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Abstract: The aim of this article is to introduce a new algorithm by integrating a viscosity-type
method with the subgradient extragradient algorithm to solve the equilibrium problems involving
pseudomonotone and Lipschitz-type continuous bifunction in a real Hilbert space. A strong
convergence theorem is proved by the use of certain mild conditions on the bifunction as well as some
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1. Introduction

Assume that C is a closed and convex subset of a real Hilbert space H with the inner product and
the induced norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Moreover, R be a set of real numbers
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during whole article. Let f : H × H → R be a bifunction and satisfy f (v, v) = 0 for all v ∈ C, the
equilibrium problem (EP) [6, 11] for a bifunction f on C is defined in the following way:

Find u∗ ∈ C such as f (u∗, v) ≥ 0, ∀ v ∈ C. (EP)

Moreover, S EP( f ,C) denotes the solution set of an equilibrium problem over the set C and u∗ is an
arbitrary element of S EP( f ,C). A metric projection PC(u) of u ∈ H onto a closed and convex subset C of
H is defined by PC(u) = arg min

v∈C
‖v − u‖.

In this article, the equilibrium problem is studied based on the following hypothesis:

(a1) A bifunction f : H ×H → R is said to be (see [3, 6]) pseudomonotone on C if

f (u1, u2) ≥ 0 =⇒ f (u2, u1) ≤ 0, ∀ u1, u2 ∈ C.

(a2) A bifunction f : H ×H → R is said to be Lipschitz-type continuous [21] on C if there exist two
constants c1, c2 > 0 such that

f (u1, u3) ≤ f (u1, u2) + f (u2, u3) + c1‖u1 − u2‖
2 + c2‖u2 − u3‖

2, ∀ u1, u2, u3 ∈ C.

(a3) lim sup
n→∞

f (un, v) ≤ f (p∗, v) for all v ∈ C and {un} ⊂ C satisfies un ⇀ p∗;

(a4) f (u, ·) is subdifferentiable and convex onH for every each u ∈ H .

The above-defined problem (EP) is a general mathematical problem in the sense that it unifies a
number of mathematical problems, i.e., the fixed point problems, the vector and scalar minimization
problems, the problems of variational inequalities (VIP), the complementarity problems, the saddle
point problems, the Nash equilibrium problems in non-cooperative games and the inverse optimization
problems [4, 6, 24, 41]. The problem (EP) is also known as the well-known Ky Fan inequality due
to his initial contribution [11]. Many authors have developed and generalized many results on the
existence and nature of the solution of an equilibrium problem (see for more detail [2, 4, 11]). Due
to the significance of the problem (EP) and its applications in both pure and applied sciences, many
researchers have studied it extensively in recent years [5, 10, 14].

A proximal point method is used to solve the problem (EP) based on mathematical
programming [13]. This method was also known as the two-step extragradient method in [34] due to
initial contribution of Korpelevich [18] to solve saddle point problems. Tran et al. in [34] established
an iterative sequence {un} in the following way:

u0 ∈ C,

vn = arg min
v∈C

{ρ f (un, v) + 1
2‖un − v‖2},

un+1 = arg min
v∈C

{ρ f (vn, v) + 1
2‖un − v‖2},

where 0 < ρ < min
{ 1

2c1
, 1

2c2

}
. Recently, many existing methods have been extended in the case of

problem (EP) in finite and infinite-dimensional spaces, such as the proximal point-like methods [13,
22], the extragradient-like methods [17, 19, 26, 27, 32], the subgradient extragradient methods [1, 29,
36, 37], the inertial methods [35, 39] and others in [9, 12, 16, 25, 30, 33, 38].
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Inspired by the results in [8, 16, 23], in this paper, we introduce a viscosity-type subgradient
extragradient algorithm to solve the equilibrium problems involving pseudomonotone bifunction. A
strong convergence theorem for the proposed algorithm is well-established by considering certain
mild conditions on bifunction and control parameters. Some applications for our main results are
studied to solve two particular classes of an equilibrium problem. In the end, the computational
studies show that the new method is more efficient than the existing ones [16, 34].

The remainder of this article has been organized as follows: Section 2 includes some preliminary
and basic results. Section 3 contains proposed algorithm and corresponding strong convergence result.
Section 4 contains applications of our main results. Section 5 involves the numerical discussion of the
proposed method compared to existing ones.

2. Background

A normal cone of C at u ∈ C is defined by

NC(u) = {w ∈ H : 〈w, v − u〉 ≤ 0, ∀ v ∈ C}.

Let ϕ : C → R is convex function. The subdifferential of ϕ at u ∈ C is defined by

∂ϕ(u) = {w ∈ H : ϕ(v) − ϕ(u) ≥ 〈w, v − u〉, ∀ v ∈ C}.

Lemma 2.1. [15] Assume that PC : H → C is a metric projection such that

(i)
‖u1 − PC(u2)‖2 + ‖PC(u2) − u2‖

2 ≤ ‖u1 − u2‖
2, u1 ∈ C, u2 ∈ H .

(ii) u3 = PC(u1) if and only if
〈u1 − u3, u2 − u3〉 ≤ 0, ∀ u2 ∈ C.

(iii)
‖u1 − PC(u1)‖ ≤ ‖u1 − u2‖, u2 ∈ C, u1 ∈ H .

Lemma 2.2. [40] Assume that {an} ⊂ (0,+∞) is a sequence satisfying

an+1 ≤ (1 − γn)an + γnδn, ∀ n ∈ N,

where {γn} ⊂ (0, 1) and {δn} ⊂ R satisfies the following conditions:

lim
n→∞

γn = 0,
+∞∑
n=1

γn = +∞ and lim sup
n→∞

δn ≤ 0.

Then, limn→∞ an = 0.

Lemma 2.3. [20] Assume that a sequence {an} ⊂ R and there exists a subsequence {ni} of {n} such
that ani < ani+1 , for all i ∈ N. Then, there is a non decreasing sequence {mk} ⊂ N such that mk → +∞

as k → ∞, and the following conditions are fulfilled by all (sufficiently large) numbers k ∈ N,

amk ≤ amk+1 and ak ≤ amk+1 .

In fact mk is the largest number n in the set {1, 2, · · · , k} such that an ≤ an+1.
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Lemma 2.4. [15] For each u1, u2 ∈ H and δ ∈ R, then the following relationships are true.

(i)
‖δu1 + (1 − δ)u2‖

2 = δ‖u1‖
2 + (1 − δ)‖u2‖

2 − δ(1 − δ)‖u1 − u2‖
2.

(ii)
‖u1 + u2‖

2 ≤ ‖u1‖
2 + 2〈u2, u1 + u2〉.

Lemma 2.5. (Theorem 27.4 [28]) Let ϕ : C → R be a proper convex, subdifferentiable and lower
semi-continuous function on C. An element u ∈ C is a minimizer of a function ϕ iff

0 ∈ ∂ϕ(u) + NC(u),

where ∂ϕ(u) stands for the sub-differential of ϕ at u ∈ C and NC(u) the normal cone of C at u.

3. Main results

In this section, we present an iterative scheme for solving pseudomonotone equilibrium problems
that is based on Tran et al. in [34] and viscosity scheme [23]. It is important to note that the proposed
method has a straightforward structure for achieving strong convergence. Suppose that g : H → H
be a strict contraction function with constant ξ ∈ [0, 1). The main algorithm has been presented as
follows:

Algorithm 1 (A Viscosity Method for Pseudomonotone Equilibrium Problems)

Step 0: Let u0 ∈ C, 0 < ρ < min
{ 1

2c1
, 1

2c2

}
and a sequence χn ⊂ (0, 1) satisfies the conditions, i.e.,

lim
n→∞

χn = 0 and
+∞∑
n

χn = +∞.

Step 1: Compute

vn = arg min
v∈C

{ρ f (un, v) +
1
2
‖un − v‖2}.

If un = vn, then stop the sequence. Otherwise, go to Step 2.
Step 2: Compute

Hn = {w ∈ H : 〈un − ρωn − vn,w − vn〉 ≤ 0},

where ωn ∈ ∂2 f (un, vn) and evaluate

tn = arg min
v∈Hn

{ρ f (vn, v) +
1
2
‖un − v‖2}.

Step 3: Compute
un+1 = χng(un) + (1 − χn)tn,

where g is a contraction. Set n := n + 1 and go back to Step 1.
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Remark 3.1. It can be easily prove that C ⊂ Hn. By vn and Lemma 2.5, we have

0 ∈ ∂2

{
ρ f (un, v) +

1
2
‖un − v‖2

}
(vn) + NC(vn).

Indeed, for ωn ∈ ∂ f (un, vn) there exists ωn ∈ NC(vn) such that

ρωn + vn − un + ωn = 0.

Thus, we have
〈un − vn, v − vn〉 = ρ〈ωn, v − vn〉 + 〈ωn, v − vn〉, ∀ v ∈ C.

Due to ωn ∈ NC(vn) means that 〈ωn, v − vn〉 ≤ 0, for all v ∈ C. It implies that

〈un − vn, v − vn〉 ≤ ρ〈ωn, v − vn〉, ∀ v ∈ C,

which imply that 〈un − ρωn − vn, v − vn〉 ≤ 0, ∀ v ∈ C. It proves that C ⊂ Hn for each n ∈ N.

Theorem 3.1. Assume that {un} is a sequence generated by Algorithm 1 and for some u∗ ∈ S EP( f ,C) , ∅.

Then, {un} converges strongly to u∗ = PS EP( f ,C) ◦ g(u∗).

Proof. Claim 1: The {un} sequence is bounded.
By Lemma 2.5, we have

0 ∈ ∂2

(
ρ f (vn, v) +

1
2
‖un − v‖2

)
(tn) + NHn(tn).

Thus, there exists ωn ∈ ∂ f (vn, tn) and ωn ∈ NHn(tn) such that ρωn + tn − un + ωn = 0. Thus,

〈un − tn, v − tn〉 = ρ〈ωn, v − tn〉 + 〈ωn, v − tn〉, ∀ v ∈ Hn.

Since ωn ∈ NHn(tn) follows that 〈ωn, v − tn〉 ≤ 0, for all v ∈ Hn. Thus, we have

ρ〈ωn, v − tn〉 ≥ 〈un − tn, v − tn〉, ∀ v ∈ Hn. (3.1)

Since ωn ∈ ∂ f (vn, tn) and using the subdifferential definition, we get

f (vn, v) − f (vn, tn) ≥ 〈ωn, v − tn〉, ∀ v ∈ H . (3.2)

Combining expressions (3.1) and (3.2), we obtain

ρ f (vn, v) − ρ f (vn, tn) ≥ 〈un − tn, v − tn〉, ∀ v ∈ Hn. (3.3)

Substituting v = u∗ in expression (3.3), we obtain

ρ f (vn, u∗) − ρ f (vn, tn) ≥ 〈un − tn, u∗ − tn〉. (3.4)

Since u∗ ∈ S EP( f ,C), it follows that f (u∗, vn) ≥ 0, implies that f (vn, u∗) ≤ 0 due to the
pseudomonotonicity of the bifunction f . From expression (3.4), we have

〈un − tn, tn − u∗〉 ≥ ρ f (vn, tn). (3.5)
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Due to the Lipschitz-type condition on a bifunction f , we obtain

f (un, tn) ≤ f (un, vn) + f (vn, tn) + c1‖un − vn‖
2 + c2‖vn − tn‖

2. (3.6)

Combining expressions (3.5) and (3.6), we have

〈un − tn, tn − u∗〉 ≥ ρ
{
f (un, tn) − f (un, vn)

}
− c1ρ‖un − vn‖

2 − c2ρ‖vn − tn‖
2. (3.7)

Since tn ∈ Hn and it gives that 〈un − ρωn − vn, tn − vn〉 ≤ 0, which implies that

〈un − vn, tn − vn〉 ≤ ρ〈ωn, tn − vn〉. (3.8)

Since ωn ∈ ∂2 f (un, vn) and using the subdifferential definition, we obtain

f (un, v) − f (un, vn) ≥ 〈ωn, v − vn〉, ∀ v ∈ H .

Substituting v = tn in the above expression, we get

f (un, tn) − f (un, vn) ≥ 〈ωn, tn − vn〉. (3.9)

It follows from inequalities (3.8) and (3.9) that

ρ
{
f (un, tn) − f (un, vn)

}
≥ 〈un − vn, tn − vn〉. (3.10)

From (3.7) and (3.10), we have

〈un − tn, tn − u∗〉 ≥ 〈un − vn, tn − vn〉 − c1ρ‖un − vn‖
2 − c2ρ‖vn − tn‖

2. (3.11)

We have the following equalities:

2〈un − tn, tn − u∗〉 = ‖un − u∗‖2 − ‖tn − un‖
2 − ‖tn − u∗‖2

and
2〈vn − un, vn − tn〉 = ‖un − vn‖

2 + ‖tn − vn‖
2 − ‖un − tn‖

2.

The above facts and (3.11) implies that

‖tn − u∗‖2 ≤ ‖un − u∗‖2 − (1 − 2c1ρ)‖un − vn‖
2 − (1 − 2c2ρ)‖tn − vn‖

2. (3.12)

It is given that u∗ ∈ S EP( f ,C). From the definition of sequence {un+1} and due to the fact that g is a
contraction with ξ ∈ [0, 1), we have∥∥∥un+1 − u∗

∥∥∥ =
∥∥∥χng(un) + (1 − χn)tn − u∗

∥∥∥
=

∥∥∥χn[g(un) − u∗] + (1 − χn)[tn − u∗]
∥∥∥

=
∥∥∥χn[g(un) + g(u∗) − g(u∗) − u∗] + (1 − χn)[tn − u∗]

∥∥∥
≤ χn

∥∥∥g(un) − g(u∗)
∥∥∥ + χn

∥∥∥g(u∗) − u∗
∥∥∥ + (1 − χn)

∥∥∥tn − u∗
∥∥∥

≤ χnξ
∥∥∥un − u∗

∥∥∥ + χn

∥∥∥g(u∗) − u∗
∥∥∥ + (1 − χn)

∥∥∥tn − u∗
∥∥∥. (3.13)
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Combining expressions (3.12) and (3.13) and χn ⊂ (0, 1), we deduce that∥∥∥un+1 − u∗
∥∥∥ ≤ χnξ

∥∥∥un − u∗
∥∥∥ + χn

∥∥∥g(u∗) − u∗
∥∥∥ + (1 − χn)

∥∥∥un − u∗
∥∥∥

= [1 − χn + ξχn]
∥∥∥un − u∗

∥∥∥ + χn(1 − ξ)

∥∥∥g(u∗) − u∗
∥∥∥

(1 − ξ)

≤ max
{∥∥∥un − u∗

∥∥∥, ∥∥∥g(u∗) − u∗
∥∥∥

(1 − ξ)

}
≤ max

{∥∥∥u0 − u∗
∥∥∥, ∥∥∥g(u∗) − u∗

∥∥∥
(1 − ξ)

}
. (3.14)

Thus, we conclude that the {un} is bounded sequence. Due to the reflexivity ofH and the boundedness
of {un} guarantees that there exists a subsequence {unk} of {un} such that {unk}⇀ u∗ ∈ H as k → ∞.
Claim 2: The sequence {un} is strongly convergent.
Next, we prove the strong convergence of the iterative sequence {un} generated by Algorithm 1. The
Lipschitz-continuity and pseudomonotone property of the bifunction f implies that the solution set
S EP( f ,C) is a closed and convex set (for more details see [34]). Since the mapping is a contraction and
so does PS EP( f ,C) ◦ g. Now, we are in position to use the Banach contraction theorem for the existence of
a unique fixed point u∗ ∈ S EP( f ,C) such that

u∗ = PS EP( f ,C)(g(u∗)).

By using Lemma 2.1 (ii), we have

〈g(u∗) − u∗, v − u∗〉 ≤ 0, ∀ v ∈ S EP( f ,C). (3.15)

By Lemma 2.4 (i) and (3.12), we have∥∥∥un+1 − u∗
∥∥∥2

=
∥∥∥χng(un) + (1 − χn)tn − u∗

∥∥∥2

=
∥∥∥χn[g(un) − u∗] + (1 − χn)[tn − u∗]

∥∥∥2

= χn‖g(un) − u∗‖2 + (1 − χn)‖tn − u∗‖2 − χn(1 − χn)‖g(un) − tn‖
2

≤ χn‖g(un) − u∗‖2 + (1 − χn)
[
‖un − u∗‖2 − (1 − 2c1ρ)‖un − vn‖

2

− (1 − 2c2ρ)‖tn − vn‖
2
]
− χn(1 − χn)‖g(un) − tn‖

2

≤ χn‖g(un) − u∗‖2 + ‖un − u∗‖2

− (1 − χn)(1 − 2c1ρ)
∥∥∥un − vn

∥∥∥2
− (1 − χn)(1 − 2c2ρ)

∥∥∥tn − vn

∥∥∥2
. (3.16)

The remainder of the proof shall be split into the following two parts:
Case 1: Assume that there is a fixed number N1 ∈ N such that

‖un+1 − u∗‖ ≤ ‖un − u∗‖, ∀ n ≥ N1. (3.17)

Thus, above implies that limn→∞ ‖un − u∗‖ exists and let limn→∞ ‖un − u∗‖ = l. From (3.16), we get

(1 − χn)(1 − 2c1ρ)
∥∥∥un − vn

∥∥∥2
+ (1 − χn)(1 − 2c2ρ)

∥∥∥tn − vn

∥∥∥2
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≤ χn‖g(un) − u∗‖2 + ‖un − u∗‖2 − ‖un+1 − u∗‖2. (3.18)

Due to the existence of limn→∞ ‖un − u∗‖ = l and χn → 0, we infer that

lim
n→∞
‖un − vn‖ = lim

n→∞
‖tn − vn‖ = 0. (3.19)

It follows that
lim
n→∞
‖un − tn‖ ≤ lim

n→∞
‖un − vn‖ + lim

n→∞
‖vn − tn‖ = 0. (3.20)

We can also obtain ∥∥∥un+1 − un

∥∥∥ =
∥∥∥χng(un) + (1 − χn)tn − un

∥∥∥
=

∥∥∥χn[g(un) − un] + (1 − χn)[tn − un]
∥∥∥

≤ χn

∥∥∥g(un) − un

∥∥∥ + (1 − χn)
∥∥∥tn − un

∥∥∥ −→ 0. (3.21)

The above expression implies that
lim
n→∞
‖un+1 − un‖ = 0. (3.22)

Thus, implies that the sequences {vn} and {tn} are bounded. Let {unk} be subsequence of {un} such that
{unk} converges weakly to û ∈ H . Next, we need to prove that û ∈ S EP( f ,C). Due to the inequality (3.3),
the Lipschitz-like condition of f and (3.10), we obtain

ρ f (vnk , v) ≥ ρ f (vnk , tnk) + 〈unk − tnk , v − tnk〉

≥ ρ f (unk , tnk) − ρ f (unk , vnk) − c1ρ‖unk − vnk‖
2

− c2ρ‖vnk − tnk‖
2 + 〈unk − tnk , v − tnk〉

≥ 〈unk − vnk , tnk − vnk〉 − c1ρ‖unk − vnk‖
2

− c2ρ‖vnk − tnk‖
2 + 〈unk − tnk , v − tnk〉, (3.23)

where v is an arbitrary member in Hn. From (3.19), (3.20) and the boundedness of {un} imply that
right-hand side goes to zero. From ρ > 0, the condition (a3) and vnk ⇀ û, we obtain

0 ≤ lim sup
k→∞

f (vnk , v) ≤ f (û, v), ∀ v ∈ Hn. (3.24)

It follows that f (û, v) ≥ 0, for all v ∈ C, and hence û ∈ S EP( f ,C). Next, we consider

lim sup
n→∞

〈g(u∗) − u∗, un − u∗〉

= lim sup
k→∞

〈g(u∗) − u∗, unk − u∗〉 = 〈g(u∗) − u∗, û − u∗〉 ≤ 0. (3.25)

We have limn→∞

∥∥∥un+1 − un

∥∥∥ = 0. We can deduce that

lim sup
n→∞

〈g(u∗) − u∗, un+1 − u∗〉

≤ lim sup
n→∞

〈g(u∗) − u∗, un+1 − un〉 + lim sup
n→∞

〈g(u∗) − u∗, un − u∗〉 ≤ 0. (3.26)
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From Lemma 2.4(ii) and (3.12), we have∥∥∥un+1 − u∗
∥∥∥2

=
∥∥∥χng(un) + (1 − χn)tn − u∗

∥∥∥2

=
∥∥∥χn[g(un) − u∗] + (1 − χn)[tn − u∗]

∥∥∥2

≤ (1 − χn)2
∥∥∥tn − u∗

∥∥∥2
+ 2χn

〈
g(un) − u∗, (1 − χn)[tn − u∗] + χn[g(un) − u∗]

〉
= (1 − χn)2

∥∥∥tn − u∗
∥∥∥2

+ 2χn
〈
g(un) − g(u∗) + g(u∗) − u∗, un+1 − u∗

〉
= (1 − χn)2

∥∥∥tn − u∗
∥∥∥2

+ 2χn
〈
g(un) − g(u∗), un+1 − u∗〉 + 2χn〈g(u∗) − u∗, un+1 − u∗

〉
≤ (1 − χn)2

∥∥∥tn − u∗
∥∥∥2

+ 2χnξ
∥∥∥un − u∗

∥∥∥∥∥∥un+1 − u∗
∥∥∥ + 2χn

〈
g(u∗) − u∗, un+1 − u∗

〉
≤ (1 + χ2

n − 2χn)
∥∥∥un − u∗

∥∥∥2
+ 2χnξ

∥∥∥un − u∗
∥∥∥2

+ 2χn
〈
g(u∗) − u∗, un+1 − u∗

〉
= (1 − 2χn)

∥∥∥un − u∗
∥∥∥2

+ χ2
n

∥∥∥un − u∗
∥∥∥2

+ 2χnξ
∥∥∥un − u∗

∥∥∥2
+ 2χn

〈
g(u∗) − u∗, un+1 − u∗

〉
=

[
1 − 2χn(1 − ξ)

]∥∥∥un − u∗
∥∥∥2

+ 2χn(1 − ξ)
[
χn

∥∥∥un − u∗
∥∥∥2

2(1 − ξ)
+

〈
g(u∗) − u∗, un+1 − u∗

〉
1 − ξ

]
. (3.27)

It follows from expressions (3.26) and (3.27), we obtain

lim sup
n→∞

[
χn

∥∥∥un − u∗
∥∥∥2

2(1 − ξ)
+
〈g(u∗) − u∗, un+1 − u∗〉

1 − ξ

]
≤ 0. (3.28)

Choose n ≥ N2 ∈ N (N2 ≥ N1) large enough such that 2χn(1 − ξ) < 1. By using (3.27), (3.28) and
applying Lemma 2.2, we conclude that

∥∥∥un − u∗
∥∥∥→ 0 as n→ ∞.

Case 2: Assume there is a subsequence {ni} of {n} such that

‖uni − u∗‖ ≤ ‖uni+1 − u∗‖, ∀ i ∈ N.

Thus, by Lemma 2.3 there is a sequence {mk} ⊂ N as {mk} → ∞, such that

‖umk − u∗‖ ≤ ‖umk+1 − u∗‖ and ‖uk − u∗‖ ≤ ‖umk+1 − u∗‖, for all k ∈ N. (3.29)

Similar to Case 1, the expression (3.16) provides that

(1 − χmk)(1 − 2c1ρ)
∥∥∥umk − vmk

∥∥∥2
+ (1 − χmk)(1 − 2c2ρ)

∥∥∥tmk − vmk

∥∥∥2

≤ χmk‖g(umk) − u∗‖2 + ‖umk − u∗‖2 − ‖umk+1 − u∗‖2. (3.30)

Due to χmk → 0, we deduce the following:

lim
k→∞
‖umk − vmk‖ = lim

k→∞
‖tmk − vmk‖ = 0. (3.31)

Also, we can obtain∥∥∥umk+1 − umk

∥∥∥ =
∥∥∥χmkg(umk) + (1 − χmk)tmk − umk

∥∥∥
=

∥∥∥χmk[g(umk) − umk] + (1 − χmk)[tmk − umk]
∥∥∥
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≤ χmk

∥∥∥g(umk) − umk

∥∥∥ + (1 − χmk)
∥∥∥tmk − umk

∥∥∥ −→ 0. (3.32)

We have to use the same justification as in the Case 1, such that

lim sup
k→∞

〈g(u∗) − u∗, umk+1 − u∗〉 ≤ 0. (3.33)

By using expressions (3.27) and (3.29), we have∥∥∥umk+1 − u∗
∥∥∥2
≤

[
1 − 2χmk(1 − ξ)

]∥∥∥umk − u∗
∥∥∥2

+ 2χmk(1 − ξ)
[
χmk

∥∥∥umk − u∗
∥∥∥2

2(1 − ξ)
+
〈g(u∗) − u∗, umk+1 − u∗〉

1 − ξ

]
≤

[
1 − 2χmk(1 − ξ)

]∥∥∥umk+1 − u∗
∥∥∥2

+ 2χmk(1 − ξ)
[
χmk

∥∥∥umk − u∗
∥∥∥2

2(1 − ξ)
+
〈g(u∗) − u∗, umk+1 − u∗〉

1 − ξ

]
. (3.34)

It follows that

∥∥∥umk+1 − u∗
∥∥∥2
≤
χmk

∥∥∥umk − u∗
∥∥∥2

2(1 − ξ)
+
〈g(u∗) − u∗, umk+1 − u∗〉

1 − ξ
.

(3.35)

Since χmk → 0, and
∥∥∥umk − u∗

∥∥∥ is a bounded. Thus, expressions (3.33) and (3.35) implies that

‖umk+1 − u∗‖2 → 0, as k → ∞. (3.36)

The above implies that
lim
k→∞
‖uk − u∗‖2 ≤ lim

k→∞
‖umk+1 − u∗‖2 ≤ 0. (3.37)

Consequently, un → u∗. This completes the proof of the theorem. �

Remark 3.2. If we define g(u) = u0 in Algorithm 1, we obtain the Halpern subgradient extragradient
method in [16].

4. Applications

Now, we consider the application of our main results to solve the problem of classic variational
inequalities [31] for an operator G : H → H is defined in the following way:

Fins u∗ ∈ C such that
〈
G(u∗), v − u∗

〉
≥ 0, ∀ v ∈ C. (VIP)

We consider the following conditions to study variational inequalities.

(b1) The solution set of the problem (VIP) denoted by VI(G,C) is nonempty.
(b2) G : H → H is said to be a pseudomonotone, i.e.,〈

G(u), v − u
〉
≥ 0 =⇒

〈
G(v), u − v

〉
≤ 0, ∀ u, v ∈ C.
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(b3) G : H → H is said to be a Lipschitz continuous if there exits a constants L > 0 such that

‖G(u) − G(v)‖ ≤ L‖u − v‖, ∀ u, v ∈ C;

(b4) G : H → H is called to be sequentially weakly continuous, i.e., {G(un)} weakly converges to
G(u) for every sequence {un} converges weakly to u.

If we define f (u, v) :=
〈
G(u), v − u

〉
, for all u, v ∈ C. Then, the equilibrium problem becomes the

problem of variational inequalities described above where L = 2c1 = 2c2. From the above value of the
bifunction f , we have

vn = arg min
v∈C

{ρ f (un, v) + 1
2‖un − v‖2} = PC(un − ρG(un)),

tn = arg min
v∈Hn

{ρ f (vn, v) + 1
2‖un − v‖2} = PHn(un − ρG(vn)).

(4.1)

As a consequence of the results in Section 3, we have the following results:

Corollary 4.1. Let G : C → H be a mapping satisfying the conditions (b1)–(b4). Choose u0 ∈ C,

0 < ρ < 1
L and a sequence χn ⊂ (0, 1) satisfying the conditions, i.e.,

lim
n→∞

χn = 0 and
+∞∑
n

χn = +∞.

Assume that {un} is the sequence generated in the following way:
vn = PC(un − ρG(un)),
tn = PHn(un − ρG(vn)),
un+1 = χng(un) + (1 − χn)tn,

where
Hn = {z ∈ H : 〈un − ρG(un) − vn, z − vn〉 ≤ 0}.

Then, the sequence {un} converges strongly to u∗ ∈ VI(G,C).

Note that condition (b4) can be deleted in the case when G is monotone. Indeed, this condition is a
particular case of condition (a3) is used to prove (3.24). Without condition (b4), the inequality (3.23)
is obtained by imposing the monotonocity on G. In that case, we obtain

〈G(v), v − vn〉 ≥ 〈G(vn), v − vn〉, ∀ v ∈ C. (4.2)

By the use f (u, v) = 〈G(u), v − u〉 in (3.23), we get

lim sup
k→∞

〈G(vnk), v − vnk〉 ≥ 0, ∀ v ∈ Hn. (4.3)

Combining (4.2) with (4.3), we obtain

lim sup
k→∞

〈G(v), v − vnk〉 ≥ 0, ∀ v ∈ C. (4.4)
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Let vs = (1 − s)û + sy, for all s ∈ [0, 1]. Due to convexity of C implies that vs ∈ C for any s ∈ (0, 1).
Since vnk ⇀ û ∈ C and 〈G(v), v − û〉 ≥ 0 for every v ∈ C. Thus, we have

0 ≤ 〈G(vs), vs − û〉 = s〈G(vs), v − û〉. (4.5)

Therefore, 〈G(vs), v − û〉 ≥ 0, for all s ∈ (0, 1). Since vs → û as s → 0 and due to continuity of G, we
have 〈G(û), v − û〉 ≥ 0, for all v ∈ C, which implies that û ∈ VI(G,C).

Remark 4.1. From the above discussion, it can be concluded that the Corollary 4.1 still holds, even if
we remove the condition (b4) in case of monotone variational inequaltiy.

Next, we consider the application of our results to solve fixed-point problems involving κ-strict
pseudocontraction mapping and the fixed point problem for an operator T : H → H is defined in the
following way:

Find u∗ ∈ C such that T (u∗) = u∗. (FPP)

We assume that the following requirements have been met to study fixed point problems.

(c1) T : C → C is said to be a κ-strict pseudo-contraction [7] on C if

‖Tu − Tv‖2 ≤ ‖u − v‖2 + κ‖(u − Tu) − (v − Tv)‖2, ∀ u, v ∈ C;

(c2) weakly sequentially continuous on C if

T (un) ⇀ T (u∗) for any sequence in C satisfy un ⇀ u∗.

If we consider that the mapping T is a κ-strict pseudocontraction and weakly continuous then
f (u, v) = 〈u − T u, v − u〉 satisfies the conditions (a1)–(a4) and 2c1 = 2c2 = 3−2κ

1−κ . The values of vn and
tn in Algorithm 1, we have

vn = arg min
v∈C

{ρ f (un, v) + 1
2‖un − v‖2} = PC

[
un − ρ(un − T (un))

]
,

tn = arg min
v∈Hn

{ρ f (vn, v) + 1
2‖un − v‖2} = PHn

[
un − ρ(vn − T (vn))

]
.

(4.6)

Corollary 4.2. Let C be a nonempty, convex and closed subset of a Hilbert space H and T : C → C
is a κ-strict pseudocontraction and weakly continuous with solution set Fix(T ) , ∅. Choose u0 ∈ C,

0 < ρ < 1−κ
3−2κ and sequence χn ⊂ (0, 1) satisfies the conditions, i.e.,

lim
n→∞

χn = 0 and
+∞∑
n

χn = +∞.

Let {un} be the sequence generated in the following way:
vn = PC

[
un − ρ(un − T (un))

]
,

tn = PHn

[
un − ρ(vn − T (vn))

]
,

un+1 = χng(un) + (1 − χn)tn.

where
Hn = {w ∈ H : 〈(1 − ρ)un + ρT (un) − vn,w − vn〉 ≤ 0}.

Then, sequence {un} strongly converges to u∗ ∈ Fix(T ).
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5. Numerical illustrations

Numerical results are presented in this section to show the efficiency of the proposed method. The
MATLAB codes was run in MATLAB version 9.5 (R2018b) on the Intel(R) Core(TM)i5-6200 CPU
PC @ 2.30GHz 2.40GHz, RAM 8.00 GB.

Example 5.1. Assume that f : C × C → R is defined by

f (u, v) = 〈Pu + Qv + c, v − u〉, ∀ u, v ∈ C,

where c ∈ Rn and P, Q are matrices of order n. The matrix P is symmetric positive semi-definite and
the matrix Q−P is symmetric negative semi-definite with Lipschitz-type constants c1 = c2 = 1

2‖P−Q‖
(see [34] for details). The matrices P,Q and vector c are defined by

P =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3


Q =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2


c =


1
−2
−1
2
−1


.

The constraint set C ⊂ Rn is considered as C := {u ∈ Rn : −5 ≤ ui ≤ 5}. Furthermore, control
parameters conditions are taken as follows: ρ = 1

4c1
and Dn = ‖un − vn‖ for Algorithm 1 (EgM) in [34];

ρ = 1
4c1

, χn = 1
100(n+2) and Dn = ‖un − vn‖ for Algorithm 2 (H-EgM) in [16]; ρ = 1

4c1
, χn = 1

100(n+2) ,
g(u) = u

2 and Dn = ‖un − vn‖ for Algorithm 1 (V-EgM). The numerical and graphical results of three
methods are shown in Figures 1–4 and Table 1.

0 5 10 15 20 25 30 35

Number of iterations

10-3

10-2

10-1

100

Figure 1. Numerical behaviour of Algorithm 1 with Algorithm 1 in [34] and Algorithm 3.2
in [16] while u0 = (0, 0, 0, 0, 0)T .
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Number of iterations

10-3

10-2

10-1

100

101

Figure 2. Numerical behaviour of Algorithm 1 with Algorithm 1 in [34] and Algorithm 3.2
in [16] while u0 = (2, 2, 2, 2, 2)T .

0 5 10 15 20 25 30 35 40 45 50

Number of iterations

10-3

10-2

10-1

100

Figure 3. Numerical behaviour of Algorithm 1 with Algorithm 1 in [34] and Algorithm 3.2
in [16] while u0 = (1, 0,−1, 2, 1)T .
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100
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Figure 4. Numerical behaviour of Algorithm 1 with Algorithm 1 in [34] and Algorithm 3.2
in [16] while u0 = (2,−1, 3,−4, 5)T .

Table 1. Numerical results values for Figures 1–4.

Number of Iterations Execution Time in Seconds
u0 EgM H-EgM V-EgM EgM H-EgM V-EgM
(0, 0, 0, 0, 0)T 27 32 21 0.217359 0.242564 0.226170
(2, 2, 2, 2, 2)T 27 60 21 0.264663 0.553107 0.175542
(1, 0,−1, 2, 1)T 31 49 24 0.292574 0.576171 0.219645
(2,−1, 3,−4, 5)T 32 80 25 0.303238 0.635728 0.204971

Example 5.2. Let f : C × C → R defined in the following way:

f (u, v) =

5∑
i=2

(vi − ui)‖u‖, ∀ u, v ∈ R5,

where C =
{
(u1, · · · , u5) : u1 ≥ −1, ui ≥ 1, i = 2, · · · , 5

}
. Thus, the bifunction f is Lipschitz-type

continuous with c1 = c2 = 2, and satisfies the conditions (a1)–(a4). The solution set of an equilibrium
problem is EP( f ,C) = {(u1, 1, 1, 1, 1) : u1 > 1}. Furthermore, the control conditions ρ = 1

6c1
for

Algorithm 1 (EgM) in [34]; ρ = 1
6c1

and χn = 1
200(n+2) for Algorithm 2 (H-EgM) in [16]; ρ = 1

6c1
,

χn = 1
100(n+2) and g(u) = u

3 for Algorithm 1 (V-EgM). The numerical results of three methods are shown
in Tables 2–4.
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Table 2. Example 5.2: Numerical study of Algorithm 1 in [34] with TOL=10−3 and u0 =

(2, 10, 13, 5, 3)T .

Iter (n) u1 u2 u3 u4 u5

1 1.9999999902 8.9034597770 11.903459749 3.9034598398 1.9034598209
2 2.0000001112 7.9193730581 10.919372983 2.9193733082 1.0000084500
3 2.0000001050 7.0300765337 10.030076426 2.0300768272 1.0000000224
4 2.0000002139 6.2245554051 9.2245552403 1.2245575794 1.0000004995
5 2.0000002018 5.4892537351 8.4892535376 1.0000000391 1.0000000272
6 2.0000001984 4.8171736152 7.8171733928 1.0000000297 1.0000000297
...

...
...

...
...

...

26 2.0000015507 1.0000019717 1.0384612829 1.0000019717 1.0000019717
27 2.0000016692 1.0000021759 1.0000028248 1.0000021759 1.0000021759
28 2.0000017877 1.0000021759 1.0000021759 1.0000021759 1.0000021759

CPU time is seconds 0.850380

Table 3. Example 5.2: Numerical study of Algorithm 3.2 in [16] with TOL=10−3 and u0 =

(2, 10, 13, 5, 3)T .

Iter (n) u1 u2 u3 u4 u5

1 1.999999942 8.7515611443 11.751561124 3.7515611399 1.7515612532
2 1.999999938 7.6461082189 10.646108180 2.6461082675 1.0016667229
3 1.999999939 6.6610509620 9.6610509019 1.6610510862 1.0012500202
4 2.000000061 5.7776478420 8.7776477159 1.0020019229 1.0010004543
5 2.000000055 4.9810038039 7.9810036568 1.0016666917 1.0008333584
6 2.000000048 4.2622453450 7.2622451730 1.0014285992 1.0007143134
...

...
...

...
...

...

38 2.0000028210 1.0005787475 1.0007710569 1.0002582317 1.0001300255
39 2.0000029393 1.0005643243 1.0007518260 1.0002518214 1.0001268203
40 2.0000030576 1.0005506046 1.0007335331 1.0002457238 1.0001237715

CPU time is seconds 1.191645

Example 5.3. Suppose that H = L2([0, 1]) is a Hilbert space with the inner product
〈u, v〉 =

∫ 1

0
u(t)v(t)dt, for all u, v ∈ H and the induced norm is

‖u‖ =

√∫ 1

0
|u(t)|2dt.

Moreover, assume that C := {u ∈ L2([0, 1]) : ‖u‖ ≤ 1}. Assume that G : C → H is defined by

G(u)(t) =

∫ 1

0

[
u(t) − H(t, s) f (u(s))

]
ds + g(t)

AIMS Mathematics Volume 6, Issue 2, 1538–1560.



1554

where H(t, s) = 2tse(t+s)

e
√

e2−1
, f (u) = cos(u) and g(t) = 2tet

e
√

e2−1
. We consider the bifunction f (u, v) = 〈G(u), v−

u〉 with the Lipschitz-type continuous with c1 = c2 = 1. Furthermore, control conditions ρ = 1
5c1

for
Algorithm 1 (EgM) in [34]; ρ = 1

5c1
and χn = 1

300(n+2) for Algorithm 2 (H-EgM) in [16]; ρ = 1
5c1
,

χn = 1
100(n+2) and g(u) = u

2 for Algorithm 1 (V-EgM). The numerical results of three methods are shown
in Figures 5 and 6 and Table 5.

Table 4. Example 5.2: Numerical study of Algorithm 1 with TOL=10−3 and u0 =

(2, 10, 13, 5, 3)T .

Iter (n) u1 u2 u3 u4 u5

1 1.9950000119 8.5308876762 11.523387660 3.5433877312 1.54838779261
2 1.9916750267 7.2594419489 10.246954421 2.2802545702 0.99924734095
3 1.9891855417 6.1501278861 9.1339059323 1.1771670518 0.99874942183
4 1.9871963569 5.1700590512 8.1508532923 0.9991771920 0.99899876985
5 1.9855403611 4.3036279625 7.2819381754 0.9991660040 0.99916585540
6 1.9841221147 3.5358595487 6.5120423683 0.9992851446 0.99928514452
...

...
...

...
...

...

19 1.9741765217 0.99975135569 1.0030932482 0.99975135569 0.99975135569
20 1.9737065994 0.99976333843 0.9997641538 0.99976333843 0.99976333843
21 1.9732581496 0.99977416665 0.99977416684 0.99977416665 0.99977416665

CPU time is seconds 0.711785

0 20 40 60 80 100 120

Number of iterations

10-4

10-2

100

102

104

(a) Example 5.3 when u0 = t.

0 10 20 30 40 50 60

Number of iterations

10-5

10-4

10-3

10-2

10-1

100

101

102

(b) Example 5.3 when u0 = 3t2.

Figure 5. Numerical study of Algorithm 1 with Algorithm 1 in [34] and Algorithm 3.2
in [16].
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(a) Example 5.3 when u0 = sin(t).
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(b) Example 5.3 when u0 = exp(t).

Figure 6. Numerical study of Algorithm 1 with Algorithm 1 in [34] and Algorithm 3.2
in [16].

Table 5. Numerical results values for Figures 5 and 6.

Number of Iterations Execution Time in Seconds
u0 EgM H-EgM V-EgM EgM H-EgM V-EgM
t 49 106 41 0.058515 0.107587 0.052661
3t2 52 54 40 0.057655 0.058550 0.042137
sin(t) 52 76 41 0.056489 0.083268 0.057777
exp(t) 55 97 52 0.130014 0.106885 0.061795

Example 5.4. Assume that f : H ×H → R is defined by

f (u, v) = (5 − ‖u‖)
〈
u, v − u

〉
, ∀ u, v ∈ H ,

where H = l2 is a real Hilbert space having the elements are square-summable sequences and C =

{u ∈ H : ‖u‖ ≤ 3}. The bifunction f is Lipschitz-type continuous and value of Lipschitz-constants
are c1 = c2 = 11

2 . Furthermore, control conditions ρ = 1
4c1

for Algorithm 1 (EgM) in [34]; ρ = 1
4c1

and χn = 1
200(n+2) for Algorithm 2 (H-EgM) in [16]; ρ = 1

4c1
, χn = 1

100(n+2) and g(u) = u
2 for Algorithm

1 (V-EgM). The numerical results of three methods are shown in Figures 7 and 8 and Table 6. The
projection onto C is evaluated in the following way:

PC(u) =


u if ‖u‖ ≤ 3,

3u
‖u‖ , else.
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Figure 7. Numerical study of Algorithm 1 with Algorithm 1 in [34] and Algorithm 3.2
in [16] when u0 = (1, 1, · · · , 1500, 0, 0, · · · ).
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Figure 8. Numerical study of Algorithm 1 with Algorithm 1 in [34] and Algorithm 3.2
in [16] when u0 = (1, 2, · · · , 1000, 0, 0, · · · ).
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Table 6. Numerical results values for Figures 7 and 8.

Number of Iterations Execution Time in Seconds
u0 EgM H-EgM V-EgM EgM H-EgM V-EgM
(1, 1, · · · , 1500, 0, 0, · · · ) 39 59 33 1.233697 1.849991 1.8499918
(1, 2, · · · , 1000, 0, 0, · · · ) 55 68 49 1.773837 2.065840 1.5172537

6. Conclusion

We have studied a viscosity type extragradient-like method for determining the solution of
pseudomonotone equilibrium problem in real Hilbert spaces and also prove that the generated
sequence converges strongly to the solution. Numerical conclusions were drawn to explain the
numerical efficiency of our algorithms in comparison to other methods. These numerical studies
showed that viscosity influences improve the efficiency of the iterative sequence in this context.
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