Review

Application of DC plasma torches for spheroidization processes of irregularly shaped powders

  • Published: 08 January 2026
  • The article presents a review of modern designs of direct current arc plasma torches and the technological configurations used for plasma spheroidization of irregularly shaped powders. The study examines plasma torch designs employing both "hot" thermionic tungsten electrodes and "cold" autoemissive copper electrodes, demonstrating their ability to operate with various types of plasma-forming gas mixtures. The influence of the plasma-forming gas's composition on the electrode erosion intensity is analyzed, and approaches to improving the electrode's lifetime and overall torch reliability are outlined. The processes of particle heating, melting, and spheroidization are examined, along with the key parameters determining spheroidization efficiency: Plasma enthalpy and velocity, particle size, residence time in the high-temperature zone, and the powder feeding scheme. It is shown that radial feeding provides 70%–82% spherical particles, and up to 86%–97% under high-power operating conditions. Axial feeding achieves more than 95% spheroidized particles. Promising technological solutions aimed at increasing the productivity of the spheroidization of ceramic and metallic materials are also discussed.

    Citation: Volodymyr Korzhyk, Dmytro Strohonov, Oleksii Tereshchenko, Sviatoslav Peleshenko, Oleg Ganushchak, Oleksii Demіanov, Zhenlong Li, Yu Chen. Application of DC plasma torches for spheroidization processes of irregularly shaped powders[J]. AIMS Materials Science, 2026, 13(1): 30-61. doi: 10.3934/matersci.2026002

    Related Papers:

  • The article presents a review of modern designs of direct current arc plasma torches and the technological configurations used for plasma spheroidization of irregularly shaped powders. The study examines plasma torch designs employing both "hot" thermionic tungsten electrodes and "cold" autoemissive copper electrodes, demonstrating their ability to operate with various types of plasma-forming gas mixtures. The influence of the plasma-forming gas's composition on the electrode erosion intensity is analyzed, and approaches to improving the electrode's lifetime and overall torch reliability are outlined. The processes of particle heating, melting, and spheroidization are examined, along with the key parameters determining spheroidization efficiency: Plasma enthalpy and velocity, particle size, residence time in the high-temperature zone, and the powder feeding scheme. It is shown that radial feeding provides 70%–82% spherical particles, and up to 86%–97% under high-power operating conditions. Axial feeding achieves more than 95% spheroidized particles. Promising technological solutions aimed at increasing the productivity of the spheroidization of ceramic and metallic materials are also discussed.



    加载中


    [1] Lanzutti A, Marin E (2024) The challenges and advances in recycling/re-using powder for metal 3D printing: A comprehensive review. Metals 14: 886. https://doi.org/10.3390/met14080886 doi: 10.3390/met14080886
    [2] Krishna R, Sreenivasan M, Lyutyk M, et al. (2025) Radio frequency plasma spheroidization of alumina as a feedstock material for ceramic 3D printing. J Mater Eng Perform 34: 2332–2343. https://doi.org/10.1007/s11665-024-09238-4 doi: 10.1007/s11665-024-09238-4
    [3] Kan W, Chiu L, Lim C, et al. (2022) A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J Mater Sci 57: 9818–9865. https://doi.org/10.1007/s10853-022-06990-7 doi: 10.1007/s10853-022-06990-7
    [4] Bidare P, Jiménez A, Hassanin H, et al. (2022) Porosity, cracks, and mechanical properties of additively manufactured tooling alloys: A review. Adv Manuf 10: 175–204. https://doi.org/10.1007/s40436-021-00365-y doi: 10.1007/s40436-021-00365-y
    [5] Boulos M (2011) Thermal plasma processing. IEEE T Plasma Sci 19: 1078–1089. https://doi.org/10.1109/27.125032 doi: 10.1109/27.125032
    [6] Fauchais P, Vardelle M, Goutier S (2019) Key challenges and opportunities in suspension and solution plasma spraying. Plasma Chem Plasma Process 35: 511–525. https://doi.org/10.1007/s11090-014-9594-5 doi: 10.1007/s11090-014-9594-5
    [7] Pawlowski L (2008) The Science and Engineering of Thermal Spray Coatings, Chichester: John Wiley & Sons. https://doi.org/10.1002/9780470754085
    [8] Trelles J, Chazelas C, Vardelle A (2009) Arc plasma torch modeling. J Therm Spray Tech 18: 728–752. https://doi.org/10.1007/s11666-009-9342-1 doi: 10.1007/s11666-009-9342-1
    [9] Wang L, Liu Y, Chang S (2016) Fabrication of spherical AlSi10Mg powders by radio frequency plasma spheroidization. Metall Mater Trans A 47: 2444–2453. https://doi.org/10.1007/s11661-016-3384-z doi: 10.1007/s11661-016-3384-z
    [10] Samokhin A, Fadeev A, Alekseev N, et al. (2020) Spheroidization of Fe-based powders in plasma jet of DC arc plasma torch and application of these powders in selective laser melting. Inorg Mater Appl Res 11: 579–585. https://doi.org/10.1134/S2075113320030417 doi: 10.1134/S2075113320030417
    [11] Getto E, Santucci R, Gibbs J, et al. (2023) Powder plasma spheroidization treatment and the characterization of microstructure and mechanical properties of SS 316L powder and L-PBF builds. Heliyon 9: e16583. https://doi.org/10.1016/j.heliyon.2023.e16583 doi: 10.1016/j.heliyon.2023.e16583
    [12] Massard Q, Si-Mohand H, Cabrol E (2023) Study on the recycling of 100Cr6 powder by plasma spheroidization for laser powder bed fusion. J Mater Res Technol 27: 5889–5895. https://doi.org/10.1016/j.jmrt.2023.10.256 doi: 10.1016/j.jmrt.2023.10.256
    [13] Kan W, Chiu L, Lim C, et al. (2022) A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J Mater Sci 57: 9818–9865. https://doi.org/10.1007/s10853-022-06990-7 doi: 10.1007/s10853-022-06990-7
    [14] Brika S, Letenneur M, Dion C, et al. (2019) Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Addit Manuf 31: 100929. https://doi.org/10.1016/j.addma.2019.100929 doi: 10.1016/j.addma.2019.100929
    [15] Bisset H, Van der Walt I, Havenga J, et al. (2015) Titanium and zirconium metal powder spheroidization by thermal plasma processes. J S Afr Inst Min Metall 115: 937–942. https://doi.org/10.17159/2411-9717/2015/v115n10a6 doi: 10.17159/2411-9717/2015/v115n10a6
    [16] Eremin S, Anikin V, Kuznetsov D, et al. (2020) Spheroidization of iron powder in microwave and hybrid plasma torches. J Non-ferr Met 61: 199–206. https://doi.org/10.3103/S1067821220020042 doi: 10.3103/S1067821220020042
    [17] Razumov N, Popovich A, Wang Q (2018) Thermal plasma spheroidization of high-nitrogen stainless steel powder alloys synthesized by mechanical alloying. Met Mat Int 24: 363–370. https://doi.org/10.1007/s12540-018-0040-8 doi: 10.1007/s12540-018-0040-8
    [18] Boulos M (1985) The inductively coupled R. F. (radio frequency) plasma. Pure Appl Chem 57: 1321–1352. https://doi.org/10.1351/pac198557091321 doi: 10.1351/pac198557091321
    [19] Boulos M (1992) RF induction plasma spraying: State-of-the-art review. J Therm Spray Tech 1: 33–40. https://doi.org/10.1007/BF02657015 doi: 10.1007/BF02657015
    [20] Elaissi S, Trabelsi A, Alkallas F, et al. (2022) Energy efficiency enhancement of inductively coupled plasma torch: Computational study. Materials 15: 5213. https://doi.org/10.3390/ma15155213 doi: 10.3390/ma15155213
    [21] Kameyama T, Sakanaka K, Motoe A, et al. (1990) Highly efficient and stable radio-frequency—Thermal plasma system for the production of ultrafine and ultrapure β-SiC powder. J Mater Sci 25: 1058–1065. https://doi.org/10.1007/BF03372203 doi: 10.1007/BF03372203
    [22] Boulos M, Fauchais P, Pfender E (2023) Handbook of Thermal Plasmas, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-319-12183-3
    [23] Safronov A, Vasileva O, Dudnik Y, et al. (2018) Use of alternating-current plasma torch for processing potentially hazardous substances. High Energy Chem 52: 319–323. https://doi.org/10.1134/S0018143918040136 doi: 10.1134/S0018143918040136
    [24] Surov A, Popov S, Popov E et al. (2017) Multi-gas AC plasma torches for gasification of organic substances. Fuel 203: 1007–1014. https://doi.org/10.1016/j.fuel.2017.02.104 doi: 10.1016/j.fuel.2017.02.104
    [25] Wei X, Xu F, Bennett A, et al. (2023) Numerical analysis of direct-current (DC) plasma processing for high-efficient steel surface modification. Int J Adv Manuf Technol 124: 2215–2228. https://doi.org/10.1007/s00170-022-10548-x doi: 10.1007/s00170-022-10548-x
    [26] Qiu J, Yu D, Li Y, et al. (2020) Design and characteristics of a triple-cathode cascade plasma torch for spheroidization of metallic powders. Plasma Sci Technol 22: 115503. https://doi.org/10.1088/2058-6272/aba8ed doi: 10.1088/2058-6272/aba8ed
    [27] Samokhin A, Alekseev N, Astashov A, et al. (2019) Synthesis and processing of powder materials in DC arc thermal plasma. J Phys Conf Ser 1393: 012126. https://doi.org/10.1088/1742-6596/1393/1/012126 doi: 10.1088/1742-6596/1393/1/012126
    [28] Zaini I, Svanberg R, Sundberd D, et al. (2023) A pilot-scale test of plasma torch application for decarbonising the steel reheating furnaces. TSEB 40: 101766. https://doi.org/10.1016/j.tsep.2023.101766 doi: 10.1016/j.tsep.2023.101766
    [29] Seo J, Hong B, Choi S, et al. (2013) Numerical design study on a high-powered segmented-type arc plasma torch for a high-enthalpy supersonic plasma wind tunnel. J Korean Phys Soc 62: 250–257. https://doi.org/10.3938/jkps.62.250 doi: 10.3938/jkps.62.250
    [30] Chaturvedi V, Ananthapadmanabhann P, Chakravarthy Y, et al. (2014) Thermal plasma spheroidization of aluminum oxide and characterization of the spheroidized alumina powder. Ceram Int 40: 8273–8279. https://doi.org/10.1016/j.ceramint.2014.01.026 doi: 10.1016/j.ceramint.2014.01.026
    [31] Fauchais P, Heberlein J, Boulos M (2013) Thermal Spray Fundamentals: From Powder to Part, New York: Springer. https://doi.org/10.1007/978-0-387-68991-3
    [32] Peng H, Shikai Y, Fangl Y, et al. (2007) Effect of plasma spheroidization process on the microstructure and crystallographic phases of silica, alumina and nickel particles. Plasma Sci Tech 9: 611–615. https://doi.org/10.1088/1009-0630/9/5/20 doi: 10.1088/1009-0630/9/5/20
    [33] Liu S, Trelles J, Li C, et al. (2022) A review and progress of multiphase flows in atmospheric and low pressure plasma spray advanced coating. Mater Today Phys 27: 100832. https://doi.org/10.1016/j.mtphys.2022.100832 doi: 10.1016/j.mtphys.2022.100832
    [34] Mauer G (2022) Development of plasma parameters for the manufacture of MCrAlY bond coats by low-pressure plasma spraying using a cascaded torch. Adv Eng Mater 24: 2200856. https://doi.org/10.1002/adem.202200856 doi: 10.1002/adem.202200856
    [35] Szente R, Munz J, Drouet M (1992) Electrode erosion in plasma torches. Plasma Chem Plasma Process 12: 327–343. https://doi.org/10.1007/BF01447029 doi: 10.1007/BF01447029
    [36] Mauer G (2024) Multiple electrodes and cascaded nozzles: A review of the evolution of modern plasma spray torches. J Therm Spray Tech 34: 484–494. https://doi.org/10.1007/s11666-024-01909-x doi: 10.1007/s11666-024-01909-x
    [37] Sadek A, Ushio M, Matsuda F (1990) Effect of rare earth metal oxide additions to tungsten electrodes. Metall Trans A 21: 3221–3236. https://doi.org/10.1007/BF02647317 doi: 10.1007/BF02647317
    [38] Coudert J, Planche M, Fauchais P (1995) Characterization of DC plasma torch voltage fluctuations. Plasma Chem Plasma Process 16: 211–227. https://doi.org/10.1007/BF01512636 doi: 10.1007/BF01512636
    [39] Duan Z, Heberlein J (2002) Arc instabilities in a plasma spray torch. J Therm Spray Tech 11: 44–51. https://doi.org/10.1361/105996302770348961 doi: 10.1361/105996302770348961
    [40] Schein J, Zierhut J, Dzulko M, et al. (2007) Improved plasma spray torch stability through multi-electrode design. Contrib Plasma Phys 47: 498–504. https://doi.org/10.1002/ctpp.200710064 doi: 10.1002/ctpp.200710064
    [41] Vardelle A, Moreau C, Themelis N, et al. (2015) A perspective on plasma spray technology. Plasma Chem Plasma Process 35: 491–509. https://doi.org/10.1007/s11090-014-9600-y doi: 10.1007/s11090-014-9600-y
    [42] Bagathi M, Vaßen R, Guillon O, et al. (2025) Coating characteristics of plasma-sprayed ceramic thermal barrier coatings on internal diameter (ID) surfaces. J Therm Spray Tech 34: 2918–2938. https://doi.org/10.1007/s11666-025-02042-z doi: 10.1007/s11666-025-02042-z
    [43] Zimmermann S, Mauer G, Rauwald K, et al. (2021) Characterization of an axial-injection plasma spray torch. J Therm Spray Tech 30: 1724–1736. https://doi.org/10.1007/s11666-021-01235-6 doi: 10.1007/s11666-021-01235-6
    [44] Marqués J, Forster G, Schein J (2009) Multi-electrode plasma torches: Motivation for development and current state-of-the-art. Open Plasma Phys J 2: 89–98. https://doi.org/10.2174/1876534300902010089 doi: 10.2174/1876534300902010089
    [45] Perambadur J, Rat V, Niane T, et al. (2024) Simulation of the Axial Ⅲ Plus plasma torch and its arc fluctuations. J Therm Spray Tech 33: 2526–2547. https://doi.org/10.1007/s11666-024-01827-y doi: 10.1007/s11666-024-01827-y
    [46] Ruelle C, Goutier S, Rat V, et al. (2024) Influence of nozzle diameter on electric arc dynamics and coating properties in a cascaded-anode plasma torch. J Therm Spray Tech 33: 756–770. https://doi.org/10.1007/s11666-023-01706-y doi: 10.1007/s11666-023-01706-y
    [47] Dombrovskii L, Isakaev E, Senchenko V, et al. (2012) Efficiency of particle acceleration, heating, and melting in high-enthalpy plasma jets. High Temp 50: 145–153. https://doi.org/10.1134/S0018151X12020046 doi: 10.1134/S0018151X12020046
    [48] Zhang J, Shao P, Wang X, et al. (2023) Improving weld penetration by two-TIG arc activated via mixing oxygen into shielding gas. Int J Adv Manuf Technol 125: 169–181. https://doi.org/10.1007/s00170-022-10703-4 doi: 10.1007/s00170-022-10703-4
    [49] Belevtsev A, Goryachev S, Isakaev E, et al. (2016) Lifetime of the thermoemission cathodes of nitrogen plasma generators. High Temp 54: 789–795. https://doi.org/10.1134/S0018151X16040052 doi: 10.1134/S0018151X16040052
    [50] Belevtsev A, Goryachev S, Isakaev E, et al. (2013) Experimental study of the near-electrode plasma–tungsten cathode system in high-current atmospheric-pressure nitrogen arcs. High Temp 51: 583–593. https://doi.org/10.1134/S0018151X13050027 doi: 10.1134/S0018151X13050027
    [51] Baeva M, Benilov M, Zhu T, et al. (2022) Modelling and experimental evidence of the cathode erosion in a plasma spray torch. J Phys D Appl Phys 55: 365202. https://doi.org/10.1088/1361-6463/ac791c doi: 10.1088/1361-6463/ac791c
    [52] Nemchinsky V (2012) Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc. J Phys D Appl Phys 45: 135201. https://doi.org/10.1088/0022-3727/45/13/135201 doi: 10.1088/0022-3727/45/13/135201
    [53] Pershin L, Mitrasinovic A, Mostaghimi J (2013) Treatment of refractory powders by a novel, high enthalpy DC plasma. J Phys D Appl Phys 46: 224019. https://doi.org/10.1088/0022-3727/46/22/224019 doi: 10.1088/0022-3727/46/22/224019
    [54] Solonenko O, Gulyaev I, Smirnov A (2011) Thermal plasma processes for production of hollow spherical powders: Theory and experiment. J Therm Spray Tech 6: 219–234. https://doi.org/10.1299/jtst.6.219 doi: 10.1299/jtst.6.219
    [55] Park S, Kim D, Kim M, et al. (2013) Numerical analysis of a hollow electrode plasma torch with a reversed polarity discharge for radioactive waste treatment. J Korean Phys Soc 63: 1746–1754. https://doi.org/10.3938/jkps.63.1746 doi: 10.3938/jkps.63.1746
    [56] Zhukov M, Zasypkin I (2007). Thermal Plasma Torches, Cambridge: Cambridge International Science Publishing Ltd.
    [57] Yang I, Choi M, Nam J, et al. (2019) Experimental and numerical analyses of a hollow electrode plasma torch with inter-electrodes and reversed polarity J Korean Phys Soc 74: 465–472. https://doi.org/10.3938/jkps.74.465 doi: 10.3938/jkps.74.465
    [58] Camacho S (1988) Industrial-worthy plasma torches: State-of-the-art. Pure Appl Chem 60: 619–632. https://doi.org/10.1351/pac198860050619 doi: 10.1351/pac198860050619
    [59] Yin Z, Yu D, Wen Y, et al. (2021) Numerical investigation on the flow characteristics of a reverse-polarity plasma torch by two-temperature thermal non-equilibrium modelling. Plasma Sci Technol 23: 095402. https://doi.org/10.1088/2058-6272/ac0770 doi: 10.1088/2058-6272/ac0770
    [60] Rao L, Rivard F, Carabin P (2013) Thermal plasma torches for metallurgical applications. 4th International Symposium on High‐Temperature Metallurgical Processing, 57–65. https://doi.org/10.1002/9781118663448.ch8
    [61] Yin Z, Yu D, Zhang Q, et al. (2021) Experimental and numerical analysis of a reverse-polarity plasma torch for plasma atomization. Plasma Chem Plasma Process 41: 1471–1495. https://doi.org/10.1007/s11090-021-10181-8 doi: 10.1007/s11090-021-10181-8
    [62] Zhang X, Hou X, Hao Z, et al. (2022) Research on spheroidization of tungsten powder from three different raw materials. Materials 15: 8449. https://doi.org/10.3390/ma15238449 doi: 10.3390/ma15238449
    [63] Soucy G, Jurewicz J, Boulos M (1994) Mixing study of the induction plasma reactor: Part Ⅱ. Radial injection mode. Plasma Chem Plasma Process 14: 59–71. https://doi.org/10.1007/BF01448737 doi: 10.1007/BF01448737
    [64] Soucy G, Jurewicz J, Boulos M (1994) Mixing study of the induction plasma reactor: Part Ⅰ. Axial injection mode. Plasma Chem Plasma Process 14: 43–58. https://doi.org/10.1007/BF01448736 doi: 10.1007/BF01448736
    [65] Goel S, Björklund S, Curry N, et al. (2020) Axial plasma spraying of mixed suspensions: A case study on processing, characteristics, and tribological behavior of Al2O3–YSZ coatings. Appl Sci 10: 5140. https://doi.org/10.3390/app10155140 doi: 10.3390/app10155140
    [66] Sharivker S, Krasnov A (1966) Possibility of obtaining spherical particles by radial feeding of fine powder into a plasma jet. Powder Metall Met Ceram 5: 173–177. https://doi.org/10.1007/BF00776219 doi: 10.1007/BF00776219
    [67] Andreytsev A, Smyrnov I, Chornyi A, et al. (2021) Modeling the process of spheroidization powder particles by the plasma-arc method. Appl Quest Math Modell 4: 25–32. https://doi.org/10.32782/KNTU2618-0340/2021.4.2.2.2 doi: 10.32782/KNTU2618-0340/2021.4.2.2.2
    [68] Fialko N, Sherenkovskii J, Meranova N, et al. (2021) Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties. East-Eur J Enterp Technol 112: 21–26. https://doi.org/10.15587/1729-4061.2021.236915 doi: 10.15587/1729-4061.2021.236915
    [69] Fialko N, Prokopov V, Meranova N, et al. (1994) Temperature conditions of particle–substrate systems in a gas-thermal deposition process. Fiz Khim Obrab Mater 2: 59–67. Available from: https://www.scopus.com/pages/publications/0028385421?origin = resultslist.
    [70] Andreytsev A, Smyrnov I, Chornyi A (2009) Analysis of the dynamics of fine particle motion during plasma spraying. Zbirnyk Naukovykh Prats DETUT 11: 100–103.
    [71] Kharlamov M, Krivtsun I, Korzhyk V (2014) Dynamic model of the wire dispersion process in plasma-arc spraying. J Therm Spray Tech 23: 420–430. https://doi.org/10.1007/s11666-013-0027-4 doi: 10.1007/s11666-013-0027-4
    [72] Zurabov V, Puzryakov A (1983) On the acceleration of powder particles during plasma spraying. Phys Chem Materials Treat 3: 52–55.
    [73] Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Tech 58: 63–70. https://doi.org/10.1016/0032-5910(89)80008-7 doi: 10.1016/0032-5910(89)80008-7
    [74] Boulos M (2016) The role of transport phenomena and modeling in the development of thermal plasma technology. Plasma Chem Plasma Process 36: 3–28. https://doi.org/10.1007/s11090-015-9660-7 doi: 10.1007/s11090-015-9660-7
    [75] Ozerskoi N, Silin A, Razumov N, et al. (2021) Optimization of EI961 steel spheroidization process for subsequent use in additive manufacturing: Effect of plasma treatment on the properties of EI961 powder. Rev Adv Mater Sci 60: 936–945. https://doi.org/10.1515/rams-2021-0078 doi: 10.1515/rams-2021-0078
    [76] Lokhov Y, Petrunichev V, Uglov A, et al. (1974) Heating and evaporation of particles in a low-temperature plasma jet. Phys Chem Materials Treat 6: 52–56.
    [77] Fialko N, Prokopov V, Sherenkovskij Y, et al. (1992) Mathematical simulation of 3D temperature fields in coatings during gas-thermal spraying of alloys prone to amorphous transformation. Elektron Obrab Mater 5: 20–23.
    [78] Ouyang H, Chen X, Huang B (2007) Influence of melt superheat on breakup process of close-coupled gas atomization. Trans Nonferrous Metals Soc China 17: 967–973. https://doi.org/10.1016/S1003-6326(07)60209-X doi: 10.1016/S1003-6326(07)60209-X
    [79] Matsumoto T, Fujii H, Ueda T, et al. (2005) Measurement of surface tension of molten copper using the free-fall oscillating drop method. Meas Sci Technol 16: 432–437. https://doi.org/10.1088/0957-0233/16/2/014 doi: 10.1088/0957-0233/16/2/014
    [80] Mikhalev V, Petrunichev V (1968) Study of plasma jet velocities and the velocities of dispersed particles treated in it. Phys Chem Materials Treat 5: 22–27.
    [81] Lykov P, Baitimerov R, Safonov E, et al. (2013) Modeling of melt atomization process in a gas jet. Bull South Ural Stat Univ 2: 148–154.
    [82] Klinskaya-Rudenskaya N, Frishberg I, Tsymbalist M, et al. (1999) Investigation of the spheroidization of refractory powders with particle size 20–100 µm in a low-temperature plasma. High Temp 37: 26–30.
    [83] Prokopov V, Fialko N, Sherenkovskij Y, et al. (1992) Analysis of temperature conditions in the "coating–sublayer–substrate" system under gas-thermal spray coating of composite powders. Elektron Obrab Mat 2: 12–15.
    [84] Korzhik V (1992) Theoretical analysis of the conditions required for rendering metallic alloys amorphous during gas-thermal spraying. Ⅲ. Transformations in the amorphous layer during the coating growth process. Powder Metall Met Ceram 31: 943–948. https://doi.org/10.1007/BF00797621 doi: 10.1007/BF00797621
    [85] Fialko N, Prokopov V, Meranova N, et al. (1993) Thermal physics of gas-thermal coating formation processes: State of investigations. Fiz Khim Obr Mater 4: 83–93.
    [86] Iovane P, Borriello C, Pandolfi G, et al. (2025) Spheroidization of alumina powders for additive manufacturing applications by DC plasma technology. Molecules 30: 453. https://doi.org/10.3390/molecules30030453 doi: 10.3390/molecules30030453
    [87] Iovane P, Borriello C, Pandolfi G, et al. (2024) Thermal plasma spheroidization and characterization of stainless steel powders using direct current plasma technology. Plasma 7: 76–90. https://doi.org/10.3390/plasma7010006 doi: 10.3390/plasma7010006
    [88] Solonenko OP, Smirnov AV (2014) Advanced oxide powders processing based on cascade plasma. J Phys Conf Ser 550: 012017. https://doi.org/10.1088/1742-6596/550/1/012017 doi: 10.1088/1742-6596/550/1/012017
    [89] Goryachev S, Khromov M, Kavyrshin D, et al. (2021) Velocity and temperature of plasma jets and their change due to artificial optical inhomogeneities introduced into plasma. High Temp 59: 36–45. https://doi.org/10.1134/S0018151X2101003X doi: 10.1134/S0018151X2101003X
    [90] Qiu J, Yu D, Chen Y, et al. (2024) Controllable preparation of YSZ-STHS in arc plasma spheroidization: Exploring the plasma flow characteristics impact on powder quality. Ceram Int 50: 26569–26582. https://doi.org/10.1016/j.ceramint.2024.04.385 doi: 10.1016/j.ceramint.2024.04.385
    [91] Wang C, Zhang Z, Xia W, et al. (2017) Direct observation of anode arc root behaviors in a non-transferred arc plasma device with multiple cathodes. Plasma Chem Plasma Process 37: 371–382. https://doi.org/10.1007/s11090-016-9782-6 doi: 10.1007/s11090-016-9782-6
    [92] Zhang Z, Wang C, Sun Q, et al. (2022) Spheroidization of tungsten powder by a DC arc plasma generator with multiple cathodes. Plasma Chem Plasma Process 42: 939–956. https://doi.org/10.1007/s11090-022-10250-6 doi: 10.1007/s11090-022-10250-6
    [93] Yushchenko K, Borisov Y, Pereverzev Y, et al. (1995) Microplasma spraying. Proc Int Thermal Spray Conf 14: 237–274.
    [94] Kombayev K, Khoshnaw F, Kozhakhmetov Y, et al. (2025) Microplasma sprayed tantalum coatings on Ti Grade 5 extra-low interstitials: Investigation of thickness and porosity control. Coatings 15: 464. https://doi.org/10.3390/coatings15040464 doi: 10.3390/coatings15040464
    [95] Borisov Y, Voynarovich S, Kislitsa A, et al. (2017) Development of microplasma spraying technology for restoring local damages of enamel coatings. Paton Weld J 7: 35–41. https://doi.org/10.15407/as2017.07.06 doi: 10.15407/as2017.07.06
    [96] Borisov Y, Voynarovich S, Kislitsa A, et al. (2018) Application of the microplasma spraying method for manufacturing resistive heating elements. Paton Weld J 2: 42–47. https://doi.org/10.15407/as2018.02.07 doi: 10.15407/as2018.02.07
    [97] Borisov Y, Korzhik V, Kunitskii Y, et al. (1986) Structural transformations in thermal spray coatings of Ni60Nb40 alloy during vacuum annealing. Sov Powder Metall Metal Ceram 25: 821–826.
    [98] Gu Y, Zhang W, Xu Y, et al. (2022) Stress-assisted corrosion behaviour of Hastelloy N in FLiNaK molten salt environment. npj Mater Degrad 6: 90. https://doi.org/10.1038/s41529-022-00300-x doi: 10.1038/s41529-022-00300-x
    [99] Skorokhod A, Sviridova I, Korzhik V (1995) Effect of mechanical pretreatment of polyethylene terephthalate powder on the structural and mechanical properties of coatings made from it. Mech Compos Mater 30: 328–334. https://doi.org/10.1007/BF00634755 doi: 10.1007/BF00634755
    [100] Han J, Shi Y, Guo J, et al. (2023) Porosity inhibition of aluminum alloy by power-modulated laser welding and mechanism analysis. J Manuf Process 102: 827–838. https://doi.org/10.1016/j.jmapro.2023.08.001 doi: 10.1016/j.jmapro.2023.08.001
    [101] Fialko N, Dinzhos R, Sherenkovskii J, et al. (2021) Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters. Eastern-European J Enterp Technol 114: 34–39. https://doi.org/10.15587/1729-4061.2021.245274 doi: 10.15587/1729-4061.2021.245274
    [102] Borisov Y, Korzhyk V (1998) Internal stresses in plasma coatings with an amorphous structure. Proc Int Thermal Spray Conf 1: 693–697.
    [103] Skorokhod A, Sviridova I, Korzhik V (1994) Structural and mechanical properties of polyethylene terephthalate coatings as affected by mechanical pretreatment of powder during preparation. Mech Compos Mater 30: 455–463.
    [104] Fialko N, Dinzhos R, Sherenkovskaya G, et al. (2022) Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt. Eastern-European J Enterp Technol 116: 25–30. https://doi.org/10.15587/1729-4061.2022.255830 doi: 10.15587/1729-4061.2022.255830
    [105] Borisov Y, Kislitsa A, Voynarovich S, et al. (2018) Investigation of electric and energy characteristics of the plasmatron in microplasma spraying with wire materials. Paton Weld J 9: 23–28. https://doi.org/10.15407/as2018.09.04 doi: 10.15407/as2018.09.04
    [106] Jenista J, Takana H, Nishiyama H, et al. (2011) Integrated parametric study of a hybrid-stabilized argon–water arc under subsonic, transonic and supersonic plasma flow regimes. J Phys D Appl Phys 44: 435204. https://doi.org/10.1088/0022-3727/44/43/435204 doi: 10.1088/0022-3727/44/43/435204
    [107] Ondac P, Maslani A, Hrabovsky M (2016) Investigation of the arc–anode attachment area by utilizing a high-speed camera. Plasma Phys Technol 3: 1–4. https://doi.org/10.14311/ppt.2016.1.1 doi: 10.14311/ppt.2016.1.1
    [108] Dudik J (2022) Morphological and structural changes of ceramic powders during plasma spraying. Available from: https://dspace.cvut.cz/handle/10467/105396.
    [109] Project Soft (2025) Plasma torch for thermal spraying. Available from: http://www.projectsoft.sk/en/plazma-systems.php.
    [110] Ross D, Burgess A (1996) Plasma Jet Converging System. United States Patent 5, 556, 558.
    [111] Mettech (2025) Axial Ⅲ Plasma Spray System. Available from: https://www.mettech.com/coating-equipment/axial-III-plasma-spray-system.php.
    [112] Lee N, Lee D, Kim S, et al. (2025) Experimental and numerical investigations on the operational characteristics of a hollow electrode plasma torch with an exit nozzle and reverse polarity discharge structure. J Korean Phys Soc 86: 1135–1147. https://doi.org/10.1007/s40042-025-01386-7 doi: 10.1007/s40042-025-01386-7
    [113] Korzhyk V, Strohonov D, Gao S, et al. (2025) Production of spherical Inconel 625 powder for additive manufacturing by plasma-arc wire atomization: Influence of non-transferred and transferred arc modes on fine powder yield. Adv Sci Technol Res J 19: 109–123. https://doi.org/10.12913/22998624/209176 doi: 10.12913/22998624/209176
    [114] Gao S, Korzhyk V, Strohonov D, et al. (2025) Evaluation of the possibility of obtaining spherical powders of titanium alloy Ti-6Al-4V by supersonic reverse polarity plasma torch for use in additive manufacturing. Adv Sci Technol Res J 19: 434–448. https://doi.org/10.12913/22998624/205855 doi: 10.12913/22998624/205855
    [115] Baeva M, Zhu T, Kewitz T, et al. (2021) Self-consistent cathode–plasma coupling and role of the fluid flow approach in torch modeling. J Therm Spray Tech 30: 1737–1750. https://doi.org/10.1007/s11666-021-01261-4 doi: 10.1007/s11666-021-01261-4
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(238) PDF downloads(19) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog