Citation: Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee. On a subclass related to Bazilevič functions[J]. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135
[1] | K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417 |
[2] | Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395 |
[3] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[4] | Mohsan Raza, Khalida Inayat Noor . Subclass of Bazilevič functions of complex order. AIMS Mathematics, 2020, 5(3): 2448-2460. doi: 10.3934/math.2020162 |
[5] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[6] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[7] | Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551 |
[8] | Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423 |
[9] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[10] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
Let A denote the family of all functions f which are analytic in the open unit disc U={z:|z|<1} and satisfying the normalization
f(z)=z+∞∑n=2anzn, | (1.1) |
while by S we mean the class of all functions in A which are univalent in U. Also let S∗ and C denote the familiar classes of starlike and convex functions, respectively. If f and g are analytic functions in U, then we say that f is subordinate to g, denoted by f≺g, if there exists an analytic Schwarz function w in U with w(0)=0 and |w(z)|<1 such that f(z)=g(w(z)). Moreover if the function g is univalent in U, then
f(z)≺g(z)⇔f(0)=g(0) and f(U)⊂g(U). |
For arbitrary fixed numbers A, B and b such that A, B are real with −1≤B<A≤1 and b∈C∖{0}, let P[b,A,B] denote the family of functions
p(z)=1+∞∑n=1pnzn, | (1.2) |
analytic in U such that
1+1b{p(z)−1}≺1+Az1+Bz. |
Then, p∈P[b,A,B] can be written in terms of the Schwarz function w by
p(z)=b(1+Aw(z))+(1−b)(1+Bw(z))1+Bw(z). |
By taking b=1−σ with 0≤σ<1, the class P[b,A,B] coincides with P[σ,A,B], defined by Polatoğ lu [17,18] (see also [2]) and if we take b=1, then P[b,A,B] reduces to the familiar class P[A,B] defined by Janowski [10]. Also by taking A=1, B=−1 and b=1 in P[b,A,B], we get the most valuable and familiar set P of functions having positive real part. Let S∗[A,B,b] denote the class of univalent functions g of the form
g(z)=z+∞∑n=2bnzn, | (1.3) |
in U such that
1+1b{zg′(z)g(z)−1}≺1+Az1+Bz, −1≤B<A≤1,z∈U. |
Then S∗[A,B]:=S∗[A,B,1] and the subclass S∗[1,−1,1] coincides with the usual class of starlike functions.
The set of Bazilevič functions in U was first introduced by Bazilevič [7] in 1955. He defined the Bazilevič function by the relation
f(z)={(α+iβ)z∫0gα(t)p(t)tiβ−1dt}1α+iβ, |
where p∈P, g∈S∗, β is real and α>0. In 1979, Campbell and Pearce [8] generalized the Bazilevi č functions by means of the differential equation
1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ, |
where α+iβ∈C−{negative integers}. They associate each generalized Bazilevič functions with the quadruple (α,β,g,p).
Now we define the following subclass.
Definition 1.1. Let g be in the class S∗[A,B] and let p∈P[b,A,B]. Then a function f of the form (1.1) is said to belong to the class of generalized Bazilevič function associated with the quadruple (α,β,g,p) if f satisfies the differential equation
1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ. |
where α+iβ∈C−{negative integers}.
The above differential equation can equivalently be written as
zf′(z)f(z)=(g(z)z)α(zf(z))α+iβp(z), |
or
z1−iβf′(z)f1−(α+iβ)gα(z)=p(z), z∈U. |
Since p∈P[b,A,B], it follows that
1+1b{z1−iβf′(z)f1−(α+iβ)gα(z)−1}≺1+Az1+Bz, |
where g∈S∗[A,B].
Several research papers have appeared recently on classes related to the Janowski functions, Bazilevič functions and their generalizations, see [3,4,5,13,16,21,22].
The following are some results that would be useful in proving the main results.
Lemma 2.1. Let p∈P[b,A,B] with b≠0, −1≤B<A≤1, and has the form (1.2). Then for z=reiθ,
12π∫2π0|p(reiθ)|2dθ≤1+[|b|2(A−B)2−1]r21−r2. |
Proof. The proof of this lemma is straightforward but we include it for the sake of completeness. Since p∈P[b,A,B], we have
p(z)=b˜p(z)+(1−b),˜p∈P[A,B]. |
Let ˜p(z)=1+∑∞n=1cnzn. Then
1+∞∑n=1pnzn=b(1+∞∑n=1cnzn)+(1−b). |
Comparing the coefficients of zn, we have
pn=bcn. |
Since |cn|≤A−B [20], it follows that |pn|≤|b|(A−B) and so
12π∫2π0|p(reiθ)|2dθ=12π∫2π0|∞∑n=0pnrneinθ|2dθ=12π∫2π0(∞∑n=0|pn|2r2n)dθ=∞∑n=0|pn|2r2n≤1+|b|2(A−B)2∞∑n=1r2n=1+|b|2(A−B)2r21−r2=1+(|b|2(A−B)2−1)r21−r2. |
Thus the proof is complete.
Lemma 2.2. [1] Let Ω be the family of analytic functions ω on U, normalized by ω(0)=0, satisfying the condition |ω(z)|<1. If ω∈Ω and
ω(z)=ω1z+ω2z2+⋯,(z∈U), |
then for any complex number t,
|ω2−tω21|≤max{1,|t|}. |
The above inequality is sharp for ω(z)=z or ω(z)=z2.
Lemma 2.3. Let p(z)=1+∞∑n=1pnzn∈P[b,A,B], b∈C∖{0}, −1≤B<A≤1. Then for any complex number μ,
|p2−μp21|≤|b|(A−B)max{1,|μb(A−B)+B|}={|b|(A−B),if|μb(A−B)+B|≤1,|b|(A−B)|μb(A−B)+B|,if|μb(A−B)+B|≥1. |
This result is sharp.
Proof. Let p∈P[b,A,B]. Then we have
1+1b{p(z)−1}≺1+Az1+Bz, |
or, equivalently
p(z)≺1+[bA+(1−b)B]z1+Bz=1+b(A−B)∞∑n=1(−B)n−1zn, |
which would further give
1+p1z+p2z2+⋯=1+b(A−B)ω(z)+b(A−B)(−B)ω2(z)+⋯=1+b(A−B)(ω1z+ω2z2+⋯) +b(A−B)(−B)(ω1z+ω2z2+⋯)2+⋯=1+b(A−B)ω1z+b(A−B){ω2−Bω21}z2+⋯. |
Comparing the coefficients of z and z2, we obtain
p1=b(A−B)ω1p2=b(A−B)ω2−b(A−B)Bω21. |
By a simple computation,
|p2−μp21|=|b|(A−B)|ω2−(μb(A−B)+B)ω21|. |
Now by using Lemma 2.2 with t=μb(A−B)+B, we get the required result. Equality holds for the functions
p∘(z)=1+(bA+(1−b)B)z21+Bz2=1+b(A−B)z2+b(A−B)(−B)z4+⋯,p1(z)=1+(bA+(1−b)B)z1+Bz=1+b(A−B)z+b(A−B)(−B)z2+⋯. |
Now we prove the following result by using a method similar to the one in Libera [12].
Lemma 2.4. Suppose that N and D are analytic in U with N(0)=D(0)=0 and D maps U onto a many sheeted region which is starlike with respect to the origin. If N′(z)D′(z)∈P[b,A,B], then
N(z)D(z)∈P[b,A,B]. |
Proof. Let N′(z)D′(z)∈P[b,A,B]. Then by using a result due to Attiya [6], we have
|N′(z)D′(z)−c(r)|≤d(r),|z|<r,0<r<1, |
where c(r)=1−B[B+b(A−B)]r21−B2r2 and d(r)=|b|(A−B)r21−B2r2. We choose A(z) such that |A(z)|<d(r) and
A(z)D′(z)=N′(z)−c(r)D′(z). |
Now for a fixed z0 in U, consider the line segment L joining 0 and D(z0) which remains in one sheet of the starlike image of U by D. Suppose that L−1 is the pre-image of L under D. Then
|N(z0)−c(r)D(z0)|=|∫z00(N′(t)−c(r)D′(t))dt|=|∫L−1A(t)D′(t)dt|<d(r)∫L−1|dD(t)|=d(r)D(z0). |
This implies that
|N(z0)D(z0)−c(r)|<d(r). |
Therefore
N(z)D(z)∈P[b,A,B]. |
For A=−B=b=1, we have the following result due to Libera [12].
Lemma 2.5. If N and D are analytic in U with N(0)=D(0)=0 and D maps U onto a many sheeted region which is starlike with respect to the origin, then
N′(z)D′(z)∈P implies N(z)D(z)∈P. |
Lemma 2.6. [14] If −1≤B<A≤1,β1>0 and the complex number γ satisfies Re{γ}≥−β1(1−A)/(1−B), then the differential equation
q(z)+zq′(z)β1q(z)+γ=1+Az1+Bz,z∈U, |
has a univalent solution in U given by
q(z)={zβ1+γ(1+Bz)β1(A−B)/Bβ1∫z0tβ1+γ−1(1+Bt)β1(A−B)/Bdt−γβ1,B≠0,zβ1+γeβ1Azβ1∫z0tβ1+γ−1eβ1Atdt−γβ1,B=0. |
If p(z)=1+p1z+p2z2+⋯ is analytic in U and satisfies
p(z)+zp′(z)β1p(z)+γ≺1+Az1+Bz, |
then
p(z)≺q(z)≺1+Az1+Bz, |
and q(z) is the best dominant.
Before proving the results for the generalized Bazilevič functions, let us discuss a few results related to the function g∈S∗[A,B].
Theorem 3.1. Let g∈S∗[A,B] and of the form (1.3). Then for any complex number μ,
|b3−μb22|≤(A−B)2max{1,|2(A−B)μ−(A−2B))|}. |
Proof. The proof of the result is the same as of Lemma 2.3. The result is sharp and equality holds for the function defined by
g1(z)={z(1+Bz2)A−B2B=z+12(A−B)z3+⋯,B≠0,zeA2z2=z+A2z3+⋯,B=0, |
or
g2(z)={z(1+Bz)A−BB,B≠0,zeAz,B=0,={z+(A−B)z2+12(A−B)(A−2B)z3+⋯,B≠0,z+Az2+12A2z3+⋯,B=0. |
Theorem 3.2. Let g∈S∗[A,B]. Then for c>0, α>0 and β any real number,
Gα(z)=c+α+iβzc+iβ∫z0tc+iβ−1gα(t)dt, | (3.1) |
is in S∗[A,B]. In addition
RezG′(z)G(z)>δ=min|z|=1Req(z), |
where
q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,1αα+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0. |
Proof. From (3.1), we have
zc+iβGα(z)=(c+α+iβ)∫z0tc+iβ−1gα(t)dt. |
Differentiating and rearranging gives
(c+α+iβ)gα(z)Gα(z)=(c+iβ)+αp(z), | (3.2) |
where p(z)=zG′(z)G(z). Then differentiating (3.2) logarithmically, we have
zg′(z)g(z)=p(z)+zp′(z)αp(z)+(c+iβ). |
Since g∈S∗[A,B], it follows that
p(z)+zp′(z)αp(z)+(c+iβ)≺1+Az1+Bz. |
Now by using Lemma 2.6, for β1=α and γ=c+iβ, we obtain
p(z)≺q(z)≺1+Az1+Bz, |
where
q(z)={zc+α+iβ(1+Bz)α(A−B)/Bα∫z0tc+α+iβ−1(1+Bt)α(A−B)/Bdt−c+iβα,B≠0,zc+α+iβeαAzα∫z0tc+α+iβ−1eαAtdt−c+iβα,B=0. |
Now by using the properties of the familiar hypergeometric functions proved in [15], we have
q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,α+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0. |
This implies that
p(z)≺q(z)={1αα+iβ+c2F1(1;α(1−AB);α+iβ+c+1;Bz1+Bz)−(c+iβ),B≠0,1αα+iβ+c1F1(1;α+iβ+c+1;−αAz)−(c+iβ),B=0, |
and
RezG′(z)G(z)=Rep(z)>δ=min|z|=1Req(z). |
Theorem 3.3. Let g∈S∗[A,B]. Then
S(z)=∫z0tc+iβ−1gα(t)dt, |
is (α+c)-valent starlike, where α>0, c>0 and β is a real number.
Proof. Let D1(z)=zS′(z)=zc+iβgα(z) and N1(z)=S(z). Then
RezD′1(z)D1(z)=Re{(c+iβ)+αzg′(z)g(z)}=c+αRezg′(z)g(z). |
Since g∈S∗[A,B]⊂S∗(1−A1−B), see [10], it follows that
RezD′1(z)D1(z)>c+α(1−A1−B)>0. |
Also
ReD′1(z)N′1(z)=Re{(c+iβ)+αzg′(z)g(z)}>c+α(1−A1−B)>0. |
Now by using Lemma 2.5, we have
ReD1(z)N1(z)>0 or RezS′(z)S(z)>0. |
By the mean value theorem for harmonic functions,
RezS′(z)S(z)|z=0=12π∫2π0RereiθS′(reiθ)S(reiθ)dθ. |
Therefore
∫2π0RereiθS′(reiθ)S(reiθ)dθ=2πRe{c+iβ+αzg′(z)g(z)}|z=0=2π(c+α). |
Now by using a result due to [9,p 212], we have that S is (c+α)-valent starlike function.
Now we are ready to discuss some results related to the defined generalized Bazilevič functions.
Theorem 4.1. Let f be a generalized Bazilevič function associated by the quadruple (α,β,g,p), where g∈S∗[A,B] of the form (1.3) and p∈P[b,A,B] of the form (1.2). Then for c>0,
F(z)=[c+α+iβzc∫z0tc−1fα+iβ(t)dt]1α+iβ | (4.1) |
is a generalized Bazilevič function associated by the quadruple (α,β,G,p), where G∈S∗[A,B,δ], as defined by (3.1).
Proof. From (4.1), we have
Fα+iβ(z)=c+α+iβzc∫z0tc−1(f(t))α+iβdt. |
This implies that
zcFα+iβ(z)=(c+α+iβ)∫z0tc−1(f(t))α+iβdt. |
Differentiate both sides and rearrange, we get
czc−1Fα+iβ(z)+(α+iβ)zcFα+iβ−1(z)F′(z)=(c+α+iβ)zc−1(f(z))α+iβ, |
and
z1−iβF′(z)F1−(α+iβ)(z)=1α+iβ{(c+α+iβ)z−iβfα+iβ(z)−cz−iβFα+iβ(z)}. |
Now from (3.1), we have
z1−iβF′(z)F1−(α+iβ)Gα(z)=1α+iβ{(c+α+iβ)z−iβfα+iβ(z)−cz−iβ−c(c+α+iβ)∫z0tc−1(f(t))α+iβdt}(c+α+iβ)zc+iβ∫z0tc+iβ−1gα(t)dt=1α+iβ{(zcfα+iβ(z)−c∫z0tc−1(f(t))α+iβdt}∫z0tc+iβ−1gα(t)dt:=N(z)D(z). |
With this, note that
N′(z)D′(z)=1α+iβ{(czc−1fα+iβ(z)+(α+iβ)zcfα+iβ−1(z)f′(z)−czc−1(f(z))α+iβ}zc+iβ−1gα(z)=z1−iβf′(z)f1−(α+iβ)(z)gα(z), |
which implies N′(z)D′(z)∈P[b,A,B]. By Theorem 3.3, we know that D(z)=∫z0tc+iβ−1gα(t)dt is (α+c)-valent starlike. Therefore by using Lemma 2.4, we obtain
z1−iβF′(z)F1−(α+iβ)(z)Gα(z)∈P[b,A,B]. |
This is the equivalent form of Definition 1.1. Hence the result follows.
Corollary 4.2. Let A=1,B=−1 and β=0 in Theorem 4.1. Then
Gα(z)=(α+c)zc∫z0tc−1gα(t)dt |
belong to S∗(δ1), where
δ1=−(1+2c)+√(1+2c)2+8α4α,(see [16]). |
Hence G is starlike when g∈S∗, and
Fα(z)=(α+c)zc∫z0tc−1gα(t)dt |
belongs to the class of Bazilevič functions associated by the quadruple (α,0,G,p).
Theorem 4.3. Let f of the form (1.1) be a generalized Bazilevič function associated by the quadruple (α,β,g,p), with g∈S∗[A,B] of the form (1.3) and p∈P[b,A,B] of the form (1.2). Then
|a3−3+α+iβ2(2+α+iβ)a22|≤A−B2|2+α+iβ|[α+|b|max{2,|b(A−B)+2B|}]. |
This inequality is sharp.
Proof. Since f is a generalized Bazilevič function associated by the quadruple (α,β,g,p), we have
1+zf′′(z)f′(z)+(α+iβ−1)zf′(z)f(z)=αzg′(z)g(z)+zp′(z)p(z)+iβ. | (4.2) |
As f, g and p respectively have the form (1.1),(1.3) and (1.2), it is easy to get
1+zf′′(z)f′(z)=1+2a2z+(6a3−4a22)z2+⋯,zf′(z)f(z)=1+a2z+(2a3−a22)z2+⋯,zg′(z)g(z)=1+b2z+(2b3−b22)z2+⋯,zp′(z)p(z)=p1z+(2p2−p21)z2+⋯. |
Putting these values in (4.2) and comparing the coefficients of z, we obtain
(1+α+iβ)a2=αb2+p1. | (4.3) |
Similarly by comparing the coefficients of z2 and rearranging, we have
2(2+α+iβ)a3=α(2b3−b22)+2p2−p21+a22(3+α+iβ). | (4.4) |
From (4.4), we have
|a3−3+α+iβ2(2+α+iβ)a22|=|α(b3−12b22)+(p2−12p21)2+α+iβ|≤α|b3−12b22||2+α+iβ|+|p2−12p21||2+α+iβ|. |
Now by using Theorem 3.1 and Lemma 2.3, both with μ=12, we obtain
|b3−12b22|≤A−B2max{1,|B|}=A−B2, |
and
|p2−12p21|≤|b|(A−B)max{1,12|b(A−B)+2B|}. |
Therefore, we have
|a3−3+α+iβ2(2+α+iβ)a22|≤A−B2|2+α+iβ|[α+2|b|max{1,12|b(A−B)+2B|}]. |
The equality
|b3−12b22|=A−B2 |
for B≠0 can be obtained for
g(z)={z(1+Bz)A−BB=z+(A−B)z2+12(A−B)(A−2B)z3+⋯,z(1+Bz2)A−B2B=z+12(A−B)z3+⋯. |
Similarly, the equality
|b3−12b22|=A2 |
for B=0 can be obtained for the function g∗(z)= zeA2z2=z+A2z3+⋯. Also equality for the functional |p2−12p21| can be obtained by the functions
p∘(z)=1+(bA+(1−b)B)z1+Bz or p1(z)=1+(bA+(1−b)B)z21+Bz2. |
Corollary 4.4. For A=1, B=−1 and b=1, we have the result proved in [8]:
|a3−3+α+iβ2(2+α+iβ)a22|≤α+2|2+α+iβ|. |
For α=1, β=0, we have f∈K, the class of close-to-convex functions, and
|a3−23a22|≤1. |
The latter result has been proved in [11].
Theorem 4.5. Let f of the form (1.1) be a generalized Bazilevič function associated by the quadruple (α,β,g,p), with g∈S∗[A,B] and of the form (1.3) and p∈P[b,A,B] of the form (1.2). Then
(i)
|a2|≤(A−B)(α+|b|)|1+α+iβ|. |
(ii) If α=0, then
|a3|≤|b|(A−B)|2+iβ|max{1,|b(A−B)2(1−(3+iβ)(1+iβ)2)+B|}. |
Both the above inequalities are sharp.
Proof. (ⅰ) From (4.3), we have
(1+α+iβ)a2=αb2+p1. |
This implies that
|a2|≤α|b2|+|p1||1+α+iβ|. |
By using the coefficient bound for S∗[A,B] along with the coefficient bound of P[b,A,B], we have
|b2|≤A−B and |p1|≤|b|(A−B). |
This implies that
|a2|≤(α+|b|)(A−B)|1+α+iβ|. |
Equality can be obtained by the functions
g∘(z)=z(1+Bz)A−BB, B≠0 and p∘(z)=1+[bA+(1−b)B]z1+Bz. |
(ⅱ) Let α=0. Then from (4.3) and (4.4), we have
(2+iβ)a3=p2−12p21+(3+iβ)p212(1+iβ)2=p2−12(1−(3+iβ)(1+iβ)2)p21. |
This implies
|a3|=1|2+iβ||p2−μp21|, |
where μ=12−(3+iβ)2(1+iβ)2. Now by using Lemma 2.3, we obtain
|a3|≤|b|(A−B)|2+iβ|max{1,|b(A−B)2(−2−β2+iβ)(1+iβ)2)+B|}. |
Sharpness can be attained by the functions
p0(z)=1+(bA+(1−b)B)z21+Bz2=1+b(A−B)z2+b(A−B)(−B)z4+⋯,p1(z)=1+(bA+(1−b)B)z1+Bz=1+b(A−B)z+b(A−B)(−B)z2+⋯. |
Corollary 4.6. For A=1, B=−1 and b=1, we have
|a2|≤2(α+1)|1+α+iβ|, |
and
|a3|=2|2+iβ|max{1,|(3+iβ)(1+iβ)2|}. |
In the final part of this paper, we look at some results for the generalized Bazilevič functions associated with β=0.
Let Cr denote the closed curve which is the image of the circle |z|=r<1 under the mapping w= f(z), and Lr(f(z)) denote the length of Cr. Also let M(r)=max|z|=r|f(z)| and m(r)=min|z|=r|f(z)|. We now prove the following result.
Theorem 4.7. Let f be a generalized Bazilevič function associated by the quadruple (α,0,g,p). Then for B≠0,
Lr(f(z))≤{C(α,b,A,B)M1−α(r)[1−(1−r)α(A−BB)],0<α≤1,C(α,b,A,B)m1−α(r)[1−(1−r)α(A−BB)],α>1, |
where
C(α,b,A,B)=2π|b|B[(A−B)+1α]. |
Proof. As f is a generalized Bazilevič function associated by the quadruple (α,0,g,p), we have
zf′(z)=f1−α(z)gα(z)p(z), |
where g∈S∗[A,B] and p∈P[b,A,B]. Since for z=reiθ, 0<r<1,
Lr(f(z))=∫2π0|zf′(z)|dθ, |
we have for 0<α≤1,
Lr(f(z))=∫2π0|f1−α(z)gα(z)p(z)|dθ,≤M1−α(r)∫2π0∫r0|αg′(z)gα−1(z)p(z)+gα(z)p′(z)|dsdθ,≤M1−α(r){∫2π0∫r0α|gα(z)|s|h(z)p(z)|dsdθ+∫2π0∫r0|gα(z)|s|zp′(z)|dsdθ}, |
where zg′(z)g(z)=h(z)∈P[A,B]. Now by using the distortion theorem for Janowski starlike functions when B≠0 (see [10]) and the Cauchy-Schwarz inequality, we have
Lr(f(z))≤M1−α(r)×∫r0sα−1(1−|B|s)αB−AB{α√∫2π0|h(z)|2dθ√∫2π0|p(z)|2dθ+∫2π0|zp′(z)|dθ}ds. |
Now by using Lemma 2.1 for both the classes P[b,A,B] and P[A,B], along with the result
∫2π0|zp′(z)|≤|b|(A−B)r1−B2r2, |
for p∈P[b,A,B] (see [19]), we can write
Lr(f(z))≤2πM1−α(r)×∫r0sα−1(1−|B|s)αB−AB{α√1+[(A−B)2−1]s21−s2√1+[|b|2(A−B)2−1]s21−s2+|b|(A−B)s1−B2s2}ds. |
Since 1−|B|r≥1−r and 1−B2r2≥1−r2,
Lr(f(z))≤2πM1−α(r)[|b|(A−B)2+|b|(A−B)]∫r01(1−s)αB−AB+1ds=C(α,b,A,B)M1−α(r)[1−(1−r)α(A−BB)], |
where C(α,b,A,B)=2π|b|[(A−B)+(1/α)]B.
When α>1, we can prove similarly as above to get
Lr(f(z))≤C(α,b,A,B)m1−α(r)[1−(1−r)α(A−BB)]. |
Corollary 4.8. For g∈S∗ and p∈P(b), we have
Lr(f(z))≤{2π|b|(2+1α)M1−α(r)[1(1−r)2α−1],0<α≤1,2π|b|(2+1α)m1−α(r)[1(1−r)2α−1],α>1. |
Theorem 4.9. Let f be a generalized Bazilevič function associated by the quadruple (α,0,g,p), where g∈S∗[A,B] and p∈P[b,A,B]. Then for B≠0,
|an|≤{1n|b|B(A−B+1α)limr→1−M1−α(r),0<α≤1,1n|b|B(A−B+1α)limr→1−m1−α(r),α>1. |
Proof. By Cauchy's theorem for z=reiθ, n≥2, we have
nan=12πrn∫2π0zf′(z)e−inθdθ. |
Therefore
n|an|≤12πrn∫2π0|zf′(z)|dθ,=12πrnLr(f(z)). |
By using Theorem 4.7 for the case 0<α≤1, we have
n|an|≤12πrn(2π|b|B(A−B+1α)M1−α(r)[1−(1−r)αA−BB]). |
Hence, by taking r approaches 1−,
|an|≤1n|b|B(A−B+1α)limr→1−M1−α(r). |
For α>1, we have
|an|≤1n|b|B(A−B+1α)limr→1−m1−α(r). |
Theorem 4.10. Let f be a generalized Bazilevič function represented by the quadruple (α,0,g,p), where g∈S∗[A,B] and p∈P[b,A,B]. Then for B≠0,
|f(z)|α≤α(1−B2)+(A−B)(|b|−BRe(b))1−Brα2F1(α(1−AB)+1;α;α+1;|B|r). |
Proof. Since f is a generalized Bazilevič function associated by the quadruple (α,0,g,p), by definition, we have
zf′(z)f1−α(z)gα(z)=p(z), |
where g∈S∗[A,B] and p∈P[b,A,B]. This implies that
fα(z)=α∫z0t−1gα(t)p(t)dt, |
and so
|f(z)|α≤α∫|z|0|t−1||gα(t)||p(t)|d|t|,=α∫r0s−1|gα(t)||p(t)|ds. |
Now by using the results
|g(z)|≤r(1−|B|r)A−BB,B≠0, (see [10]), |
and
|p(z)|≤1+|b|(A−B)r−B[(A−B)Re{b}+B]r21−|B|2r2, (see [6]), |
we have
|f(z)|α≤α∫r0s−1sα(1−|B|s)α(1−AB)1+|b|(A−B)s−B[(A−B)Re{b}+B]s21−|B|2s2ds≤α(1−B2)+(A−B)(|b|−BRe{b})1+|B|∫r0sα−1(1−|B|s)−α(1−AB)−1ds. |
Putting s=ru, we have
|f(z)|α≤α(1−B2)+(A−B)(|b|−BRe{b})1−Brα∫10uα−1(1−|B|ru)−α(1−AB)−1du=(1−B2)+(A−B)(|b|−BRe{b})1−Brα 2F1(α(1−AB)+1;α;α+1;|B|r), |
where 2F1(a;b;c;z) is the hypergeometric function.
Corollary 4.11. For g∈S∗and p∈P, we have
|f(z)|α≤2αrα2F1(2α+1;α;α+1;r). |
The research for the fourth author is supported by the USM Research University Individual Grant (RUI) 1001/PMATHS/8011038.
The authors declare that they have no conflict of interests.
[1] |
R. M. Ali, V. Ravichandran, N. Seenivasgan, Coefficients bounds for p-valent functions, Appl. Math. Comp., 187 (2007), 35-46. doi: 10.1016/j.amc.2006.08.100
![]() |
[2] |
M. K. Aouf, On a class of p-valent starlike functions of order α, Int. J. Math. Math. Sci., 10 (1987), 733-744. doi: 10.1155/S0161171287000838
![]() |
[3] | M. Arif, K. I. Noor, M. Raza, On a class of analytic functions related with generalized Bazilevič type functions, Comp. Math. Appl., 61 (2001), 2456-2462. |
[4] | M. Arif, K. I. Noor, M. Raza, et al. Some properties of a generalized class of analytic functions related with Janowski functions, Abstr. Appl. Anal., 2012 (2012), 279843. |
[5] |
M. Arif, M. Raza, K. I. Noor, et al. On strongly Bazilevic functions associated with generalized Robertson functions, Math. Comput. Modelling, 54 (2011), 1608-1612. doi: 10.1016/j.mcm.2011.04.033
![]() |
[6] |
A. A. Attiya, On a generalization of class bounded starlike function of complex order, Appl. Math. Comp., 187 (2007), 62-67. doi: 10.1016/j.amc.2006.08.103
![]() |
[7] | I. E., Bazilevič, On a class of integrability in quadratures of the Lowner-Kufarev equation, Math. Sb. N. S., 37(79) (1955), 471-476. |
[8] |
D. M. Campbell, K. Pearce, General Bazilevič function, Rocky Mountain J. Math., 9 (1979), 197-226. doi: 10.1216/RMJ-1979-9-2-197
![]() |
[9] | A. W. Goodman, On the Schwarz-Chirstoffel transformation and p-valent functions, Trans. Amer. Math. Soc., 68 (1950), 204-223. |
[10] |
W. Janowski, Some external problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326
![]() |
[11] |
F. R. Keogh, E. P. Merkes, A coefficients inequality for certain class of analytic function, Proc. Amer. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9
![]() |
[12] |
R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758. doi: 10.1090/S0002-9939-1965-0178131-2
![]() |
[13] | S. N. Malik, M. Raza, M. Arif, et al. Coefficients estimates for some subclasses of analytic functions related with conic domain, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 21 (2013), 181-188. |
[14] |
S. S. Miller, P. T. Mocanu, Univalent solutions of Briot-Bouquet differential subordination, J. Differential Equations, 56 (1985), 297-309. doi: 10.1016/0022-0396(85)90082-8
![]() |
[15] | S. S. Miller, P. T. Mocanu, Differential subordination: Theory and applications, New York: Marcel Dekker, Inc., 2000. |
[16] | K. I. Noor, On Bazilevič function of complex order, Nihonkai Math. J., 3 (1992), 115-124. |
[17] |
Y. Polatoğlu, Some results of analytic functions in the unit disc, Publ. Inst. Math. (Beograd) (N.S.), 78 (2005), 79-86. doi: 10.2298/PIM0578079P
![]() |
[18] | Y. Polatoğlu, M. Bolcal, A. Şen, E. Yavuz, A study on the generalization of Janowski function in the unit disc, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22 (2006), 27-31. |
[19] | Y. Polatoğlu, A. Şen, Some results on subclasses of Janowski λ-spirallike functions of complex order, Gen. Math., 15 (2007), 88-97. |
[20] |
V. Ravichandran, S. Verma, On a subclass of Bazilevic functions, Filomat, 31 (2017), 3539-3552. doi: 10.2298/FIL1711539R
![]() |
[21] | M. Raza, W. U. Haq, Rabia, Estimates for coefficients of certain analytic functions, Math. Slovaca, 67 (2017), 1043-1053. |
[22] |
Z. G. Wang, M. Raza, M. Ayaz, et al. On certain multivalent functions involving the generalized Srivastava-Attiya operator, J. Nonlinear Sci. Appl., 9 (2016), 6067-6076. doi: 10.22436/jnsa.009.12.14
![]() |
1. | A Certain Class of Function Analytic and Subordinate to the Modified Sigmoid Function, 2025, 2581-8147, 639, 10.34198/ejms.15425.639647 | |
2. | Tamer M. Seoudy, Amnah E. Shammaky, Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation, 2025, 10, 2473-6988, 12745, 10.3934/math.2025574 |