Research article Special Issues

Evaluations of some Euler-type series via powers of the arcsin function

  • Published: 09 April 2025
  • MSC : 05A19, 40A25

  • In this paper, by using special integrals and integer powers of the $ \arcsin $ function, we obtained the recurrences or explicit expressions of some parametric Euler-type series involving multiple harmonic sums and multiple $ t $-harmonic sums. According to our results, these Euler-type series are all expressible in terms of $ \pi $, $ \ln(2) $, and zeta values. In particular, by specifying the parameters, we presented as examples the evaluations of some special series, including some known ones in the literature and some new ones.

    Citation: Jiaye Lin. Evaluations of some Euler-type series via powers of the arcsin function[J]. AIMS Mathematics, 2025, 10(4): 8116-8130. doi: 10.3934/math.2025372

    Related Papers:

  • In this paper, by using special integrals and integer powers of the $ \arcsin $ function, we obtained the recurrences or explicit expressions of some parametric Euler-type series involving multiple harmonic sums and multiple $ t $-harmonic sums. According to our results, these Euler-type series are all expressible in terms of $ \pi $, $ \ln(2) $, and zeta values. In particular, by specifying the parameters, we presented as examples the evaluations of some special series, including some known ones in the literature and some new ones.



    加载中


    [1] M. E. Hoffman, Multiple harmonic series, Pacific J. Math., 152 (1992), 275–290. https://doi.org/10.2140/PJM.1992.152.275 doi: 10.2140/PJM.1992.152.275
    [2] D. Zagier, Values of zeta functions and their applications, In: A. Joseph, F. Mignot, F. Murat, B. Prum, R. Rentschler, First European Congress of Mathematics Paris, July 6–10, 1992, Progress in Mathematics, Birkhäuser Basel, 120 (1994), 497–512. https://doi.org/10.1007/978-3-0348-9112-7_23
    [3] M. E. Hoffman, An odd variant of multiple zeta values, Commun. Number Theory Phys., 13 (2019), 529–567. https://doi.org/10.4310/CNTP.2019.v13.n3.a2 doi: 10.4310/CNTP.2019.v13.n3.a2
    [4] M. Alegri, J. L. López-Bonilla, P. S. K. Reddy, Results on Riemann zeta functions using compositions, J. Interdiscip. Math., 27 (2024), 1437–1447. https://doi.org/10.47974/JIM-1903 doi: 10.47974/JIM-1903
    [5] M. E. Hoffman, On multiple zeta values of even arguments, Int. J. Number Theory, 13 (2017), 705–716. https://doi.org/10.1142/S179304211750035X doi: 10.1142/S179304211750035X
    [6] Z. Shen, T. Cai, Some identities for multiple zeta values, J. Number Theory, 132 (2012), 314–323. https://doi.org/10.1016/j.jnt.2011.06.011 doi: 10.1016/j.jnt.2011.06.011
    [7] B. C. Berndt, Ramanujan's notebooks, Part Ⅰ, New York: Springer-Verlag, 1985. https://doi.org/10.1007/978-1-4612-1088-7
    [8] P. Flajolet, B. Salvy, Euler sums and contour integral representations, Exp. Math., 7 (1998), 15–35. https://doi.org/10.1080/10586458.1998.10504356 doi: 10.1080/10586458.1998.10504356
    [9] C. Xu, W. Wang, Explicit formulas of Euler sums via multiple zeta values, J. Symb. Comput., 101 (2020), 109–127. https://doi.org/10.1016/j.jsc.2019.06.009 doi: 10.1016/j.jsc.2019.06.009
    [10] D. H. Bailey, J. M. Borwein, R. Girgensohn, Experimental evaluation of Euler sums, Exp. Math., 3 (1994), 17–30. https://doi.org/10.1080/10586458.1994.10504573 doi: 10.1080/10586458.1994.10504573
    [11] D. Borwein, J. M. Borwein, R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc., 38 (1995), 277–294. https://doi.org/10.1017/S0013091500019088 doi: 10.1017/S0013091500019088
    [12] W. Chu, Hypergeometric series and the Riemann zeta function, Acta Arith., 82 (1997), 103–118. https://doi.org/10.4064/AA-82-2-103-118 doi: 10.4064/AA-82-2-103-118
    [13] W. Chu, Infinite series identities on harmonic numbers, Results Math., 61 (2012), 209–221. https://doi.org/10.1007/s00025-010-0089-2 doi: 10.1007/s00025-010-0089-2
    [14] W. Wang, Y. Lyu, Euler sums and Stirling sums, J. Number Theory, 185 (2018), 160–193. https://doi.org/10.1016/j.jnt.2017.08.037 doi: 10.1016/j.jnt.2017.08.037
    [15] C. Xu, Multiple zeta values and Euler sums, J. Number Theory, 177 (2017), 443–478. https://doi.org/10.1016/j.jnt.2017.01.018 doi: 10.1016/j.jnt.2017.01.018
    [16] C. Xu, Y. Yan, Z. Shi, Euler sums and integrals of polylogarithm functions, J. Number Theory, 165 (2016), 84–108. https://doi.org/10.1016/j.jnt.2016.01.025 doi: 10.1016/j.jnt.2016.01.025
    [17] D. Zheng, Further summation formulae related to generalized harmonic numbers, J. Math. Anal. Appl., 335 (2007), 692–706. https://doi.org/10.1016/j.jmaa.2007.02.002 doi: 10.1016/j.jmaa.2007.02.002
    [18] W. Wang, Y. Chen, Explicit formulas of sums involving harmonic numbers and Stirling numbers, J. Differ. Equ. Appl., 26 (2020), 1369–1397. https://doi.org/10.1080/10236198.2020.1842384 doi: 10.1080/10236198.2020.1842384
    [19] C. Xu, W. Wang, Dirichlet type extensions of Euler sums, C. R. Math., 361 (2023), 979–1010. https://doi.org/10.5802/crmath.453 doi: 10.5802/crmath.453
    [20] A. Dil, K. N. Boyadzhiev, Euler sums of hyperharmonic numbers, J. Number Theory, 147 (2015), 490–498. https://doi.org/10.1016/j.jnt.2014.07.018 doi: 10.1016/j.jnt.2014.07.018
    [21] I. Mező, A. Dil, Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Open Math., 7 (2009), 310–321. https://doi.org/10.2478/s11533-009-0008-5 doi: 10.2478/s11533-009-0008-5
    [22] M. E. Hoffman, Harmonic-number summation identities, symmetric functions, and multiple zeta values, Ramanujan J., 42 (2017), 501–526. https://doi.org/10.1007/s11139-015-9750-4 doi: 10.1007/s11139-015-9750-4
    [23] M. Kuba, A. Panholzer, A note on harmonic number identities, Stirling series and multiple zeta values, Int. J. Number Theory, 15 (2019), 1323–1348. https://doi.org/10.1142/S179304211950074X doi: 10.1142/S179304211950074X
    [24] Q. Ma, W. Wang, Infinite series identities on $r$-Stirling numbers, Rocky Mountain J. Math., in press.
    [25] J. M. Campbell, K. Chen, An integration technique for evaluating quadratic harmonic sums, Aust. J. Math. Anal. Appl., 18 (2021), 15–19.
    [26] X. Chen, W. Wang, Apéry-type series via colored multiple zeta values and Fourier-Legendre series expansions, submitted for publication, 2024.
    [27] H. Liu, W. Wang, Gauss's theorem and harmonic number summation formulae with certain mathematical constants, J. Differ. Equ. Appl., 25 (2019), 313–330. https://doi.org/10.1080/10236198.2019.1572127 doi: 10.1080/10236198.2019.1572127
    [28] H. Liu, W. Zhou, S. Ding, Generalized harmonic number summation formulae via hypergeometric series and digamma functions, J. Differ. Equ. Appl., 23 (2017), 1204–1218. https://doi.org/10.1080/10236198.2017.1318861 doi: 10.1080/10236198.2017.1318861
    [29] J. M. Campbell, P. Levrie, C. Xu, J. Zhao, On a problem involving the squares of odd harmonic numbers, Ramanujan J., 63 (2024), 387–408. https://doi.org/10.1007/s11139-023-00765-7 doi: 10.1007/s11139-023-00765-7
    [30] A.S. Nimbran, P. Levrie, A. Sofo, Harmonic-binomial Euler-like sums via expansions of $(\arcsin x)^p$, RACSAM, 116 (2022), 23. https://doi.org/10.1007/s13398-021-01156-7 doi: 10.1007/s13398-021-01156-7
    [31] W. Wang, C. Xu, Alternating multiple zeta values, and explicit formulas of some Euler-Apéry-type series, Eur. J. Combin., 93 (2021), 103283. https://doi.org/10.1016/j.ejc.2020.103283 doi: 10.1016/j.ejc.2020.103283
    [32] X. Wang, X. Yuan, Infinite summation formulas involving the Riemann-zeta function, Integers, 20 (2020), 1–15. https://doi.org/10.5281/zenodo.10776560 doi: 10.5281/zenodo.10776560
    [33] C. Wei, C. Xu, On some conjectural series containing harmonic numbers of 3-order, J. Math. Anal. Appl., 546 (2025), 129306. https://doi.org/10.1016/j.jmaa.2025.129306 doi: 10.1016/j.jmaa.2025.129306
    [34] J. Edwards, Differential calculus for beginners, Macmillan, 1893.
    [35] I. J. Schwatt, An introduction to the operations with series, 2 Eds., New York: Chelsea Publishing Co., 1962.
    [36] J. M. Borwein, M. Chamberland, Integer powers of arcsin, Int. J. Math. Math. Sci., 2017 (2007), 19381. https://doi.org/10.1155/2007/19381 doi: 10.1155/2007/19381
    [37] J. Lin, W. Wang, Infinite series identities on central binomial coefficients, submitted for publication, 2024.
    [38] D. Orr, Generalized log-sine integrals and Bell polynomials, J. Comput. Appl. Math., 347 (2019), 330–342. https://doi.org/10.1016/j.cam.2018.08.026 doi: 10.1016/j.cam.2018.08.026
    [39] H. W. Gould, Announcement, Fibonacci Quart., 10 (1972), 662. https://doi.org/10.1080/00150517.1972.12430893 doi: 10.1080/00150517.1972.12430893
    [40] C. Lupu, Another look at Zagier's formula for multiple zeta values involving Hoffman elements, Math. Z., 301 (2022), 3127–3140. https://doi.org/10.1007/s00209-022-02990-0 doi: 10.1007/s00209-022-02990-0
    [41] A. Sofo, Harmonic number sums in higher powers, J. Math. Anal., 2 (2011), 15–22.
    [42] J. Zhao, Sum formula of multiple Hurwitz-zeta values, Forum Math., 27 (2015), 929–936. https://doi.org/10.1515/forum-2012-0144 doi: 10.1515/forum-2012-0144
    [43] D. Orr, Generalized rational zeta series for $\zeta(2n)$ and $\zeta(2n + 1)$, Integr. Transf. Spec. Funct., 28 (2017), 966–987. https://doi.org/10.1080/10652469.2017.1393809 doi: 10.1080/10652469.2017.1393809
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(818) PDF downloads(87) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog