class of convex functions in U, denoted by C, if

    (1+zf(z)f(z))>0  (zU).

    A function fA is said to be in the class of starlike functions of complex order b(bC{0}), denoted by S(b), provided that

    {1+1b(zf(z)f(z)1)}>0  (zU).

    Furthermore, a function fC(b) is convex functions of complex order b(bC{0}) if it satisfies the inequality

    {1+1b(zf(z)f(z))}>0 (zU).

    Note that S(1)=S and C(1)=C.

    The class S(b) of starlike functions of complex order b(bC{0}) was introduced by Nasr and Aouf [19] while the class C(b) of convex functions of complex order b(bC{0}) was presented earlier by Wiatrowski [28].

    Sãlãgean [26] introduced the following differential operator for f(z)A which is called the Sãlãgean differential operator:

    D0f(z)=f(z)D1f(z)=Df(z)=zf(z)Dkf(z)=D(Dk1f(z))(kN=1,2,3,...).

    We note that,

    Dkf(z)=z+n=2nkanzn(kN0=N{0}). (1.2)

    Recently, Komatu [14] introduced a certain integral operator Lδa defined by

    Lδaf(z)=aδΓ(δ)10ta2(log1t)δ1f(zt)dt(a>0, δ0, f(z)A, zU). (1.3)

    Thus, if f(z)A is of the form (1.1), it is easily seen from (1.3) that [14]

    Lδaf(z)=z+n=2(aa+n1)δanzn(a>0, δ0). (1.4)

    We note that:

    L0af(z)=f(z);

    L11f(z)=A[f](z) known as Alexander operator [2];

    L12f(z)=L[f](z) known as Libera operator [15];

    L1c+1f(z)=Lc[f](z) called generalized Libera operator or Bernardi operator [3];

    ● For a=1 and δ=k (k is any integer), the multiplier transformation Lk1f(z)=Ikf(z) was studied by Flett [9] and Sãlãgean [26];

    ● For a=1 and δ=k (kN0=N{0}), the differential operator Lk1f(z)=Dkf(z) was studied by Sãlãgean [26];

    ● For a=2 and δ=k (k is any integer), the operator Lk2f(z)=Lkf(z) was studied by Uralegaddi and Somanatha [27];

    ● For a=2, the multiplier transformation Lδ2f(z)=Iδf(z) was studied by Jung et al. [10].

    For Dkf(z) given by (1.2) and Lδaf(z) is given by (1.4), we define the differential operator DkLδaf(z) as follows:

    DkLδaf(z)=z+n=2nk(aa+n1)δanzn. (1.5)

    Note that, by taking δ=0 and k=0 in (1.5), the differential operator DkLδaf(z) reduces to Sãl ãgean differential operator and Komatu integral operator, respectively.

    Using the operator DkLδaf, we now introduce a new subclass of analytic functions as follows:

    Definition 1. A function fA is said to be in the class Nk,δa(λ,b) if satisfies the inequality

    (1+1b(z(DkLδaf(z))+λz2(DkLδaf(z))(1λ)DkLδaf(z)+λz(DkLδaf(z))1))>0
    (a>0, bC{0}, δ0, 0λ1, kN=1,2,3,..., zU).

    Note that, N0,0a(0,b)=S(b) and N0,0a(1,b)=C(b).

    By giving specific values to the parameters and a,b,k,δ and λ, we obtain the following important subclasses studied by various authors in earlier works, for instance; N0,δa(0,b) and N0,δa(1,b) (Bulut [4]), N0,δa(λ,1) (Mohapatra and Panigrahi [18]), N0,0a(0,b)=S(b) (Nars and Aouf [19]), N0,0a(1,b)=C(b) (Wiatrowski [28], Nars and Aouf [20]).

    In this paper, we find an upper bound for the functional |a3ηa22| for the functions f belongs to the class Nk,δa(λ,b).

    We denote by P a class of analytic function in U with p(0)=1 and p(z)>0. In order to derive our main results, we have to recall here the following lemma [25].

    Lemma 1. Let pP with p(z)=1+c1z+c2z2+...., then

    |cn|2forn1.

    If |c1|=2 then p(z)p1(z)=(1+γ1z)/(1γ1z) with γ1=c1/2. Conversely, if p(z)p1(z) for some |γ1|=1, then c1=2γ1 and |c1|=2. Furthermore, we have

    |c2c212|2|c1|22.

    If |c1|<2 and |c2c212|2|c1|22, then p(z)p2(z), where p2(z)=1+zγ2z+γ11+¯γ1γ2z1zγ2z+γ11+¯γ1γ2z, and γ1=c1/2, γ2=2c2c214|c1|2. Conversely, if p(z)p2(z) for some |γ1|<1 and |γ2|=1 then γ1=c1/2, γ2=2c2c214|c1|2 and |c2c212|2|c1|22.

    Now, consider the functional |a3ηa22| for bC{0} and ηC.

    Theorem 1. Let bC{0} and 0λ1, ηC, a>0, δ0. If f of the form (1.1) is in Nk,δa(λ,b), then

    |a2|2|b|(λ+1)Aδ12k, (2.1)
    |a3||b|(2λ+1)Aδ23kmax{1,|1+2b|} (2.2)

    and

    |a3ηa22||b|(2λ+1)Aδ23kmax{1,|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|} (2.3)

    where A1=(aa+1) and A2=(aa+2). Consider the functions

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b[p1(z)1] (2.4)
    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b[p2(z)1] (2.5)

    where p1, p2 are given in Lemma 1. Equality in (2.1) holds if (2.4); in (2.2) if (2.4) and (2.5); for each η in (2.3) if (2.4) and (2.5).

    Proof. Denote Fk,δλ,a(z)=(1λ)DkLδaf(z)+λz(DkLδaf(z))=z+β2z2+β3z3+...., then

    β2=(λ+1)Aδ12ka2,β3=(2λ+1)Aδ23ka3. (2.6)

    By the definition of the class Nk,δa(λ,b), there exists pP such that z(Fk,δλ,a(z))Fk,δλ,a(z)=1+b(p(z)1), so that

    (z(1+2β2z+3β3z2+...)z+β2z2+β3z3+....)=1b+b(1+c1z+c2z2+...),

    which implies the equality

    z+2β2z2+3β3z3+...=z+(bc1+β2)z2+(bc2+β2bc1+β3)z3+....

    Equating the coefficients of both sides of the latter, we have

    β2=bc1, β3=b2c212+bc22, (2.7)

    so that, on account of (2.6) and (2.7)

    a2=bc1(λ+1)Aδ12k,a3=b2(2λ+1)Aδ23k(bc21+c2). (2.8)

    Taking into account (2.8) and Lemma 1, we obtain

    |a2|=|b(λ+1)Aδ12kc1|2|b|(λ+1)Aδ12k (2.9)

    and

    |a3|=|b2(2λ+1)Aδ23k[c2c212+1+2b2c21]||b|2(2λ+1)Aδ23k[2|c21|2+|1+2b||c21|2]=|b|(2λ+1)Aδ23k[1+|c1|2+|1+2b|12]|b|(2λ+1)Aδ23kmax{1,[1+|1+2b|1]}.

    Thus, we have

    |a3||b|(2λ+1)Aδ23kmax{1,|1+2b|}.

    Then, with the aid of Lemma 1, we obtain

    |a3ηa22|=|b2(2λ+1)Aδ23k(bc21+c2)ηb2c21(λ+1)2A2δ122k||b|2(2λ+1)Aδ23k[|c2c212|+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]|b|2(2λ+1)Aδ23k[2|c21|2+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|(2λ+1)Aδ23k[1+|c21|4(|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|1)]|b|(2λ+1)Aδ23kmax{1,|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|}. (2.10)

    We now obtain sharpness of the estimates in (2.1), (2.2) and (2.3).

    Firstly, in (2.1) the equality holds if c1=2. Equivalently, we have p(z)p1(z)=(1+z)/(1z). Therefore, the extremal functions in Nk,δa(λ,b) is given by

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+(2b1)z1z. (2.11)

    Next, in (2.2), for first case, the equality holds if c1=c2=2. Therefore, the extremal functions in Nk,δa(λ,b) is given by (2.11) and for the second case, the equality holds if c1=0, c2=2. Equivalently, we have p(z)p2(z)=(1+z2)/(1z2). Therefore, the extremal functions in Nk,δa(λ,b) is given by

    z(Fk,δλ,a(z))Fk,δλ,a(z)=1+(2b1)z21z2. (2.12)

    Finally, in (2.3), the equality holds. Obtained extremal functions for (2.2) is also valid for (2.3).

    Thus, the proof of Theorem 1 is completed.

    Taking k=0 and λ=0 in Theorem 1, we have

    Corollary 1. [4] Let bC{0}, ηC, a>0 and δ0. If f of the form (1.1), is in N0,δa(0,b), then

    |a2|2|b|Aδ1,
    |a3||b|Aδ2max{1,|1+2b|}

    and

    |a3ηa22||b|Aδ2max{1,|1+2b4ηbAδ2A2δ1|}

    where A1=(aa+1) and A2=(aa+2).

    If we choose k=0 and λ=1 in Theorem 1, we get

    Corollary 2. [4] Let bC{0}, ηC, a>0 and δ0. If f of the form (1.1), is in N0,δa(1,b), then

    |a2||b|Aδ1,
    |a3||b|3Aδ2max{1,|1+2b|}

    and

    |a3ηa22||b|3Aδ2max{1,|1+2b3ηbAδ2A2δ1|}

    where A1=(aa+1) and A2=(aa+2).

    For k=0, δ=0, λ=0 and b=1 in (2.3), we obtain

    Corollary 3. [12] Let ηC. If f of the form (1.1), is in S(1), then

    |a3ηa22|max{1,|4η3|}.

    Taking k=0, δ=0, λ=1 and b=1 in (2.3), we have

    Corollary 4. [12] Let ηC. If f of the form (1.1), is in C(1), then

    |a3ηa22|max{13,|η1|}

    We next consider the case, when η and b are real. In this case, the following theorem holds.

    Theorem 2. Let b>0 and let Nk,δa(λ,b). Then for ηR, we have

    |a3ηa22|{b(2λ+1)Aδ23k{1+2b[12η(2λ+1)Aδ23k(λ+1)2A2δ122k]},ηM1,b(2λ+1)Aδ23k,M1ηM2,b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1],ηM2,

    where A1=(aa+1), A2=(aa+2), M1=(λ+1)2A2δ122k2(2λ+1)Aδ23k and M2=(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. For each η, the equality holds for the functions given in equations (2.4) and (2.5).

    Proof. First, let η(λ+1)2A2δ122k2(2λ+1)Aδ23k(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. In this case it follows from (2.8) and Lemma 1 that

    |a3ηa22|b2(2λ+1)Aδ23k[2|c21|2+|c21|2(1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k)]b(2λ+1)Aδ23k[1+2b(12η(2λ+1)Aδ23k(λ+1)2A2δ122k)].

    Let, now (λ+1)2A2δ122k2(2λ+1)Aδ23kη(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k. Then, using the estimations obtained above we arrived

    |a3ηa22|b(2λ+1)Aδ23k.

    Finally, if η(1+2b)(λ+1)2A2δ122k4b(2λ+1)Aδ23k, then

    |a3ηa22|b2(2λ+1)Aδ23k[2|c21|2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k12b)]=b2(2λ+1)Aδ23k[2+|c21|2(4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k22b)]b(2λ+1)Aδ23k[4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1].

    Thus, the proof of Theorem 2 is completed.

    Taking k=0 and λ=0 in Theorem 2, we have

    Corollary 5. [4] Let b>0 and let N0,δa(0,b). Then for ηR, we have

    |a3ηa22|{bAδ2{1+2b(12ηAδ2A2δ1)},ηA2δ12Aδ2,bAδ2,A2δ12Aδ2η(1+2b)A2δ14bAδ2,bAδ2[4ηbAδ2A2δ12b1],η(1+2b)A2δ14bAδ2,

    where A1=(aa+1) and A2=(aa+2).

    Finally, considering the case of bC{0} and ηR, we obtain

    Theorem 3. Let bC{0} and let fNk,δa(λ,b). For ηR, we have

    |a3ηa22|{4|b|2(λ+1)2A2δ122k[(k1)η]+|b||sinθ|(2λ+1)Aδ23k,ifηT1,|b|(2λ+1)Aδ23k,ifT1ηT2,4|b|2(λ+1)2A2δ122k[η(k1)]+|b||sinθ|(2λ+1)Aδ23k,ifηT2,

    where A1=(aa+1) and A2=(aa+2), |b|=beiθ, k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k, l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k, T1=(k1)l1(1|sinθ|) and T2=(k1)+l1(1|sinθ|). For each η there is a function in Nk,δa(λ,b) such that the equality holds.

    Proof. From inequality (2.10), we may write

    |a3ηa22|=|b|2(2λ+1)Aδ23k[|c2c212|+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]|b|2(2λ+1)Aδ23k[2|c21|2+|c21|2|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|]=|b|2(2λ+1)Aδ23k[|c21|2(|1+2b4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k|1)+2]=|b|(2λ+1)Aδ23k+|b|4(2λ+1)Aδ23k[|4ηb(2λ+1)Aδ23k(λ+1)2A2δ122k2b1|1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k×[|η(λ+1)2A2δ122k2(2λ+1)Aδ23k(λ+1)2A2δ122k4b(2λ+1)Aδ23k|(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k]|c21|.

    If we write |b|=beiθ (or b=|b|eiθ), k1=(λ+1)2A2δ122k2(2λ+1)Aδ23k+(λ+1)2A2δ122keiθ4|b|(2λ+1)Aδ23k and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in the last inequality, we get

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|ηk1|l1]|c21||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η(k1)|+l1|sinθ|l1]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[|η(k1)|l1(1|sinθ|)]|c21|. (2.13)

    We consider the following cases for (2.13). Suppose η(k1). Then 

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[(k1)l1(1|sinθ|)η]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[T1η]|c21|. (2.14)

    Let ηT1=(k1)l1(1|sinθ|). On using Lemma 1 and l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in inequality (2.14), we get

    |a3ηa22||b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k((k1)η)|b|(2λ+1)Aδ23k(1|sinθ|)=4|b|2(λ+1)2A2δ122k((k1)η)+|b||sinθ|(2λ+1)Aδ23k.

    If we take T1=(k1)l1(1|sinθ|)η(k1), then (2.14) gives

    |a3ηa22||b|(2λ+1)Aδ23k.

    Let η(k1). It then follows, from (2.13), that

    |a3ηa22||b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[η(k1)+l1(1|sinθ|)]|c21|=|b|(2λ+1)Aδ23k+|b|2(λ+1)2A2δ122k[ηT1]|c21|. (2.15)

    Let  ηT2=(k1)+l1(1|sinθ|). On using (2.15) we obtain

    |a3ηa22||b|(2λ+1)Aδ23k.

    Let ηT2=(k1)+l1(1|sinθ|). Employing Lemma 1 together with l1=(λ+1)2A2δ122k4|b|(2λ+1)Aδ23k in equality (2.15), we obtain

    |a3ηa22||b|(2λ+1)Aδ23k+4|b|2(λ+1)2A2δ122k(η(k1))|b|(2λ+1)Aδ23k(1|sinθ|)4|b|2(λ+1)2A2δ122k(η(k1))+|b||sinθ|(2λ+1)Aδ23k.

    Therefore, the proof is completed.

    Corollary 6. If we take a=1 in Theorems 2.1-2.3, we have the following results, respectively:

    1. Let bC{0} and fNk,δ1(λ,b). Then, for ηC, we have

    |a2||b|(λ+1)2kδ1,
    |a3||b|(2λ+1)3kδmax{1,|1+2b|}

    and

    |a3ηa22||b|(2λ+1)3kδmax{1,|1+2b4ηb(2λ+1)(λ+1)2(34)kδ|}.

    Equality holds for the cases a=1 of (2.4) and (2.5) in Theorem 2.1.

    2. Let b>0 and fNk,δ1(λ,b).Then, for ηR, we have

    |a3ηa22|{b(2λ+1)3kδ{1+2b[12η(2λ+1)(λ+1)2(34)kδ]},ifηY1,b(2λ+1)3kδ,ifY1ηY2,b(2λ+1)3kδ[4ηb(2λ+1)(λ+1)2(34)kδ2b1],ifηY2,

    where Y1=(λ+1)22(2λ+1)(43)kδ and Y2=(1+2b)(λ+1)24b(2λ+1)(43)kδ. For each η, the equality holds for the cases a=1 of (2.4) and (2.5).

    3. Let bC{0} and fNk,δ1(λ,b). Then, for ηR, we have

    |a3ηa22|{|b|2(λ+1)24kδ1[(k1)η]+|b||sinθ|(2λ+1)3kδ,ifηT1,b(2λ+1)3kδ,ifT1ηT2,|b|2(λ+1)24kδ1[η(k1)]+|b||sinθ|(2λ+1)3kδ,ifηT2,

    where |b|=beiθ, k1=(λ+1)22(2λ+1)(43)kδ(43)kδ(λ+1)2eiθ4|b|(2λ+1), l1=(43)kδ(λ+1)24|b|(2λ+1), T1=(k1)l1(1|sinθ|) and T2=(k1)+l1(1|sinθ|). For each η there is a function in Nk,δ1(λ,b) such that the equality holds.

    The authors would like to thank the anonymous referees for the useful improvements suggested.

    All authors declare no conflicts of interest.



    [1] W. R. Alford, A. Granville, C. Pomerance, There are infinitely many Carmichael numbers, Ann. Math., 140 (1994), 703-722. doi: 10.2307/2118622
    [2] N. Alon, S. Friedland, G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B, 37 (1984), 79-91. doi: 10.1016/0095-8956(84)90047-9
    [3] G. Bhowmik, J.-C. Schlage-Puchta, Davenport's constant for groups of the form Z3Z3Z3d, In: Granville A., Nathanson M.B., Solymosi J. (eds) Additive Combinatorics, CRM Proc. Lecture Notes, 43, pp. 307-326, Am. Math. Soc., 2007.
    [4] D. A. Burgess, A problem on semi-groups, Studia Sci. Math. Hungar., 4 (1969), 9-11.
    [5] K. Cziszter, M. Domokos, A. Geroldinger, The Interplay of Invariant Theory with Multiplicative Ideal Theory and with Arithmetic Combinatorics. In: Chapman S., Fontana M., Geroldinger A., Olberding B. (eds) Multiplicative Ideal Theory and Factorization Theory, Springer Proceedings in Mathematics & Statistics, Springer, Cham, 2016.
    [6] C. Deng, Davenport constant for commutative rings, J. Number Theory, 172 (2017), 321-342. doi: 10.1016/j.jnt.2016.08.001
    [7] P. van Emde Boas, A combinatorial problem on finite abelian groups 2, Report ZW-1969-007, Mathematical Centre, Amsterdam, 1969.
    [8] P. van Emde Boas, D. Kruyswijk, A combinatorial problem on finite abelian groups 3, Report ZW 1969-008, Stichting Math. Centrum, Amsterdam, 1969.
    [9] P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel F, 10 (1961), 41-43.
    [10] W. Gao, On Davenport's constant of finite abelian groups with rank three, Discrete Math., 222 (2000), 111-124. doi: 10.1016/S0012-365X(00)00010-8
    [11] W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math., 24 (2006), 337-369. doi: 10.1016/j.exmath.2006.07.002
    [12] A. Geroldinger, Additive Group Theory and Non-unique Factorizations. In: A. Geroldinger and I. Ruzsa (Eds.), Combinatorial Number Theory and Additive Group Theory (Advanced Courses in Mathematics-CRM Barcelona), Birkhäuser, Basel, 2009.
    [13] A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Chapman & Hall/CRC, 2006.
    [14] A. Geroldinger, M. Liebmann, A. Philipp, On the Davenport constant and on the structure of extremal sequences, Period. Math. Hungar., 64 (2012), 213-225. doi: 10.1007/s10998-012-3378-6
    [15] D. W. H. Gillam, T. E. Hall, N. H. Williams, On finite semigroups and idempotents, Bull. London Math. Soc., 4 (1972), 143-144. doi: 10.1112/blms/4.2.143
    [16] P. A. Grillet, Commutative Semigroups, Kluwer Academic Publishers, 2001.
    [17] D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics, Springer, Cham, 2013.
    [18] C. Liu, On the lower bounds of Davenport constant, J. Combin. Theory Ser. A, 171 (2020).
    [19] L. E. Marchan, O. Ordaz, I. Santos, et al. Multi-wise and constrained fully weighted Davenport constants and interactions, J. Combin. Theory Ser. A, 135 (2015), 237-267. doi: 10.1016/j.jcta.2015.05.004
    [20] R. Meshulam, An uncertainty inequality and zero subsums, Discrete Math., 84 (1990), 197-200. doi: 10.1016/0012-365X(90)90375-R
    [21] J. E. Olson, A Combinatorial Problem on Finite Abelian Groups, I, J. Number Theory, 1 (1969), 8-10. doi: 10.1016/0022-314X(69)90021-3
    [22] J. E. Olson, A combinatorial problem on finite abelian groups II, J. Number Theory, 1 (1969), 195-199. doi: 10.1016/0022-314X(69)90037-7
    [23] A. Plagne, W. A. Schmid, An application of coding theory to estimating Davenport constants, Des. Codes Cryptogr., 61 (2011), 105-118. doi: 10.1007/s10623-010-9441-5
    [24] W. A. Schmid, The inverse problem associated to the Davenport constant for C2C2C2n and applications to the arithmetical characterization of class groups, Electron. J. Comb., 18 (2011).
    [25] G. Wang, Davenport constant for semigroups II, J. Number Theory, 153 (2015), 124-134. doi: 10.1016/j.jnt.2015.01.007
    [26] G. Wang, Additively irreducible sequences in commutative semigroups, J. Combin. Theory Ser. A, 152 (2017), 380-397. doi: 10.1016/j.jcta.2017.07.001
    [27] G. Wang, Structure of the largest idempotent-product free sequences in semigroups, J. Number Theory, 195 (2019), 84-95. doi: 10.1016/j.jnt.2018.05.020
    [28] H. Wang, L. Zhang, Q. Wang, et al. Davenport constant of the multiplicative semigroup of the quotient ring Fp[x]f(x), Int. J. Number Theory, 12 (2016), 663-669.
    [29] L. Zhang, H. Wang, Y. Qu, A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of F2[x], Colloq. Math., 148 (2017), 123-130.
  • This article has been cited by:

    1. Kolade M. Owolabi, Sonal Jain, Edson Pindza, Eben Mare, Comprehensive Numerical Analysis of Time-Fractional Reaction–Diffusion Models with Applications to Chemical and Biological Phenomena, 2024, 12, 2227-7390, 3251, 10.3390/math12203251
    2. Lin Qiu, Yanjie Wang, Yan Gu, Qing-Hua Qin, Fajie Wang, Adaptive physics-informed neural networks for dynamic coupled thermo-mechanical problems in large-size-ratio functionally graded materials, 2024, 0307904X, 115906, 10.1016/j.apm.2024.115906
    3. Lin Qiu, Fajie Wang, Wenzhen Qu, Ji Lin, Yan Gu, Qing‐Hua Qin, A Hybrid Collocation Method for Long‐Time Simulation of Heat Conduction in Anisotropic Functionally Graded Materials, 2025, 126, 0029-5981, 10.1002/nme.70002
    4. Lin Qiu, Fajie Wang, Yingjie Liang, Qing-Hua Qin, Physics-informed radial basis function network based on Hausdorff fractal distance for solving Hausdorff derivative elliptic problems, 2025, 183, 08981221, 271, 10.1016/j.camwa.2025.02.012
    5. Chih-Yu Liu, Cheng-Yu Ku, Wei-Da Chen, Ying-Fan Lin, Jun-Hong Lin, Solving Inverse Wave Problems Using Spacetime Radial Basis Functions in Neural Networks, 2025, 13, 2227-7390, 725, 10.3390/math13050725
    6. Hao Chang, Fajie Wang, Xingxing Yue, Lin Qiu, Linlin Sun, A 2.5D Generalized Finite Difference Method for Elastic Wave Propagation Problems, 2025, 13, 2227-7390, 1249, 10.3390/math13081249
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4093) PDF downloads(280) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog