
Citation: Habib ur Rehman, Poom Kumam, Kanokwan Sitthithakerngkiet. Viscosity-type method for solving pseudomonotone equilibrium problems in a real Hilbert space with applications[J]. AIMS Mathematics, 2021, 6(2): 1538-1560. doi: 10.3934/math.2021093
[1] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860 |
[2] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[3] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[4] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[5] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[6] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089 |
[7] | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824 |
[8] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[9] | Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190 |
[10] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
The classical Hermite-Hadamard (H-H) inequality, serving as a litmus test for convexity, formally establishes that if the function F:[ℑ1,ℑ2]→R is a convex function satisfying the essential containment relationship between its midpoint value and integral mean. Specifically, the following inequalities are satisfied:
F(ℑ1+ℑ22)≤1ℑ2−ℑ1∫ℑ2ℑ1F(σ)dσ≤12(F(ℑ1)+F(ℑ2)). |
Convexity inequalities have numerous applications in the study of different models from real-world applications [1,2]. Because the H-H inequality is of great significance in convex analysis, it is widely applied in various fields such as integral inequalities, information theory, and optimization theory. In recent years, it has been extended and generalized through various forms of convexity, such as log-convexity [3,4], harmonic convexity [5,6], h-convexity [7,8,9], convexity in q-calculus [10,11,12] and especially s-convexity [13]. Since 1994, s-convexity has been a significant development and widespread application and various generalizations and results regarding H-H inequalities related to s-convex mappings have been established in [14,15,16].
From another perspective, interval analysis provides an effective numerical tool for solving uncertain and nonlinear problems. Since the publication of the first monograph in 1966 [17], it has evolved into a distinct branch of mathematics, with applications spanning data mining, machine learning, and various other fields. A key focus has been interval-valued (IV) function inequalities. Recently, based on interval calculus and generalized convexity, some authors like Ali et al. [18,19,20], Budak et al. [21,22], Costa et al. [23,24,25], Du et al. [26,27], Khan et al.[28,29], Sarikaya et al. [30,31,32], and Zhao et al. [33,34,35] established the interval versions of the Chebyshev's inequality, Jensen's inequality, and H-H inequality. Furthermore, with the successive introduction of the bilateral Riemann-Liouville (R-L) fractional integral operators (left-hand and right-hand variants) for IV functions, the results related to inequalities for IV functions are more extensive and profound [36,37]. Especially, in 2023, Budak et al. [38] introduced a novel generalized integral to demonstrate the generalized H-H-type inclusion of IV convex functions.
Motivated by the above-mentioned literature, we have established some novel interval forms of H-H inequalities by using generalized fractional integral operators and combining them with IV s-convex functions. The classical convexity theory is extended to the generalized s-convex framework, some interesting theorems are proved, and the exact inequality representation of the product of two s-convex functions is given. Our findings not only extend the main conclusions in [36,38,39], but also provide new insights for the study of IV inequalities.
The organization of this work is outlined below: Section 2 introduces essential background concepts, while Section 3 establishes a series of H-H-type inequalities for IV s-convex mappings using generalized fractional integral operators. Section 4 gives the conclusion.
Let A denote a compact real interval, mathematically expressed as
[A]=[A_,¯A]={a∈R|A_≤a≤¯A}, |
where A_,¯A∈R satisfy A_≤¯A. If A_=¯A, the interval becomes degenerate. The intervals discussed in this paper are all non-degenerate intervals. An interval [A] is termed positive when A_>0, and negative if ¯A<0. The sets R−I, R+I, and RI, respectively, denote all negative, positive, and arbitrary real-valued intervals. Additionally, we adopt the partial ordering "⊇" defined by
[A_,¯A]⊇[B_,¯B]⟺A_≤B_and¯B≤¯A. |
For η∈R and A∈RI, then
ηA=η[A_,¯A]={[ηA_,η¯A],ifη≥0,[η¯A,ηA_],ifη<0. |
For arbitrary A,B∈RI, the following four arithmetic operations are given:
A+B=[A_,¯A]+[B_,¯B]=[A_+B_,¯A+¯B],A−B=[A_,¯A]−[B_,¯B]=[A_−B_,¯A−¯B],A⋅B=[min{A_B_,A_¯B,¯AB_,¯A¯B},max{A_B_,A_¯B,¯AB_,¯A¯B}],B/A=[min{B_/A_,B_/¯A,¯B/A_,¯B/¯A},max{B_/A_,B_/¯A,¯B/A_,¯B/¯A}],(0∉[A_,¯A]). |
For additional information on interval arithmetic, refer to [40].
Definition 2.1. [13] A function F:[ℑ1,ℑ2]→R is classified as s-convex if it satisfies the convexity condition:
F(ιℏ1+(1−ι)ℏ2)≤ιsF(ℏ1)+(1−ι)sF(ℏ2), | (2.1) |
for all ℏ1,ℏ2∈[ℑ1,ℑ2] and ι∈[0,1] with s∈(0,1].
In [41], Breckner introduced the IV s-convex functions.
Definition 2.2. [41] F:[ℑ1,ℑ2]→R+I is defined as an IV s-convex function if
F(ιℏ1+(1−ι)ℏ2)⊇ιsF(ℏ1)+(1−ι)sF(ℏ2), | (2.2) |
for ℏ1,ℏ2∈[ℑ1,ℑ2] and ι∈[0,1].
Consider F:[ℑ1,ℑ2]→R+I, we define ∫ℑ2ℑ1F(ι)dι by
∫ℑ2ℑ1F(ι)dι=[∫ℑ2ℑ1F_(ι)dι,∫ℑ2ℑ1¯F(ι)dι] |
and say that the function F is interval Lebesgue integrable on [ℑ1,ℑ2] (or that F∈IL[ℑ1,ℑ2]).
Definition 2.3. [42] Let F∈L[ℑ1,ℑ2]. The bilateral R-L fractional integral operators, namely the left-sided Jαℑ1+F and the right-sided Jαℑ2−F, are defined as
Jαℑ1+F(σ)=1Γ(α)∫σℑ1(σ−ι)α−1F(ι)dι, |
and
Jαℑ2−F(σ)=1Γ(α)∫ℑ2σ(ι−σ)α−1F(ι)dι, |
respectively, where α>0, ℑ1≥0, J0ℑ1+F(σ)=J0ℑ2−F(σ)=F(σ) and Γ(α) is the Gamma function.
The H-H inequality in the form of R-L fractional integrals was proved by Sarikaya et al. in [32] as follows:
Theorem 2.4. Let F∈L[ℑ1,ℑ2] be a mapping from [ℑ1,ℑ2] to R+. If F satisfies the convexity condition, then
F(ℑ1+ℑ22)≤Γ(α+1)2(ℑ2−ℑ1)α(Jαℑ1+F(ℑ2)+Jαℑ2−F(ℑ1))≤12(F(ℑ1)+F(ℑ2)), |
with α>0.
Definition 2.5. [36,37] Let F:[ℑ1,ℑ2]→R+I. The IV R-L fractional integral operators, including both left-sided and right-sided variants, are defined as follows:
Iαℑ1+F(σ)=1Γ(α)∫σℑ1(σ−ι)α−1F(ι)dι,σ>ℑ1, |
and
Iαℑ2−F(σ)=1Γ(α)∫ℑ2σ(ι−σ)α−1F(ι)dι,σ<ℑ2, |
respectively. Here, Iαℑ1+F(σ)=[Jαℑ1+F_(σ),Jαℑ1+¯F(σ)], and α>0.
In [36], Budak et al. gave the fractional H-H inequality for IV convex functions as follows:
Theorem 2.6. Let F:[ℑ1,ℑ2]→R+I, and α>0. If F is an IV convex function, then
F(ℑ1+ℑ22)⊇Γ(α+1)2(ℑ2−ℑ1)α(Iαℑ1+F(ℑ2)+Iαℑ2−F(ℑ1))⊇F(ℑ1)+F(ℑ2)2. | (2.3) |
Definition 2.7. [31] Let φ:[ℑ1,ℑ2]→R+ be a monotonically increasing mapping, and suppose F,φ∈L[ℑ1,ℑ2]. The generalized R-L fractional integral operators Jα,kℑ1+,φF and Jα,kℑ2−,φF are defined by
Jα,kℑ1+,φ(F)(σ)=1Γ(α)∫σℑ1(σ−ι)α−1(φ(σ)−φ(ι))kF(ι)dι,σ>ℑ1, |
and
Jα,kℑ2−,φ(F)(σ)=1Γ(α)∫ℑ2σ(ι−σ)α−1(φ(ι)−φ(σ))kF(ι)dι,σ<ℑ2, |
respectively, where k∈N∪{0}, α>0, and ℑ1≥0.
In 2023, Budak et al. introduced the generalized fractional integral for IV function as follows:
Definition 2.8. [38] Let φ:[ℑ1,ℑ2]→R+ be a monotonically increasing function, and F:[ℑ1,ℑ2]→R+I. The generalized R-L fractional integrals Iα,kℑ1+,φF and Iα,kℑ2−,φF of interval-valued functions are defined by
Iα,kℑ1+,φ(F)(σ)=1Γ(α)∫σℑ1(σ−ι)α−1(φ(σ)−φ(ι))kF(ι)dι,σ>ℑ1, |
and
Iα,kℑ2−,φ(F)(σ)=1Γ(α)∫ℑ2σ(ι−σ)α−1(φ(ι)−φ(σ))kF(ι)dι,σ<ℑ2, |
respectively, where α>0, ℑ1≥0 and k∈N∪{0}.
The families of all functions that are Riemann integrable and interval Riemann integrable over the closed interval [ℑ1,ℑ2] are respectively represented by the notations R[ℑ1,ℑ2] and IR[ℑ1,ℑ2].
Theorem 2.9. [38] Suppose F∈IR[ℑ1,ℑ2], φ:[ℑ1,ℑ2]→R is a monotonically increasing function on (ℑ1,ℑ2) with φ∈L[ℑ1,ℑ2]. Letting Φ(ι)=F(ι)+F(ℑ1+ℑ2−ι), then Φ∈IR[ℑ1,ℑ2], and we have
F(12(ℑ1+ℑ2))(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1))⊇12(Iα,kℑ1+,φ(Φ)(ℑ2)+Iα,kℑ2−,φ(Φ)(ℑ1))⊇12(F(ℑ1)+F(ℑ2))(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1)), |
where α>0 and k∈N∪{0}.
Let Φ(ϖ)=F(ϖ)+F(ℑ1+ℑ2−ϖ) and Λ(ϖ)=G(ϖ)+G(ℑ1+ℑ2−ϖ) for ϖ∈[ℑ1,ℑ2]. It is straightforward to demonstrate that if F,G∈IR[ℑ1,ℑ2], then Φ(ϖ),Λ(ϖ)∈IR[ℑ1,ℑ2].
Theorem 3.1. Let F:[ℑ1,ℑ2]→R+I, F∈IR[ℑ1,ℑ2], and φ:[ℑ1,ℑ2]→R+ be a monotonically increasing function. If F is an IV s-convex function, then
F(ℑ1+ℑ22)(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1))⊇12s(Iα,kℑ1+,φ(Φ)(ℑ2)+Iα,kℑ2−,φ(Φ)(ℑ1))⊇12s(F(ℑ1)+F(ℑ2))(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1)), | (3.1) |
where α>0 and k∈N∪{0}.
Proof. By the assumption, we have
F(ℏ1+ℏ22)⊇F(ℏ1)+F(ℏ2)2s. | (3.2) |
Letting ℏ1=ιℑ1+(1−ι)ℑ2, ℏ2=(1−ι)ℑ1+ιℑ2 for ι∈[0,1], we obtain
F(ℑ1+ℑ22)⊇12s(F(ιℑ1+(1−ι)ℑ2)+F((1−ι)ℑ1+ιℑ2)). | (3.3) |
Then, multiplying the two sides of (3.3) by ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))k and integrating on [0, 1], we obtain
F(ℑ1+ℑ22)∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))kdι⊇12s(∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))kF(ιℑ1+(1−ι)ℑ2)dι+∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))kF((1−ι)ℑ1+ιℑ2)dι). |
Letting y=ιℑ1+(1−ιℑ2), we have
F(ℑ1+ℑ22)∫ℑ2ℑ1(ℑ2−y)α−1(φ(ℑ2)−φ(y))kdy⊇12s(∫ℑ2ℑ1(ℑ2−y)α−1(φ(ℑ2)−φ(y))kF(y)dy+∫ℑ2ℑ1(ℑ2−y)α−1(φ(ℑ2)−φ(y))kF(ℑ1+ℑ2−y)dy). |
That is,
F(ℑ1+ℑ22)Iα,kℑ1+,φ(1)(ℑ2)⊇12sIα,kℑ1+,φ(Φ)(ℑ2). | (3.4) |
By multiplying the two sides of (3.3) by ια−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))k and integrating on [0, 1], we obtain
F(ℑ1+ℑ22)∫10τα−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))kdι⊇12s(∫10ια−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))kF(ιℑ1+(1−ι)ℑ2)dι+∫10ια−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))kF((1−ι)ℑ1+ιℑ2)dι). |
Letting y=(1−ι)ℑ1+ιℑ2, we have
F(ℑ1+ℑ22)Iα,kℑ2−,φ(1)(ℑ1)⊇12sIα,kℑ2−,φ(Φ)(ℑ2). | (3.5) |
Combining with conclusions (3.4) and (3.5), we obtain
F(ℑ1+ℑ22)(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1))⊇12s(Iα,kℑ1+,φ(Φ)(ℑ2)+Iα,kℑ2−,φ(Φ)(ℑ1)). |
According to (2.2), we have
F(ιℑ1+(1−ι)ℑ2)⊇ιsF(ℑ1)+(1−ι)sF(ℑ2),F((1−ι)ℑ1+ιℑ2)⊇ιsF(ℑ2)+(1−ι)sF(ℑ1). |
That is,
F(ιℑ1+(1−ι)ℑ2)+F((1−ι)ℑ1+ιℑ2)⊇(F(ℑ1)+F(ℑ2)). | (3.6) |
Multiplying the two sides of (3.6) by ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))k and integrating on [0, 1], we obtain
∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))kF(ιℑ1+(1−ι)ℑ2)dι+∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))kF(ιℑ2+(1−ι)ℑ1)dι⊇(F(ℑ1)+F(ℑ2))∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))kdι. |
Letting y=ιℑ1+(1−ι)ℑ2, we have
∫ℑ2ℑ1(ℑ2−yℑ2−ℑ1)α−1(φ(ℑ2)−φ(y))kF(y)dy+∫ℑ2ℑ1(ℑ2−yℑ2−ℑ1)α−1(φ(ℑ2)−φ(y))kF(ℑ1+ℑ2−y)dy⊇(F(ℑ1)+F(ℑ2))∫ℑ2ℑ1(ℑ2−yℑ2−ℑ1)α−1(φ(ℑ2)−φ(y))kdy. |
That is,
Iα,kℑ1+,φ(Φ)(ℑ2)⊇(F(ℑ1)+F(ℑ2))Iα,kℑ1+,φ(1)(ℑ2). | (3.7) |
Similarly, multiplying the two sides of (3.6) by ια−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))k and integrating on [0, 1], let y=ιℑ2+(1−ι)ℑ1, we have
∫ℑ2ℑ1(y−ℑ1ℑ2−ℑ1)α−1(φ(y)−φ(ℑ1))kF(ℑ1+ℑ2−y)dy+∫ℑ2ℑ1(y−ℑ1ℑ2−ℑ1)α−1(φ(y)−φ(ℑ1))kF(y)dy⊇(F(ℑ1)+F(ℑ2))∫ℑ2ℑ1(y−ℑ1ℑ2−ℑ1)α−1(φ(y)−φ(ℑ1))kdy. |
Then, we obtain
Iα,kℑ2−,φ(Φ)(ℑ1)⊇(F(ℑ1)+F(ℑ2))Iα,kℑ2−,φ(1)(ℑ1). | (3.8) |
By (3.7) and (3.8), we have
Iα,kℑ1+,φ(Φ)(ℑ2)+Iα,kℑ2−,φ(Φ)(ℑ1)⊇(F(ℑ1)+F(ℑ2))(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1)). |
Hence, Theorem 3.1 is verified.
Corollary 3.2. If φ(ι)=ι−ω for ω∈R and s=1, then
F(ℑ1+ℑ22)⊇Γ(α+k+1)2(ℑ2−ℑ1)α+k(Iα+kℑ1+F(ℑ2)+Iα+kℑ2−F(ℑ1))⊇12(F(ℑ1)+F(ℑ2)). |
Remark 3.3. If s=1, Theorem 3.1 is reduced to Theorem 4.1 obtained by Budak et al. in[38].
Remark 3.4. If k=0, then
F(ℑ1+ℑ22)⊇Γ(α+1)2s(ℑ2−ℑ1)α(Iαℑ1+F(ℑ2)+Iαℑ2−F(ℑ1))⊇12s(F(ℑ1)+F(ℑ2)). |
Remark 3.5. If s=1 and k=0, then Theorem 3.1 simplifies to Theorem 3.2 as presented by Budak et al. in [36].
Example 3.6. Consider F:[0,2]→R+I, where F(x)=[2x2−4,−8x2+20x−3], φ(ι)=ι−ω for ω∈R, α=2,s=1, and k=1. Then we have
Δ1=F(ℑ1+ℑ22)(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1))=F(1)1Γ(2)∫20((2−x)2+x2)dx=163[−2,9]=[−323,48], |
Δ2=12s(Iα,kℑ1+,φ(Φ)(ℑ2)+Iα,kℑ2−,φ(Φ)(ℑ1))=121Γ(2)∫20((2−x)2+x2)(F(x)+F(2−x))dx=12[−645,163+1285]=[−325,46415], |
and
Δ3=12s(F(ℑ1)+F(ℑ2))(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1))=12(F(0)+F(2))1Γ(2)∫20((2−x)2+x2)dx=83([−4,−3]+[4,5])=[0,163]. |
Then, we obtain
Δ1⊇Δ2⊇Δ3. |
The graphical representation (Figure 1) confirms the results. $
Theorem 3.7. Assuming that the conditions of Theorem 3.1 are met, then
F(ℑ1+ℑ22)(Iα,k(12(ℑ1+ℑ2))+,φ(1)(ℑ2)+Iα,k(12(ℑ1+ℑ2))−,φ(1)(ℑ1))⊇12s(Iα,k(12(ℑ1+ℑ2))+,φ(Φ)(ℑ2)+Iα,k(12(ℑ1+ℑ2))−,φ(Φ)(ℑ1))⊇12s(F(ℑ1)+F(ℑ2))(Iα,k(12(ℑ1+ℑ2))+,φ(1)(ℑ2)+Iα,k(12(ℑ1+ℑ2))−,φ(1)(ℑ1)), | (3.9) |
where α>0 and k∈N∪{0}.
Proof. First, consider ℏ1=12ιℑ1+12(2−ι)ℑ2 and ℏ2=12ιℑ2+12(2−ι)ℑ1 for ι∈[0,1] in the inclusion (3.2). Then,
F(ℑ1+ℑ22)⊇12s(F(12ιℑ1+12(2−ι)ℑ2)+F(12ιℑ2+12(2−ι)ℑ1))⊇12s(F(ℑ1)+F(ℑ2)). | (3.10) |
Then, multiplying the two sides of (3.10) by ια−1(φ(ℑ2)−φ(12ιℑ1+12(2−ι)ℑ2))k and integrating on [0, 1], we obtain
F(ℑ1+ℑ22)∫10ια−1(φ(ℑ2)−φ(12ιℑ1+12(2−ι)ℑ2))kdι⊇12s∫10ια−1(φ(ℑ2)−φ(12ιℑ1+12(2−ι)ℑ2))k⋅(F(12ιℑ1+12(2−ι)ℑ2)+F(12ιℑ2+12(2−ι)ℑ1))dι⊇12s∫10ια−1(φ(ℑ2)−φ(12ιℑ1+12(2−ι)ℑ2))k(F(ℑ1)+F(ℑ2))dι. |
Letting y=12ιℑ1+12(2−ι)ℑ2, we have
F(ℑ1+ℑ22)(2ℑ2−ℑ1)α∫ℑ2ℑ1+ℑ22(ℑ2−y)α−1(φ(ℑ2)−φ(y))kdy⊇12s(2ℑ2−ℑ1)α∫ℑ2ℑ1+ℑ22(ℑ2−y)α−1(φ(ℑ2)−φ(y))k(F(y)+F(ℑ1+ℑ2−y))dy⊇12s(F(ℑ1)+F(ℑ2))(2ℑ2−ℑ1)α∫ℑ2ℑ1+ℑ22(ℑ2−y)α−1(φ(ℑ2)−φ(y))kdy, |
that is,
F(ℑ1+ℑ22)Iα,k(12(ℑ1+ℑ2))+,φ(1)(ℑ2)⊇12sIα,k(12(ℑ1+ℑ2))+,φ(Φ)(ℑ2)⊇12s(F(ℑ1)+F(ℑ2))Iα,k(12(ℑ1+ℑ2))+,φ(1)(ℑ2). | (3.11) |
Similarly, multiplying the two sides of (3.10) by ια−1(φ(12(2−ι)ℑ1+12ιℑ2)−φ(ℑ1))k and integrating on [0, 1], we have
F(ℑ1+ℑ22)∫10ια−1(φ(12(2−ι)ℑ1+12ιℑ2)−φ(ℑ1))kdι⊇12s∫10ια−1(φ(12(2−ι)ℑ1+12ιℑ2)−φ(ℑ1))k×(F(12ιℑ1+12(2−ι)ℑ2)+F(12ιℑ2+12(2−ι)ℑ1))dι⊇12s(F(ℑ1)+F(ℑ2))∫10ια−1(φ(12(2−ι)ℑ1+12ιℑ2)−φ(ℑ1))kdι. |
Letting y=12(2−ι)ℑ1+12ιℑ2, we have
F(ℑ1+ℑ22)(2ℑ2−ℑ1)α∫ℑ1+ℑ22ℑ1(y−ℑ1)α−1(φ(y)−φ(ℑ1))kdy⊇12s(2ℑ2−ℑ1)α∫ℑ1+ℑ22ℑ1(y−ℑ1)α−1(φ(y)−φ(ℑ1))k(F(y)+F(ℑ1+ℑ2−y))dy⊇12s(F(ℑ1)+F(ℑ2))(2ℑ2−ℑ1)α∫ℑ1+ℑ22ℑ1(y−ℑ1)α−1(φ(y)−φ(ℑ1))kdy, |
that is,
F(ℑ1+ℑ22)Iα,k(12(ℑ1+ℑ2))−,φ(1)(ℑ1))⊇12sIα,k(12(ℑ1+ℑ2))−,φ(Φ)(ℑ1)⊇12s(F(ℑ1)+F(ℑ2))Iα+s,k(12(ℑ1+ℑ2))−,φ(1)(ℑ1). | (3.12) |
By (3.11) and (3.12), we obtain the result.
Corollary 3.8. If φ(ι)=ι−ω for ω∈R and s=1, then
F(ℑ1+ℑ22)⊇2α+k−1Γ(α+k+1)(ℑ2−ℑ1)α+k(Iα+k12(ℑ1+ℑ2)+F(ℑ2)+Iα+k12(ℑ1+ℑ2)−F(ℑ1))⊇F(ℑ1)+F(ℑ2)2. |
Remark 3.9. If s=1, then Theorem 3.7 simplifies to Theorem 4.4 given by Budak et al. in[38].
Remark 3.10. If k=0, then
F(ℑ1+ℑ22)⊇2αΓ(α+1)2s(ℑ2−ℑ1)α(Iα+k12(ℑ1+ℑ2)+F(ℑ2)+Iα+k12(ℑ1+ℑ2)−F(ℑ1))⊇12s(F(ℑ1)+F(ℑ2)). |
Remark 3.11. If s=1 and k=0, then Theorem 3.7 which has been obtained by Zhao et al. in [39].
Example 3.12. Consider F:[0,1]→R+I, where F(x)=[x2,5−(12)x], φ(ι)=ι−ω for ω∈R, α=2,s=1, and k=1. Then we have
T1=F(ℑ1+ℑ22)(Iα,k(12(ℑ1+ℑ2))+,φ(1)(ℑ2)+Iα,k(12(ℑ1+ℑ2))−,φ(1)(ℑ1))=F(12)1Γ(2)(∫112(1−x)2dx+∫120x2dx)=112[14,5−(12)12]≈[0.0208,0.3750], |
T2=12s(Iα,k(12(ℑ1+ℑ2))+,φ(Φ)(ℑ2)+Iα,k(12(ℑ1+ℑ2))−,φ(Φ)(ℑ1))=121Γ(2)(∫112(1−x)2(F(x)+F(1−x))dx+∫120x2(F(x)+F(1−x))dx)≈[0.0229,0.3574], |
and
T3=12s(F(ℑ1)+F(ℑ2))(Iα,k(12(ℑ1+ℑ2))+,φ(1)(ℑ2)+Iα,k(12(ℑ1+ℑ2))−,φ(1)(ℑ1))=121Γ(2)(F(0)+F(1))(∫112(1−x)2dx+∫120x2dx)=124([0,4]+[1,92])≈[0.0417,0.3542]. |
Then, we obtain
T1⊇T2⊇T3. |
Theorem 3.13. Given that the assumptions of Theorem 3.1 hold, we can obtain
F(ℑ1+ℑ22)(Iα,kℑ1+,φ(1)(12(ℑ1+ℑ2))+Iα,kℑ2−,φ(1)(12(ℑ1+ℑ2)))⊇12s(Iα,kℑ1+,φ(Φ)(12(ℑ1+ℑ2))+Iα,kℑ2−,φ(Φ)(12(ℑ1+ℑ2)))⊇12s(F(ℑ1)+F(ℑ2))(Iα,kℑ1+,φ(1)(12(ℑ1+ℑ2))+Iα,kℑ2−,φ(1)(12(ℑ1+ℑ2))), | (3.13) |
for α>0 and k∈N∪{0}.
Proof. Considering ℏ1=12(1+ι)ℑ1+12(1−ι)ℑ2 and ℏ1=12(1−ι)ℑ1+12(1+ι)ℑ2 for ι∈[0,1] in the inclusion (3.2). Then we obtain
F(ℑ1+ℑ22)⊇12s(F(12(1+ι)ℑ1+12(1−ι)ℑ2)+F(12(1−ι)ℑ1+12(1+ι)ℑ2))⊇12s(F(ℑ1)+F(ℑ2)). | (3.14) |
Then, multiplying two sides of (3.14) by
ια−1(φ(12(ℑ1+ℑ2))−φ(12(1+ι)ℑ1+12(1−ι)ℑ2))k, |
and integrating on [0, 1], we obtain
F(ℑ1+ℑ22)∫10ια−1(φ(ℑ1+ℑ22)−φ(12(1+ι)ℑ1+12(1−ι)ℑ2)k)dι⊇12s∫10τα−1(φ(ℑ1+ℑ22)−φ(12(1+ι)ℑ1+12(1−ι)ℑ2))k⋅(F(12(1+ι)ℑ1+12(1−ι)ℑ2)+F(12(1−ι)ℑ1+12(1+ι)ℑ2))dι⊇12s(F(ℑ1)+F(ℑ2))∫10ια−1(φ(ℑ1+ℑ22)−φ(12(1+ι)ℑ1+12(1−ι)ℑ2))kdι. |
Letting z=12(1+ι)ℑ1+12(1−ι)ℑ2, we have
F(ℑ1+ℑ22)∫ℑ1+ℑ22ℑ1(ℑ1+ℑ22−z)α−1(φ(12(ℑ1+ℑ2))−φ(z))kdz⊇12s∫ℑ1+ℑ22ℑ1(ℑ1+ℑ22−z)α−1(φ(ℑ1+ℑ22)−φ(z))k(F(z)+F(ℑ1+ℑ2−z))dz⊇12s(F(ℑ1)+F(ℑ2))∫12(ℑ1+ℑ2)ℑ1(ℑ1+ℑ22−z)α−1(φ(ℑ1+ℑ22)−φ(z))kdz, |
that is,
F(ℑ1+ℑ22)Iα,kℑ1+,φ(1)(ℑ1+ℑ22)⊇12sIα,kℑ1+,φ(Φ)(ℑ1+ℑ22)⊇12s(F(ℑ1)+F(ℑ2))Iα,kℑ1+,φ(1)(ℑ1+ℑ22). | (3.15) |
Multiplying two sides of (3.14) by
ια−1(φ(12(1−ι)ℑ1+12(1+ι)ℑ2)−φ(ℑ1+ℑ22))k, |
and integrating on [0, 1], we obtain
F(ℑ1+ℑ22)∫10τα−1(φ(ℑ1+ℑ22)−φ(12(1+ι)ℑ1+12(1−ι)ℑ2))kdι⊇12s∫10ια−1(φ(ℑ1+ℑ22)−φ(12(1+ι)ℑ1+12(1−ι)ℑ2))k×(F(12(1+ι)ℑ1+12(1−ι)ℑ2)+F(12(1−ι)ℑ1+12(1+ι)ℑ2))dι⊇12s(F(ℑ1)+F(ℑ2))∫10ια−1(φ(ℑ1+ℑ22)−φ(12(1+ι)ℑ1+12(1−ι)ℑ2))kdι. |
Letting z=12(1−ι)ℑ1+12(1+ι)ℑ2, we obtain
F(ℑ1+ℑ22)Iα,kℑ2−,φ(1)(ℑ1+ℑ22)⊇12sIα,kℑ2−,φ(Φ)(ℑ1+ℑ22)⊇12s(F(ℑ1)+F(ℑ2))Iα,kℑ2−,φ(1)(ℑ1+ℑ22). | (3.16) |
Adding the inclusion (3.15) to (3.16), we complete the proof.
Corollary 3.14. If φ(ι)=ι−ω for ω∈R and s=1, then
F(ℑ1+ℑ22)⊇2α+k−1Γ(α+k+1)(ℑ2−ℑ1)α+k(Iα+kℑ1+F(ℑ1+ℑ22)+Iα+kℑ2−F(ℑ1+ℑ22))⊇12(F(ℑ1)+F(ℑ2)). |
Remark 3.15. If s=1, Theorem 3.13 simplifies to Theorem 4.7 presented by Budak et al. in[38].
Remark 3.16. If s=1 and k=0, then
F(ℑ1+ℑ22)⊇2α−1Γ(α+1)(ℑ2−ℑ1)α(Iαℑ1+F(ℑ1+ℑ22)+Iαℑ2−F(ℑ1+ℑ22))⊇12(F(ℑ1)+F(ℑ2)), |
which has been obtained by Zhao et al. in [39].
Example 3.17. Consider F:[0,2]→R+I, where F(x)=[x2,−x2+8], φ(ι)=ι−ω for ω∈R, α=2,s=1, and k=1. Then we have
D1=F(ℑ1+ℑ22)(Iα,kℑ1+,φ(1)(12(ℑ1+ℑ2))+Iα,kℑ2−,φ(1)(12(ℑ1+ℑ2)))=F(1)1Γ(2)(∫10(1−x)2dx+∫21(x−1)2dx)=23[1,7]=[23,143], |
D2=12s(Iα,kℑ1+,φ(Φ)(12(ℑ1+ℑ2))+Iα,kℑ2−,φ(Φ)(12(ℑ1+ℑ2)))=121Γ(2)∫20(1−x)2(F(x)+F(2−x))dx=[1615,6415], |
and
D3=12s(F(ℑ1)+F(ℑ2))(Iα,kℑ1+,φ(1)(12(ℑ1+ℑ2))+Iα,kℑ2−,φ(1)(12(ℑ1+ℑ2)))=121Γ(2)(F(0)+F(2))∫20(1−x)2dx=13([0,8]+[4,4])=[43,4]. |
Then, we obtain
D1⊇D2⊇D3. |
Theorem 3.18. Let F,G:[ℑ1,ℑ2]→R+I, s1,s2∈(0,1], and φ:[ℑ1,ℑ2]→R be a monotonically increasing function. If F and G are both IV s-convex functions, then
F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1))⊇12s1+s2(Iα,kℑ1+,φ(ΦΛ)(ℑ2)+Iα,kℑ2−,φ(ΦΛ)(ℑ1))⊇12s1+s2(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1)), | (3.17) |
where
P(ℑ1,ℑ2)=F(ℑ1)⋅G(ℑ1)+F(ℑ2)⋅G(ℑ2), |
and
Q(ℑ1,ℑ2)=F(ℑ1)⋅G(ℑ2)+F(ℑ2)⋅G(ℑ1). |
Proof. By hypothesis, then
F(ℏ1+ℏ22)⊇F(ℏ1)+F(ℏ2)2s1,G(ℏ1+ℏ22)⊇G(ℏ1)+G(ℏ2)2s2. |
Considering ℏ1=ιℑ1+(1−ιℑ2) and ℏ2=(1−ι)ℑ1+ιℑ2, we obtain
F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)⊇12s1+s2(F(ιℑ1+(1−ιℑ2))+F((1−ι)ℑ1+ιℑ2))⋅(G(ιℑ1+(1−ιℑ2))+G((1−ι)ℑ1+ιℑ2))⊇12s1+s2(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2)). | (3.18) |
By multiplying two sides of (3.18) by ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))k and integrating on [0, 1], we obtain
F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))kdι⊇12s1+s2∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))k(F(ιℑ1+(1−ιℑ2))+F((1−ι)ℑ1+ιℑ2))⋅(G(ιℑ1+(1−ιℑ2))+G((1−ι)ℑ1+ιℑ2))dτ⊇12s1+s2(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))∫10ια−1(φ(ℑ2)−φ(ιℑ1+(1−ι)ℑ2))kdι. |
Letting y=ιℑ1+(1−ι)ℑ2, then
F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)(1ℑ2−ℑ1)α∫ℑ2ℑ1(ℑ2−y)α−1(φ(ℑ2)−φ(y))kdy⊇12s1+s2(1ℑ2−ℑ1)α(∫ℑ2ℑ1(ℑ2−y)α−1(φ(ℑ2)−φ(y))k⋅(F(y)+F(ℑ1+ℑ2−y))⋅(G(y)+G(ℑ1+ℑ2−y))dy⊇12s1+s2(1ℑ2−ℑ1)α(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))⋅∫ℑ2ℑ1(ℑ2−y)α−1(φ(ℑ2)−φ(y))kdy, |
that is,
F(ℑ1+ℑ22)Iα,kℑ1+,φ(1)(ℑ2)⊇12s1+s2Iα,kℑ1+,φ(ΦΛ)(ℑ2)⊇12s1+s2(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))Iα,kℑ1+,φ(1)(ℑ2). | (3.19) |
By multiplying two sides of (3.18) by ια−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))k and integrating on [0, 1], we have
F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)∫10ια−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))kdι⊇12s1+s2∫10ια−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))k⋅(F(ιℑ1+(1−ιℑ2))+F((1−ι)ℑ1+ιℑ2))(G(ιℑ1+(1−ιℑ2))+G((1−ι)ℑ1+ιℑ2))dτ⊇12s1+s2∫10ια−1(φ((1−ι)ℑ1+ιℑ2)−φ(ℑ1))k(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))dι. |
Letting y=(1−ι)ℑ1+ιℑ2, that is,
F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)Iα,kℑ2−,φ(1)(ℑ1)⊇12s1+s2Iα,kℑ2−,φ(ΦΛ)(ℑ1)⊇12s1+s2(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))Iα,kℑ2−,φ(1)(ℑ1). | (3.20) |
Adding the inclusion (3.19) and (3.20), we obtained the desired result.
Example 3.19. Assume F,G:[0,2]→R+I, where F(x)=[x2,−x2+10] and
G(x)=[12x2,−x2+8], |
respectively. Let φ(ι)=ι−ω for ω∈R, α=2,k=1, and s=1. Then we have
Θ1=F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1))=F(1)⋅G(1)1Γ(2)∫20((2−x)2+x2)dx=163([1,9]⋅[12,7])=[83,336], |
and
Θ2=12s1+s2(Iα,kℑ1+,φ(ΦΛ)(ℑ2)+Iα,kℑ2−,φ(ΦΛ)(ℑ1))=141Γ(2)∫20((2−x)2+x2)(F(x)+F(2−x))⋅(G(x)+G(2−x))dx=[5.4857,303.2381], |
and
Θ3=12s1+s2(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))(Iα,kℑ1+,φ(1)(ℑ2)+Iα,kℑ2−,φ(1)(ℑ1))=14(F(0)+F(2))⋅(G(0)+G(2))1Γ(2)∫20((2−x)2+x2)dx=43([8,192])=[323,256]. |
Then, we obtain
Θ1⊇Θ2⊇Θ3. |
Analogously, we can derive the subsequent results.
Theorem 3.20. Assuming that the conditions of Theorem 3.18 hold, we consequently obtain
F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)(Iα,k(12(ℑ1+ℑ2))+,φ(1)(ℑ2)+Iα,k(12(ℑ1+ℑ2))−,φ(1)(ℑ1))⊇12s1+s2(Iα,k(12(ℑ1+ℑ2))+,φ(ΦΛ)(ℑ2)+Iα,k(12(ℑ1+ℑ2))−,φ(ΦΛ)(ℑ1))⊇12s1+s2(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))(Iα,k(12(ℑ1+ℑ2))+,φ(1)(ℑ2)+Iα+s,k(12(ℑ1+ℑ2))−,φ(1)(ℑ1)). | (3.21) |
Theorem 3.21. Assuming that the conditions of Theorem 3.18 hold, we obtain
F(ℑ1+ℑ22)⋅G(ℑ1+ℑ22)(Iα,kℑ1+,φ(1)(ℑ1+ℑ22)+Iα,kℑ2−,φ(1)(ℑ1+ℑ22))⊇12s1+s2(Iα,kℑ1+,φ(ΦΛ)(ℑ1+ℑ22)+Iα,kℑ2−,φ(ΦΛ)(ℑ1+ℑ22))⊇12s1+s2(P(ℑ1,ℑ2)+Q(ℑ1,ℑ2))(Iα,kℑ1+,φ(1)(ℑ1+ℑ22)+Iα,kℑ2−,φ(1)(ℑ1+ℑ22)). | (3.22) |
This study derives novel H-H-type inequalities through generalized fractional integrals applied to IV s-convex functions. These not only generalize but also refine the previously proposed inequalities established by Budak et al. and provide a foundation for further exploration of generalized convexity and IV estimation. The developed techniques offer new tools for uncertainty quantification in convex optimization problems with imprecise measurements. Future research directions include:
(1) Develop new interval H-H inequalities based on more general convexity.
(2) Extension to IV quasi-convex functions using variable-order fractional operators.
(3) Applications in robust portfolio optimization with IV risk measures.
G. Deng and D. Zhao: Conceptualization, Methodology, Formal analysis; S. Etemad: Conceptualization, Software, Formal analysis, Investigation, Writing–original draft preparation; G. Deng: Writing–original draft preparation; D. Zhao: Validation, Investigation, Supervision, Project administration, Writing–review and editing; J. Tariboon: Validation, Formal analysis, Project administration, Writing–review and editing. All authors read and approved the final manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was funded by the National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok, under Contract No. KMUTNB-FF-68-B-04, and the Foundation of Hubei Normal University (2024Z022).
The authors declare no conflict of interest.
[1] | P. N. Anh, L. T. H. An, The subgradient extragradient method extended to equilibrium problems, Optimization, 64 (2012), 225-248. |
[2] | A. Antipin, Equilibrium programming: proximal methods, Comput. Math. Math. Phys., 37 (1997), 1285-1296. |
[3] | M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optimiz. Theory App., 9 (1996), 31-43. |
[4] |
G. Bigi, M. Castellani, M. Pappalardo, M. Passacantando, Existence and solution methods for equilibria, Eur. J. Oper. Res., 227 (2013), 1-11. doi: 10.1016/j.ejor.2012.11.037
![]() |
[5] | G. Bigi, M. Castellani, M. Pappalardo, M. Passacantando, Nonlinear programming techniques for equilibria, Springer International Publishing, 2019. |
[6] | E. Blum, From optimization and variational inequalities to equilibrium problems, Mathematics Students, 63 (1994), 123-145. |
[7] |
F. Browder, W. Petryshyn, Construction of fixed points of nonlinear mappings in hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228. doi: 10.1016/0022-247X(67)90085-6
![]() |
[8] | Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in hilbert space, J. Optimiz. Theory App., 148 (2010), 318-335. |
[9] |
C. E. Chidume, A. Adamu, L. C. Okereke, A krasnoselskii-type algorithm for approximating solutions of variational inequality problems and convex feasibility problems, J. Nonlinear Var. Anal., 2 (2018), 203-218. doi: 10.23952/jnva.2.2018.2.07
![]() |
[10] |
S. Dafermos, Traffic equilibrium and variational inequalities, Transport. Sci., 14 (1980), 42-54. doi: 10.1287/trsc.14.1.42
![]() |
[11] | K. Fan, A minimax inequality and applications, Inequalities Ⅲ, New York: Academic Press, 1972. |
[12] | M. Farid, The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in hilbert spaces, J. Appl. Numer. Optim., 1 (2019), 335-345. |
[13] |
S. D. Flåm, A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78 (1996), 29-41. doi: 10.1007/BF02614504
![]() |
[14] | F. Giannessi, A. Maugeri, P. M. Pardalos, Equilibrium problems: Nonsmooth optimization and variational inequality models, Springer Science & Business Media, 2006. |
[15] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2017. |
[16] | D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, RACSAM, 111 (2016), 823-840. |
[17] |
D. V. Hieu, P. K. Quy, L. V. Vy, Explicit iterative algorithms for solving equilibrium problems, Calcolo, 56 (2019), 11. doi: 10.1007/s10092-019-0308-5
![]() |
[18] | G. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747-756. |
[19] | S. I. Lyashko, V. V. Semenov, A new two-step proximal algorithm of solving the problem of equilibrium programming, In: Optimization and its applications in control and data sciences, Springer International Publishing, 2016,315-325. |
[20] |
P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912. doi: 10.1007/s11228-008-0102-z
![]() |
[21] | G. Mastroeni, On auxiliary principle for equilibrium problems, In: Nonconvex optimization and its applications, Springer, 2003,289-298. |
[22] | A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91-100. |
[23] |
A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46-55. doi: 10.1006/jmaa.1999.6615
![]() |
[24] |
L. Muu, W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. Theor., 18 (1992), 1159-1166. doi: 10.1016/0362-546X(92)90159-C
![]() |
[25] | F. U. Ogbuisi, Y. Shehu, A projected subgradient-proximal method for split equality equilibrium problems of pseudomonotone bifunctions in banach spaces, J. Nonlinear Var. Anal., 3 (2019), 205-224. |
[26] | T. D. Quoc, P. N. Anh, L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2011), 139-159. |
[27] |
T. D. Quoc, M. N. V. H. Le Dung, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749-776. doi: 10.1080/02331930601122876
![]() |
[28] | R. T. Rockafellar, Convex analysis, Princeton University Press, 1970. |
[29] | P. Santos, S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Comput. Appl. Math., 30 (2011), 91-107. |
[30] | T. M. M. Sow, An iterative algorithm for solving equilibrium problems, variational inequalities and fixed point problems of multivalued quasi-nonexpansive mappings, Appl. Set-Valued Anal. Optim., 1 (2019), 171-185. |
[31] | G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 258 (1964), 4413. |
[32] |
S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506-515. doi: 10.1016/j.jmaa.2006.08.036
![]() |
[33] |
L. Q. Thuy, C. F. Wen, J. C. Yao, T. N. Hai, An extragradient-like parallel method for pseudomonotone equilibrium problems and semigroup of nonexpansive mappings, Miskolc Math. Notes, 19 (2018), 1185. doi: 10.18514/MMN.2018.2114
![]() |
[34] |
D. Q. Tran, M. L. Dung, V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749-776. doi: 10.1080/02331930601122876
![]() |
[35] | H. ur Rehman, P. Kumam, A. B. Abubakar, Y. J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comp. Appl. Math., 39 (2010), 100. |
[36] |
H. ur Rehman, P. Kumam, Y. J. Cho, P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibirum problems. J. Inequal. Appl., 2019 (2019), 282. doi: 10.1186/s13660-019-2233-1
![]() |
[37] | H. ur Rehman, P. Kumam, Y. Je Cho, Y.I. Suleiman, W. Kumam, Modified popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems. Optimization Methods and Software, 2020, 1-32. |
[38] |
H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi, W. Jirakitpuwapat, The inertial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium problems, Symmetry, 12 (2020), 463. doi: 10.3390/sym12030463
![]() |
[39] |
N. T. Vinh, L. D. Muu, Inertial extragradient algorithms for solving equilibrium problems, Acta Mathematica Vietnamica, 44 (2019), 639-663. doi: 10.1007/s40306-019-00338-1
![]() |
[40] |
H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, B. Aust. Math. Soc., 65 (2002), 109-113. doi: 10.1017/S0004972700020116
![]() |
[41] |
J. C. Yao, Variational inequalities with generalized monotone operators, Math. Oper. Res., 19 (1994), 691-705. doi: 10.1287/moor.19.3.691
![]() |