Processing math: 100%
Research article

On a subclass related to Bazilevič functions

  • Received: 25 October 2019 Accepted: 03 January 2020 Published: 24 February 2020
  • MSC : 30C45, 30C50

  • The present paper introduces and studies a subclass of analytic functions defined by using the concept of Bazilevič and Janowski functions. Various properties such as coefficient estimates, Fekete-Szegö type inequalities, arc length problem and growth rate of coefficients are investigated for related functions.

    Citation: Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee. On a subclass related to Bazilevič functions[J]. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135

    Related Papers:

    [1] K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417
    [2] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [3] Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q) Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254
    [4] Mohsan Raza, Khalida Inayat Noor . Subclass of Bazilevič functions of complex order. AIMS Mathematics, 2020, 5(3): 2448-2460. doi: 10.3934/math.2020162
    [5] Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
    [6] Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577
    [7] Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551
    [8] Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423
    [9] Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379
    [10] Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067
  • The present paper introduces and studies a subclass of analytic functions defined by using the concept of Bazilevič and Janowski functions. Various properties such as coefficient estimates, Fekete-Szegö type inequalities, arc length problem and growth rate of coefficients are investigated for related functions.


    Let A denote the family of all functions f which are analytic in the open unit disc U={z:|z|<1} and satisfying the normalization

    f(z)=z+n=2anzn, (1.1)

    while by S we mean the class of all functions in A which are univalent in U. Also let S and C denote the familiar classes of starlike and convex functions, respectively. If f and g are analytic functions in U, then we say that f is subordinate to g, denoted by fg, if there exists an analytic Schwarz function w in U with w(0)=0 and |w(z)|<1 such that f(z)=g(w(z)). Moreover if the function g is univalent in U, then

    f(z)g(z)f(0)=g(0) and f(U)g(U).

    For arbitrary fixed numbers A, B and b such that A, B are real with 1B<A1 and bC{0}, let P[b,A,B] denote the family of functions

    p(z)=1+n=1pnzn, (1.2)

    analytic in U such that

    1+1b{p(z)1}1+Az1+Bz.

    Then, pP[b,A,B] can be written in terms of the Schwarz function w by

    p(z)=b(1+Aw(z))+(1b)(1+Bw(z))1+Bw(z).

    By taking b=1σ with 0σ<1, the class P[b,A,B] coincides with P[σ,A,B], defined by Polatoğ lu [17,18] (see also [2]) and if we take b=1, then P[b,A,B] reduces to the familiar class P[A,B] defined by Janowski [10]. Also by taking A=1, B=1 and b=1 in P[b,A,B], we get the most valuable and familiar set P of functions having positive real part. Let S[A,B,b] denote the class of univalent functions g of the form

    g(z)=z+n=2bnzn, (1.3)

    in U such that

    1+1b{zg(z)g(z)1}1+Az1+Bz, 1B<A1,zU.

    Then S[A,B]:=S[A,B,1] and the subclass S[1,1,1] coincides with the usual class of starlike functions.

    The set of Bazilevič functions in U was first introduced by Bazilevič [7] in 1955. He defined the Bazilevič function by the relation

    f(z)={(α+iβ)z0gα(t)p(t)tiβ1dt}1α+iβ,

    where pP, gS, β is real and α>0. In 1979, Campbell and Pearce [8] generalized the Bazilevi č functions by means of the differential equation

    1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ,

    where α+iβC{negative integers}. They associate each generalized Bazilevič functions with the quadruple (α,β,g,p).

    Now we define the following subclass.

    Definition 1.1. Let g be in the class S[A,B] and let pP[b,A,B]. Then a function f of the form (1.1) is said to belong to the class of generalized Bazilevič function associated with the quadruple (α,β,g,p) if f satisfies the differential equation

    1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ.

    where α+iβC{negative integers}.

    The above differential equation can equivalently be written as

    zf(z)f(z)=(g(z)z)α(zf(z))α+iβp(z),

    or

    z1iβf(z)f1(α+iβ)gα(z)=p(z), zU.

    Since pP[b,A,B], it follows that

    1+1b{z1iβf(z)f1(α+iβ)gα(z)1}1+Az1+Bz,

    where gS[A,B].

    Several research papers have appeared recently on classes related to the Janowski functions, Bazilevič functions and their generalizations, see [3,4,5,13,16,21,22].

    The following are some results that would be useful in proving the main results.

    Lemma 2.1. Let pP[b,A,B] with b0, 1B<A1, and has the form (1.2). Then for z=reiθ,

    12π2π0|p(reiθ)|2dθ1+[|b|2(AB)21]r21r2.

    Proof. The proof of this lemma is straightforward but we include it for the sake of completeness. Since pP[b,A,B], we have

    p(z)=b˜p(z)+(1b),˜pP[A,B].

    Let ˜p(z)=1+n=1cnzn. Then

    1+n=1pnzn=b(1+n=1cnzn)+(1b).

    Comparing the coefficients of zn, we have

    pn=bcn.

    Since |cn|AB [20], it follows that |pn||b|(AB) and so

    12π2π0|p(reiθ)|2dθ=12π2π0|n=0pnrneinθ|2dθ=12π2π0(n=0|pn|2r2n)dθ=n=0|pn|2r2n1+|b|2(AB)2n=1r2n=1+|b|2(AB)2r21r2=1+(|b|2(AB)21)r21r2.

    Thus the proof is complete.

    Lemma 2.2. [1] Let Ω be the family of analytic functions ω on U, normalized by ω(0)=0, satisfying the condition |ω(z)|<1. If ωΩ and

    ω(z)=ω1z+ω2z2+,(zU),

    then for any complex number t,

    |ω2tω21|max{1,|t|}.

    The above inequality is sharp for ω(z)=z or ω(z)=z2.

    Lemma 2.3. Let p(z)=1+n=1pnznP[b,A,B], bC{0}, 1B<A1. Then for any complex number μ,

    |p2μp21||b|(AB)max{1,|μb(AB)+B|}={|b|(AB),if|μb(AB)+B|1,|b|(AB)|μb(AB)+B|,if|μb(AB)+B|1.

    This result is sharp.

    Proof. Let pP[b,A,B]. Then we have

    1+1b{p(z)1}1+Az1+Bz,

    or, equivalently

    p(z)1+[bA+(1b)B]z1+Bz=1+b(AB)n=1(B)n1zn,

    which would further give

    1+p1z+p2z2+=1+b(AB)ω(z)+b(AB)(B)ω2(z)+=1+b(AB)(ω1z+ω2z2+) +b(AB)(B)(ω1z+ω2z2+)2+=1+b(AB)ω1z+b(AB){ω2Bω21}z2+.

    Comparing the coefficients of z and z2, we obtain

    p1=b(AB)ω1p2=b(AB)ω2b(AB)Bω21.

    By a simple computation,

    |p2μp21|=|b|(AB)|ω2(μb(AB)+B)ω21|.

    Now by using Lemma 2.2 with t=μb(AB)+B, we get the required result. Equality holds for the functions

    p(z)=1+(bA+(1b)B)z21+Bz2=1+b(AB)z2+b(AB)(B)z4+,p1(z)=1+(bA+(1b)B)z1+Bz=1+b(AB)z+b(AB)(B)z2+.

    Now we prove the following result by using a method similar to the one in Libera [12].

    Lemma 2.4. Suppose that N and D are analytic in U with N(0)=D(0)=0 and D maps U onto a many sheeted region which is starlike with respect to the origin. If N(z)D(z)P[b,A,B], then

    N(z)D(z)P[b,A,B].

    Proof. Let N(z)D(z)P[b,A,B]. Then by using a result due to Attiya [6], we have

    |N(z)D(z)c(r)|d(r),|z|<r,0<r<1,

    where c(r)=1B[B+b(AB)]r21B2r2 and d(r)=|b|(AB)r21B2r2. We choose A(z) such that |A(z)|<d(r) and

    A(z)D(z)=N(z)c(r)D(z).

    Now for a fixed z0 in U, consider the line segment L joining 0 and D(z0) which remains in one sheet of the starlike image of U by D. Suppose that L1 is the pre-image of L under D. Then

    |N(z0)c(r)D(z0)|=|z00(N(t)c(r)D(t))dt|=|L1A(t)D(t)dt|<d(r)L1|dD(t)|=d(r)D(z0).

    This implies that

    |N(z0)D(z0)c(r)|<d(r).

    Therefore

    N(z)D(z)P[b,A,B].

    For A=B=b=1, we have the following result due to Libera [12].

    Lemma 2.5. If N and D are analytic in U with N(0)=D(0)=0 and D maps U onto a many sheeted region which is starlike with respect to the origin, then

    N(z)D(z)P implies N(z)D(z)P.

    Lemma 2.6. [14] If 1B<A1,β1>0 and the complex number γ satisfies Re{γ}β1(1A)/(1B), then the differential equation

    q(z)+zq(z)β1q(z)+γ=1+Az1+Bz,zU,

    has a univalent solution in U given by

    q(z)={zβ1+γ(1+Bz)β1(AB)/Bβ1z0tβ1+γ1(1+Bt)β1(AB)/Bdtγβ1,B0,zβ1+γeβ1Azβ1z0tβ1+γ1eβ1Atdtγβ1,B=0.

    If p(z)=1+p1z+p2z2+ is analytic in U and satisfies

    p(z)+zp(z)β1p(z)+γ1+Az1+Bz,

    then

    p(z)q(z)1+Az1+Bz,

    and q(z) is the best dominant.

    Before proving the results for the generalized Bazilevič functions, let us discuss a few results related to the function gS[A,B].

    Theorem 3.1. Let gS[A,B] and of the form (1.3). Then for any complex number μ,

    |b3μb22|(AB)2max{1,|2(AB)μ(A2B))|}.

    Proof. The proof of the result is the same as of Lemma 2.3. The result is sharp and equality holds for the function defined by

    g1(z)={z(1+Bz2)AB2B=z+12(AB)z3+,B0,zeA2z2=z+A2z3+,B=0,

    or

    g2(z)={z(1+Bz)ABB,B0,zeAz,B=0,={z+(AB)z2+12(AB)(A2B)z3+,B0,z+Az2+12A2z3+,B=0.

    Theorem 3.2. Let gS[A,B]. Then for c>0, α>0 and β any real number,

    Gα(z)=c+α+iβzc+iβz0tc+iβ1gα(t)dt, (3.1)

    is in S[A,B]. In addition

    RezG(z)G(z)>δ=min|z|=1Req(z),

    where

    q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,1αα+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0.

    Proof. From (3.1), we have

    zc+iβGα(z)=(c+α+iβ)z0tc+iβ1gα(t)dt.

    Differentiating and rearranging gives

    (c+α+iβ)gα(z)Gα(z)=(c+iβ)+αp(z), (3.2)

    where p(z)=zG(z)G(z). Then differentiating (3.2) logarithmically, we have

    zg(z)g(z)=p(z)+zp(z)αp(z)+(c+iβ).

    Since gS[A,B], it follows that

    p(z)+zp(z)αp(z)+(c+iβ)1+Az1+Bz.

    Now by using Lemma 2.6, for β1=α and γ=c+iβ, we obtain

    p(z)q(z)1+Az1+Bz,

    where

    q(z)={zc+α+iβ(1+Bz)α(AB)/Bαz0tc+α+iβ1(1+Bt)α(AB)/Bdtc+iβα,B0,zc+α+iβeαAzαz0tc+α+iβ1eαAtdtc+iβα,B=0.

    Now by using the properties of the familiar hypergeometric functions proved in [15], we have

    q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,α+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0.

    This implies that

    p(z)q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,1αα+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0,

    and

    RezG(z)G(z)=Rep(z)>δ=min|z|=1Req(z).

    Theorem 3.3. Let gS[A,B]. Then

    S(z)=z0tc+iβ1gα(t)dt,

    is (α+c)-valent starlike, where α>0, c>0 and β is a real number.

    Proof. Let D1(z)=zS(z)=zc+iβgα(z) and N1(z)=S(z). Then

    RezD1(z)D1(z)=Re{(c+iβ)+αzg(z)g(z)}=c+αRezg(z)g(z).

    Since gS[A,B]S(1A1B), see [10], it follows that

    RezD1(z)D1(z)>c+α(1A1B)>0.

    Also

    ReD1(z)N1(z)=Re{(c+iβ)+αzg(z)g(z)}>c+α(1A1B)>0.

    Now by using Lemma 2.5, we have

    ReD1(z)N1(z)>0 or RezS(z)S(z)>0.

    By the mean value theorem for harmonic functions,

    RezS(z)S(z)|z=0=12π2π0RereiθS(reiθ)S(reiθ)dθ.

    Therefore

    2π0RereiθS(reiθ)S(reiθ)dθ=2πRe{c+iβ+αzg(z)g(z)}|z=0=2π(c+α).

    Now by using a result due to [9,p 212], we have that S is (c+α)-valent starlike function.

    Now we are ready to discuss some results related to the defined generalized Bazilevič functions.

    Theorem 4.1. Let f be a generalized Bazilevič function associated by the quadruple (α,β,g,p), where gS[A,B] of the form (1.3) and pP[b,A,B] of the form (1.2). Then for c>0,

    F(z)=[c+α+iβzcz0tc1fα+iβ(t)dt]1α+iβ (4.1)

    is a generalized Bazilevič function associated by the quadruple (α,β,G,p), where GS[A,B,δ], as defined by (3.1).

    Proof. From (4.1), we have

    Fα+iβ(z)=c+α+iβzcz0tc1(f(t))α+iβdt.

    This implies that

    zcFα+iβ(z)=(c+α+iβ)z0tc1(f(t))α+iβdt.

    Differentiate both sides and rearrange, we get

    czc1Fα+iβ(z)+(α+iβ)zcFα+iβ1(z)F(z)=(c+α+iβ)zc1(f(z))α+iβ,

    and

    z1iβF(z)F1(α+iβ)(z)=1α+iβ{(c+α+iβ)ziβfα+iβ(z)cziβFα+iβ(z)}.

    Now from (3.1), we have

    z1iβF(z)F1(α+iβ)Gα(z)=1α+iβ{(c+α+iβ)ziβfα+iβ(z)cziβc(c+α+iβ)z0tc1(f(t))α+iβdt}(c+α+iβ)zc+iβz0tc+iβ1gα(t)dt=1α+iβ{(zcfα+iβ(z)cz0tc1(f(t))α+iβdt}z0tc+iβ1gα(t)dt:=N(z)D(z).

    With this, note that

    N(z)D(z)=1α+iβ{(czc1fα+iβ(z)+(α+iβ)zcfα+iβ1(z)f(z)czc1(f(z))α+iβ}zc+iβ1gα(z)=z1iβf(z)f1(α+iβ)(z)gα(z),

    which implies N(z)D(z)P[b,A,B]. By Theorem 3.3, we know that D(z)=z0tc+iβ1gα(t)dt is (α+c)-valent starlike. Therefore by using Lemma 2.4, we obtain

    z1iβF(z)F1(α+iβ)(z)Gα(z)P[b,A,B].

    This is the equivalent form of Definition 1.1. Hence the result follows.

    Corollary 4.2. Let A=1,B=1 and β=0 in Theorem 4.1. Then

    Gα(z)=(α+c)zcz0tc1gα(t)dt

    belong to S(δ1), where

    δ1=(1+2c)+(1+2c)2+8α4α,(see [16]).

    Hence G is starlike when gS, and

    Fα(z)=(α+c)zcz0tc1gα(t)dt

    belongs to the class of Bazilevič functions associated by the quadruple (α,0,G,p).

    Theorem 4.3. Let f of the form (1.1) be a generalized Bazilevič function associated by the quadruple (α,β,g,p), with gS[A,B] of the form (1.3) and pP[b,A,B] of the form (1.2). Then

    |a33+α+iβ2(2+α+iβ)a22|AB2|2+α+iβ|[α+|b|max{2,|b(AB)+2B|}].

    This inequality is sharp.

    Proof. Since f is a generalized Bazilevič function associated by the quadruple (α,β,g,p), we have

    1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ. (4.2)

    As f, g and p respectively have the form (1.1),(1.3) and (1.2), it is easy to get

    1+zf(z)f(z)=1+2a2z+(6a34a22)z2+,zf(z)f(z)=1+a2z+(2a3a22)z2+,zg(z)g(z)=1+b2z+(2b3b22)z2+,zp(z)p(z)=p1z+(2p2p21)z2+.

    Putting these values in (4.2) and comparing the coefficients of z, we obtain

    (1+α+iβ)a2=αb2+p1. (4.3)

    Similarly by comparing the coefficients of z2 and rearranging, we have

    2(2+α+iβ)a3=α(2b3b22)+2p2p21+a22(3+α+iβ). (4.4)

    From (4.4), we have

    |a33+α+iβ2(2+α+iβ)a22|=|α(b312b22)+(p212p21)2+α+iβ|α|b312b22||2+α+iβ|+|p212p21||2+α+iβ|.

    Now by using Theorem 3.1 and Lemma 2.3, both with μ=12, we obtain

    |b312b22|AB2max{1,|B|}=AB2,

    and

    |p212p21||b|(AB)max{1,12|b(AB)+2B|}.

    Therefore, we have

    |a33+α+iβ2(2+α+iβ)a22|AB2|2+α+iβ|[α+2|b|max{1,12|b(AB)+2B|}].

    The equality

    |b312b22|=AB2

    for B0 can be obtained for

    g(z)={z(1+Bz)ABB=z+(AB)z2+12(AB)(A2B)z3+,z(1+Bz2)AB2B=z+12(AB)z3+.

    Similarly, the equality

    |b312b22|=A2

    for B=0 can be obtained for the function g(z)= zeA2z2=z+A2z3+. Also equality for the functional |p212p21| can be obtained by the functions

    p(z)=1+(bA+(1b)B)z1+Bz or p1(z)=1+(bA+(1b)B)z21+Bz2.

    Corollary 4.4. For A=1, B=1 and b=1, we have the result proved in [8]:

    |a33+α+iβ2(2+α+iβ)a22|α+2|2+α+iβ|.

    For α=1, β=0, we have fK, the class of close-to-convex functions, and

    |a323a22|1.

    The latter result has been proved in [11].

    Theorem 4.5. Let f of the form (1.1) be a generalized Bazilevič function associated by the quadruple (α,β,g,p), with gS[A,B] and of the form (1.3) and pP[b,A,B] of the form (1.2). Then

    (i)

    |a2|(AB)(α+|b|)|1+α+iβ|.

    (ii) If α=0, then

    |a3||b|(AB)|2+iβ|max{1,|b(AB)2(1(3+iβ)(1+iβ)2)+B|}.

    Both the above inequalities are sharp.

    Proof. (ⅰ) From (4.3), we have

    (1+α+iβ)a2=αb2+p1.

    This implies that

    |a2|α|b2|+|p1||1+α+iβ|.

    By using the coefficient bound for S[A,B] along with the coefficient bound of P[b,A,B], we have

    |b2|AB and |p1||b|(AB).

    This implies that

    |a2|(α+|b|)(AB)|1+α+iβ|.

    Equality can be obtained by the functions

    g(z)=z(1+Bz)ABB, B0 and p(z)=1+[bA+(1b)B]z1+Bz.

    (ⅱ) Let α=0. Then from (4.3) and (4.4), we have

    (2+iβ)a3=p212p21+(3+iβ)p212(1+iβ)2=p212(1(3+iβ)(1+iβ)2)p21.

    This implies

    |a3|=1|2+iβ||p2μp21|,

    where μ=12(3+iβ)2(1+iβ)2. Now by using Lemma 2.3, we obtain

    |a3||b|(AB)|2+iβ|max{1,|b(AB)2(2β2+iβ)(1+iβ)2)+B|}.

    Sharpness can be attained by the functions

    p0(z)=1+(bA+(1b)B)z21+Bz2=1+b(AB)z2+b(AB)(B)z4+,p1(z)=1+(bA+(1b)B)z1+Bz=1+b(AB)z+b(AB)(B)z2+.

    Corollary 4.6. For A=1, B=1 and b=1, we have

    |a2|2(α+1)|1+α+iβ|,

    and

    |a3|=2|2+iβ|max{1,|(3+iβ)(1+iβ)2|}.

    In the final part of this paper, we look at some results for the generalized Bazilevič functions associated with β=0.

    Let Cr denote the closed curve which is the image of the circle |z|=r<1 under the mapping w= f(z), and Lr(f(z)) denote the length of Cr. Also let M(r)=max|z|=r|f(z)| and m(r)=min|z|=r|f(z)|. We now prove the following result.

    Theorem 4.7. Let f be a generalized Bazilevič function associated by the quadruple (α,0,g,p). Then for B0,

    Lr(f(z)){C(α,b,A,B)M1α(r)[1(1r)α(ABB)],0<α1,C(α,b,A,B)m1α(r)[1(1r)α(ABB)],α>1,

    where

    C(α,b,A,B)=2π|b|B[(AB)+1α].

    Proof. As f is a generalized Bazilevič function associated by the quadruple (α,0,g,p), we have

    zf(z)=f1α(z)gα(z)p(z),

    where gS[A,B] and pP[b,A,B]. Since for z=reiθ, 0<r<1,

    Lr(f(z))=2π0|zf(z)|dθ,

    we have for 0<α1,

    Lr(f(z))=2π0|f1α(z)gα(z)p(z)|dθ,M1α(r)2π0r0|αg(z)gα1(z)p(z)+gα(z)p(z)|dsdθ,M1α(r){2π0r0α|gα(z)|s|h(z)p(z)|dsdθ+2π0r0|gα(z)|s|zp(z)|dsdθ},

    where zg(z)g(z)=h(z)P[A,B]. Now by using the distortion theorem for Janowski starlike functions when B0 (see [10]) and the Cauchy-Schwarz inequality, we have

    Lr(f(z))M1α(r)×r0sα1(1|B|s)αBAB{α2π0|h(z)|2dθ2π0|p(z)|2dθ+2π0|zp(z)|dθ}ds.

    Now by using Lemma 2.1 for both the classes P[b,A,B] and P[A,B], along with the result

    2π0|zp(z)||b|(AB)r1B2r2,

    for pP[b,A,B] (see [19]), we can write

    Lr(f(z))2πM1α(r)×r0sα1(1|B|s)αBAB{α1+[(AB)21]s21s21+[|b|2(AB)21]s21s2+|b|(AB)s1B2s2}ds.

    Since 1|B|r1r and 1B2r21r2,

    Lr(f(z))2πM1α(r)[|b|(AB)2+|b|(AB)]r01(1s)αBAB+1ds=C(α,b,A,B)M1α(r)[1(1r)α(ABB)],

    where C(α,b,A,B)=2π|b|[(AB)+(1/α)]B.

    When α>1, we can prove similarly as above to get

    Lr(f(z))C(α,b,A,B)m1α(r)[1(1r)α(ABB)].

    Corollary 4.8. For gS and pP(b), we have

    Lr(f(z)){2π|b|(2+1α)M1α(r)[1(1r)2α1],0<α1,2π|b|(2+1α)m1α(r)[1(1r)2α1],α>1.

    Theorem 4.9. Let f be a generalized Bazilevič function associated by the quadruple (α,0,g,p), where gS[A,B] and pP[b,A,B]. Then for B0,

    |an|{1n|b|B(AB+1α)limr1M1α(r),0<α1,1n|b|B(AB+1α)limr1m1α(r),α>1.

    Proof. By Cauchy's theorem for z=reiθ, n2, we have

    nan=12πrn2π0zf(z)einθdθ.

    Therefore

    n|an|12πrn2π0|zf(z)|dθ,=12πrnLr(f(z)).

    By using Theorem 4.7 for the case 0<α1, we have

    n|an|12πrn(2π|b|B(AB+1α)M1α(r)[1(1r)αABB]).

    Hence, by taking r approaches 1,

    |an|1n|b|B(AB+1α)limr1M1α(r).

    For α>1, we have

    |an|1n|b|B(AB+1α)limr1m1α(r).

    Theorem 4.10. Let f be a generalized Bazilevič function represented by the quadruple (α,0,g,p), where gS[A,B] and pP[b,A,B]. Then for B0,

    |f(z)|αα(1B2)+(AB)(|b|BRe(b))1Brα2F1(α(1AB)+1;α;α+1;|B|r).

    Proof. Since f is a generalized Bazilevič function associated by the quadruple (α,0,g,p), by definition, we have

    zf(z)f1α(z)gα(z)=p(z),

    where gS[A,B] and pP[b,A,B]. This implies that

    fα(z)=αz0t1gα(t)p(t)dt,

    and so

    |f(z)|αα|z|0|t1||gα(t)||p(t)|d|t|,=αr0s1|gα(t)||p(t)|ds.

    Now by using the results

    |g(z)|r(1|B|r)ABB,B0, (see [10]), 

    and

    |p(z)|1+|b|(AB)rB[(AB)Re{b}+B]r21|B|2r2, (see [6]), 

    we have

    |f(z)|ααr0s1sα(1|B|s)α(1AB)1+|b|(AB)sB[(AB)Re{b}+B]s21|B|2s2dsα(1B2)+(AB)(|b|BRe{b})1+|B|r0sα1(1|B|s)α(1AB)1ds.

    Putting s=ru, we have

    |f(z)|αα(1B2)+(AB)(|b|BRe{b})1Brα10uα1(1|B|ru)α(1AB)1du=(1B2)+(AB)(|b|BRe{b})1Brα 2F1(α(1AB)+1;α;α+1;|B|r),

    where 2F1(a;b;c;z) is the hypergeometric function.

    Corollary 4.11. For gSand pP, we have

    |f(z)|α2αrα2F1(2α+1;α;α+1;r).

    The research for the fourth author is supported by the USM Research University Individual Grant (RUI) 1001/PMATHS/8011038.

    The authors declare that they have no conflict of interests.



    [1] R. M. Ali, V. Ravichandran, N. Seenivasgan, Coefficients bounds for p-valent functions, Appl. Math. Comp., 187 (2007), 35-46. doi: 10.1016/j.amc.2006.08.100
    [2] M. K. Aouf, On a class of p-valent starlike functions of order α, Int. J. Math. Math. Sci., 10 (1987), 733-744. doi: 10.1155/S0161171287000838
    [3] M. Arif, K. I. Noor, M. Raza, On a class of analytic functions related with generalized Bazilevič type functions, Comp. Math. Appl., 61 (2001), 2456-2462.
    [4] M. Arif, K. I. Noor, M. Raza, et al. Some properties of a generalized class of analytic functions related with Janowski functions, Abstr. Appl. Anal., 2012 (2012), 279843.
    [5] M. Arif, M. Raza, K. I. Noor, et al. On strongly Bazilevic functions associated with generalized Robertson functions, Math. Comput. Modelling, 54 (2011), 1608-1612. doi: 10.1016/j.mcm.2011.04.033
    [6] A. A. Attiya, On a generalization of class bounded starlike function of complex order, Appl. Math. Comp., 187 (2007), 62-67. doi: 10.1016/j.amc.2006.08.103
    [7] I. E., Bazilevič, On a class of integrability in quadratures of the Lowner-Kufarev equation, Math. Sb. N. S., 37(79) (1955), 471-476.
    [8] D. M. Campbell, K. Pearce, General Bazilevič function, Rocky Mountain J. Math., 9 (1979), 197-226. doi: 10.1216/RMJ-1979-9-2-197
    [9] A. W. Goodman, On the Schwarz-Chirstoffel transformation and p-valent functions, Trans. Amer. Math. Soc., 68 (1950), 204-223.
    [10] W. Janowski, Some external problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326
    [11] F. R. Keogh, E. P. Merkes, A coefficients inequality for certain class of analytic function, Proc. Amer. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9
    [12] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758. doi: 10.1090/S0002-9939-1965-0178131-2
    [13] S. N. Malik, M. Raza, M. Arif, et al. Coefficients estimates for some subclasses of analytic functions related with conic domain, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 21 (2013), 181-188.
    [14] S. S. Miller, P. T. Mocanu, Univalent solutions of Briot-Bouquet differential subordination, J. Differential Equations, 56 (1985), 297-309. doi: 10.1016/0022-0396(85)90082-8
    [15] S. S. Miller, P. T. Mocanu, Differential subordination: Theory and applications, New York: Marcel Dekker, Inc., 2000.
    [16] K. I. Noor, On Bazilevič function of complex order, Nihonkai Math. J., 3 (1992), 115-124.
    [17] Y. Polatoğlu, Some results of analytic functions in the unit disc, Publ. Inst. Math. (Beograd) (N.S.), 78 (2005), 79-86. doi: 10.2298/PIM0578079P
    [18] Y. Polatoğlu, M. Bolcal, A. Şen, E. Yavuz, A study on the generalization of Janowski function in the unit disc, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22 (2006), 27-31.
    [19] Y. Polatoğlu, A. Şen, Some results on subclasses of Janowski λ-spirallike functions of complex order, Gen. Math., 15 (2007), 88-97.
    [20] V. Ravichandran, S. Verma, On a subclass of Bazilevic functions, Filomat, 31 (2017), 3539-3552. doi: 10.2298/FIL1711539R
    [21] M. Raza, W. U. Haq, Rabia, Estimates for coefficients of certain analytic functions, Math. Slovaca, 67 (2017), 1043-1053.
    [22] Z. G. Wang, M. Raza, M. Ayaz, et al. On certain multivalent functions involving the generalized Srivastava-Attiya operator, J. Nonlinear Sci. Appl., 9 (2016), 6067-6076. doi: 10.22436/jnsa.009.12.14
  • This article has been cited by:

    1. A Certain Class of Function Analytic and Subordinate to the Modified Sigmoid Function, 2025, 2581-8147, 639, 10.34198/ejms.15425.639647
    2. Tamer M. Seoudy, Amnah E. Shammaky, Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation, 2025, 10, 2473-6988, 12745, 10.3934/math.2025574
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4160) PDF downloads(404) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog