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Abstract: The article presents a review of modern designs of direct current arc plasma torches and the 
technological configurations used for plasma spheroidization of irregularly shaped powders. The study 
examines plasma torch designs employing both “hot” thermionic tungsten electrodes and “cold” 
autoemissive copper electrodes, demonstrating their ability to operate with various types of         
plasma-forming gas mixtures. The influence of the plasma-forming gas’s composition on the electrode 
erosion intensity is analyzed, and approaches to improving the electrode’s lifetime and overall torch 
reliability are outlined. The processes of particle heating, melting, and spheroidization are examined, 
along with the key parameters determining spheroidization efficiency: Plasma enthalpy and velocity, 
particle size, residence time in the high-temperature zone, and the powder feeding scheme. It is shown 
that radial feeding provides 70%–82% spherical particles, and up to 86%–97% under high-power 
operating conditions. Axial feeding achieves more than 95% spheroidized particles. Promising 
technological solutions aimed at increasing the productivity of the spheroidization of ceramic and 
metallic materials are also discussed. 

Keywords: plasma spheroidization; direct current arc plasma torches; radial feed; axial feed; powder; 
sphericity; degree of spheroidization; energy efficiency 
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1. Introduction 

In modern materials science, there is a growing interest in high-tech methods for modifying the 
shape, structure, and chemical composition of powder materials, particularly using plasma spheroidization 
methods [1,2]. Spheroidized powders have a number of advantages over irregular particles: improved 
fluidity, bulk density, better packing capacity, and, as a result, better mechanical and operational 
properties of the final products [3,4]. Currently, spheroidization of irregularly shaped powders is a 
particularly relevant task for additive manufacturing technologies using metallic and ceramic   
materials, where there is an urgent need to improve the technological properties of powders obtained 
by mechanical, chemical, electrochemical methods, gas atomization of melts, etc. [5–8]. Thus, in other 
works [2,5–7,9–11], it is noted that plasma spheroidization is an effective way to improve the 
sphericity, fluidity, bulk density, and other characteristics of powders from a wide range of metals and 
alloys such as 100Cr6, Fe23Cr11Mn1N, SS 304L and 316L, Ti-6Al-4V, W, and ceramic materials 
such as Al2O3, ZrO2, etc. There is also a separate problem of the spheroidization of powders used in 
three-dimensional (3D) printing processes using selective laser melting, electron beam melting, laser 
direct energy deposition, plasma metal deposition, etc. in order to improve the shape and, in some 
cases, to refine the chemical composition for their reuse in additive manufacturing [1,5,7,11,12]. In 
addition, there is a significant need for spherical powders for gas-thermal spraying of functional 
coatings, mainly by supersonic gas-flame, atmospheric plasma, and cold gas-dynamic (cold spray) 
spraying methods, where the density and adhesive and cohesive strength of the sprayed layers depend 
on the stability of powder feeding [8,10]. Another area of application of spherical powders is producing 
parts via powder metallurgy methods. Given the wide range of applications, the morphology of powder 
particles is one of the key factors determining the stability and efficiency of technological processes 
using them. The shape of the particles directly affects the flowability, uniformity of feeding, and 
density of powder spraying, pressing, or layer-by-layer deposition in additive manufacturing [13]. In 
this context, spherical powders provide a number of fundamental advantages compared with irregular 
ones. Due to the minimal coefficient of friction and the absence of mechanical adhesion between the 
particles, they are characterized by improved fluidity and uniformity of supply to the spraying or 
melting zone [3,7]. In addition, the high bulk density and compact packing of particles contribute to 
the formation of homogeneous layers with smaller gaps, which increases the density and reduces the 
porosity of the final products. The spherical shape also provides more uniform heat absorption by 
particles during plasma or laser heating, which allows for more complete melting of the material and 
stable formation of the microstructure of the coating or part [7]. As a result, coatings and products 
manufactured using spherical powders are characterized by higher cohesive and adhesive strength, 
improved mechanical and performance properties, and increased reproducibility of the results 
compared with powders of an irregular shape [1,4]. That is why increasing the sphericity of powder 
materials is considered as one of the key areas for improving the technological processes of plasma 
spraying, 3D printing, and powder metallurgy [14]. 

Currently, plasma spheroidization of irregularly shaped powders is carried out using radio-frequency 
inductively coupled plasma (RF-ICP), microwave plasma, and in arc-discharge plasma (mainly direct 
current) [15–17]. 

RF-ICP is generated by inducing an electromotive force in the gas under the action of an 
alternating magnetic field created by a coil through which a high-frequency current flows (the 
frequency usually ranges from 0.45–13.56 MHz). Microwave plasma is generated using microwave 
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fields in the frequency range from 300 MHz to 300 GHz. Ionization occurs without electrodes,            
due to the energy transferred to the electrons from the oscillating electromagnetic field. The 
temperature of the RF-ICP is usually 6,000–10,000 K (gas temperature), and the electron density is up 
to 1015 cm–3 [18,19]. These values are lower than those of arc plasma, but RF-ICP is characterized by 
high purity, stability, and no electrode erosion. The RF-ICP method has also become widespread in 
the processes of spheroidizing irregularly shaped powders due to the lower velocity of the plasma jet 
and, accordingly, the significant residence time of the powder in the processed medium, a high degree 
of ionization, and the plasma temperature. This method allows for the effective spheroidization of both 
metal and ceramic powders with a sphericity coefficient close to 0.90–0.95 [17]. However, the 
efficiency of RF-ICP and microwave plasma torches usually does not exceed η = 40%–60% [20,21], 
and the cost of such equipment is significantly higher compared with direct current arc systems. This 
is due to the high price of high-frequency generators and matching units, and the lower prevalence of 
such systems in industrial production. In contrast, the manufacturing of arc plasma torches is well 
standardized and is characterized by significantly higher availability. 

Arc plasma is formed by a direct electric discharge between the cathode and the anode, through 
which a high-density electric current (up to 106 A/m2) passes. Energy is supplied directly to the ionized 
medium due to electron ion conductivity, so the plasma has a high temperature (up to 25,000–30,000 K) 
and a significant electron density (1016–1018 cm–3) [22]. The arc discharge used to generate                
high-temperature plasma can exist in two main varieties—direct current (DC) and alternating       
current (AC). However, alternating current plasma torches have not gained wide practical application 
due to a number of technological limitations [23]. In particular, periodic current crossing through zero 
leads to the arc extinguishing and reigniting, which causes temperature fluctuations, instability in the 
plasma jet, increased electrode erosion, and a decrease in thermal efficiency. In addition, due to the 
cyclic change in the electrode’s polarity, there is a decrease in the service life of cathode–anode 
assemblies and the difficulty of maintaining a stable anode–cathode discharge [24]. 

In this regard, plasma spheroidization of irregularly shaped powders in arc plasma is carried        
out using DC plasma torches, which are used for various technological processes in material  
processing [25–27]. The use of such plasma torches allows users to obtain stable plasma jets with high 
enthalpy and controlled energy characteristics, where the electric power can reach 250 kW and        
more [28,29]. Due to this, this method can provide uniform heating and melting of particles in the 
plasma jet, which contributes to the formation of a spherical shape even in nonmetallic materials with 
a high melting point, low thermal conductivity, and high heat capacity, such as oxides, carbides, and 
nitrides, etc [30–32]. 

The purpose of work is to analyze modern designs of DC plasma torches and the effectiveness of 
their application for spheroidization processes of irregularly shaped powders. 

To achieve this goal, the following tasks are undertaken in the article: 
1. To analyze the existing designs of DC plasma torches and identify the most promising types 

for the processes of spheroidization of irregularly shaped powders, taking energy efficiency, arc 
stability, and electrode life into account. 

2. To perform a theoretical analysis of the physical features of the DC plasma arc as a source of 
thermal energy and the processes of its interaction with the dispersed material from the point of view 
of the influence of the processing parameters on the degree of melting of powder particles and the 
formation of their spherical morphology. 



33 
 

AIMS Materials Science  Volume 13, Issue 1, 30–61. 

3. To substantiate modern design and technological approaches to the implementation of the 
plasma spheroidization process, aimed at increasing productivity and the quality of spheroidized 
powder and expanding the possibilities of the industrial use of DC plasma torches. 

2. Classification of DC plasma torch designs used for plasma spheroidization of irregularly 
shaped powders 

It is known that currently the most common designs of plasma torches (Figure 1), which are used 
for the spheroidization of irregularly shaped powders, are single-electrode designs with one cathode 
and anode (Figure 2), which operate mainly at currents of 500–800 A [33]. 

 

Figure 1. Classification of DC plasma torches. 
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Figure 2. Scheme of single-electrode designs of plasma torches for plasma arc 
spheroidization of irregularly shaped powder with a “hot” tungsten cathode (a) without and 
(b) with an interelectrode insert (cascade system) (Reproduced from Ref. [34] with 
permission). 

Plasma torches of this design include the 3MB, F4, and SinplexPro models (Oerlikon Metco, 
Switzerland) with a power of up to 60 kW, and SG 100 (Flame Spray Technologies, Netherlands), 
with a power of up to 80 kW. At the same time, the main components of the plasma torch, namely the 
electrodes, which largely determine the service life and reliability of its operation, are prone to “aging” 
and wear (Figure 3), especially when operating at currents usually exceeding 400 A [35]. 

One of the reasons for this phenomenon is the high current densities, which can reach values        
of 1 × 108 A/m2, especially in the cathode spot zone when using tungsten thermionic cathodes [35,37]. 
In addition, electrode wear leads to significant arc oscillations (fluctuations) within ±20 V, which 
worsens its dynamics [36]. As a result, these plasma jet pulsations affect the stability of the process, 
while the uniformity of the distribution of axial and radial gradients of velocity and the temperature of 
the plasma jet deteriorates [38,39], which leads to uneven melting of the powder introduced into the 
plasma jet. 
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Figure 3. Worn cathode (top) and anode (bottom, cross-section) of a traditional single 
cathode–anode F4 plasma torch (Reproduced from Ref. [36] with permission). 

Currently, the intensive wear of electrodes, which causes arc fluctuations and power fluctuations, 
has become the starting point for the development of new concepts of high-power plasma torches, such 
as multi-electrode (Figure 4a,c) and/or cascade systems (Figure 4b), where the arc fluctuations do not 
exceed ±5 V [40–43]. Such promising plasma torch models include TriplexPro 210 (Oerlikon Metco, 
Switzerland). with a power of up to 65 kW; Delta (GTV, Germany), with a power of up to 75 kW; and 
Axial III (Mettech, Canada), with a power of up to 100 kW. 
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Figure 4. Scheme of multi-electrode designs of plasma torch for plasma arc spheroidization 
of irregularly shaped powder with a “hot” tungsten cathode: (a) three cathodes, one      
anode (Axial III, Mettech); (b) three cathodes, one cascade anode (TriplexPro 210, 
Oerlicon Metco); (c) one cathode, three anodes (Delta, GTV) (Reproduced from Ref. [44] 
with permission). 

Such plasma torches are characterized by increased stability of operation and increased service 
life, since the use of a multi-cathode system contributes to a decrease in the current density in each of 
them with a constant total arc power [45], and the use of a cascade system allows for effective 
limitation of axial movements of the anode spot [46]; as a result, the arc’s behavior becomes more 
stable (voltage fluctuations can be up to 1%), and the output power is practically unchanged during 
operation [39,40]. 

However, the design of such plasma torches is very complex and requires significant 
technological and material resources for its implementation and manufacture. Also, a significant 
drawback of both single-cathode and multi-cathode systems with thermionic “hot” tungsten cathodes 
is the need to operate only in inert environments of monatomic gases of argon and helium, where the 
amount of additional (polyatomic) gas, which can significantly increase the enthalpy of the plasma    
jet (nitrogen, hydrogen, methane, oxygen, etc.) [47,48] cannot exceed 5%–10%, since this leads to 
intensive erosion of the tungsten cathode [35]. 

It has been experimentally found that at a cathode temperature close to the melting point of 
tungsten when using nitrogen as a plasma-forming gas, the excess thermionic emission current density 
is more than one order of magnitude (jеxp = (3–6) × 108 A/m2 [49] compared with the thermionic 
emission current density, accounting for the specified cathode temperature Tc and the correction for 
the Schottky effect when using argon as the plasma-forming gas [50], which, in turn, leads to intensive 
evaporation of atoms from the cathode’s surface jୣ୫

୘୉  (Eq 1): 
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jୣ୫
୘୉ = jୣ୫

୘ exp ቌ
ට୯౛

య୉ౙ/கబ

୩ా୘ి
ቍ = 3 × 10଻A/mଶ                                        (1) 

Theoretical studies of the process of atom evaporation from the surface of a tungsten cathode 
during plasma sputtering, performed in [51], showed that a certain fraction of evaporated atoms can 
return to the cathode in the form of ions, reducing the flux of evaporated atoms Jvap (Eq 2) compared 
with the value given by the Langmuir equation. 

J୴ୟ୮ =
୮౬

ඥଶ஠୫౭୩ా୘ౙ
                                                               (2) 

To estimate the number of evaporated atoms that do not return to the cathode, the following 
analytical model (Eq 3) was proposed in [52]. According to this model, tungsten atoms are instantly 
ionized and diffused in the plasma, with further intensification of this process when polyatomic gases 
of nitrogen, hydrogen, methane, etc. are added to argon. 

ୋ
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୑౭

୑ఽ౨
× ቂ∫ ηଶ(ς)dς

஖ౘ

଴
ቃ

ିଵ

                                    (3) 

Due to the fact that only a small portion of the evaporated material re-deposits on the cathode, a 
significant amount leaves the cathode region and enters the arc column, where it typically deposits on 
the cold peripheral surface of the cathode and on the inner walls of the plasma torch discharge chamber, 
which are intensively water-cooled [53]. Experimental studies determining the erosion intensity of 
tungsten cathode material have shown that in the current range of 600–800 A, when using single-electrode 
plasma torches of the F4MB type and argon as the plasma-forming gas, the erosion intensity reaches 
up to 1.1 × 10–12 kg/C, while the use of nitrogen as the plasma-forming gas at currents up to 400 A leads 
to a fivefold increase in the tungsten cathode’s erosion intensity to approximately 5 × 10–12 kg/C [49]. 

Thus, intensive cathode erosion when using di- and polyatomic gases such as nitrogen, oxygen, 
hydrogen, methane, etc. is due to an abnormally high density of thermionic currents [49]. Under such 
conditions, one of the possible methods of reducing cathode erosion is local purging of the tungsten 
cathode’s surface with a small amount of inert gas (argon), with subsequent passage of the main gas 
flow (N2, H2, CH4, etc.) through the plasma. This approach allows one to create a protective shell 
around the cathode spot, reduce the temperature of local overheating, and, accordingly, the intensity 
of tungsten evaporation. 

Another solution is the replacement of “hot” tungsten cathodes with “cold” copper (tubular) ones, 
which reduces electrode wear and expands the range of plasma-forming gases. The concept of           
low-current (up to 200 A) and relatively high-voltage (up to 1000 V) plasma torch designs provides 
lower erosion of the cathode and anode [54], longer service life, and practically no contamination of 
the dispersed material (powder, coatings, etc.) by the products of electrode erosion [55–58]. An 
interesting design is that of plasma torches with tubular copper inner electrodes, one of which has a 
blind axial hole, operating under reverse polarity (Figure 5), where the plasma-forming copper nozzle 
acts as the cathode and another copper electrode with a through-hole acts as the anode. Plasma-forming 
gases may include both monoatomic gases such as argon and helium, as well as polyatomic gases    
such as nitrogen, hydrogen, methane, and others, as well as their mixtures, which allows the formation 
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of high-enthalpy plasma jets at relatively low current loads (including up to 100 A) on the inner 
electrodes [59–61]. 

 

Figure 5. 3D model of a plasma torch with tubular copper inner electrode. 

In previous work [61], it was shown that the erosion intensity of the tubular copper cathode in the 
abovementioned plasma torches can reach up to 1 × 10–14 kg/C at a plasma torch power of 40 kW. 
Thus, the application of the low-current and relatively high-voltage plasma torch design concept with 
tubular copper electrodes first ensures lower electrode erosion and practically eliminates contamination 
of the processed material by the products of electrode erosion and, second, makes it possible to increase 
the efficiency of processing dispersed material in the plasma jet through the use of different types of 
plasma-forming gas mixtures. 

3. Basic physical principles of the process of spheroidizing irregularly shaped powder in            
low-temperature plasma generated by DC plasma torches 

The essence of the process of spheroidizing irregularly shaped powders using DC plasma torches 
is the effect of a high-enthalpy plasma jet on powder particles, with the aim of their partial or complete 
melting (Figure 6a). Under the influence of surface tension forces, the molten particles tend to 
minimize the free energy of the surface, taking a shape close to spherical [62]. After leaving the       
high-temperature zone, they undergo rapid cooling and solidification, which fixes the spherical shape 
of the particle. The stages of the plasma spheroidization process are described below (Figure 6b). 
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Figure 6. (a) Scheme and (b) stages of the process of plasma spheroidization of irregularly 
shaped powder using DC plasma torches. 

3.1. Injection of powder into the plasma jet 

Powder particles are fed into the high-temperature jet region either radially [63] or axially [64]. 
Currently, the most common scheme for injecting powder into the plasma spheroidization process is 
the radial scheme (Figure 7a). This scheme involves feeding the powder into the plasma jet in a 
direction perpendicular to its outflow axis. 

 

Figure 7. (a) Radial and (b) axial scheme of feeding powder into the plasma jet 
(Reproduced from Ref. [65] with permission). 

The main advantage of this scheme compared with axial powder injection (Figure 7b) is its 
simplicity of implementation, which is due to the simplified design of the plasma torch’s gas discharge 
chamber and the absence of the need for complex internal channels for supplying powder through the 
electrode or the central zone of the plasma torch. This approach simplifies the cooling system, reduces 
the erosion load on the internal parts, and reduces the cost of manufacturing the plasma torch, etc. 
However, despite the design advantages, radial injection is significantly inferior to axial injection in 
terms of the efficiency of heating the powder material introduced into the plasma jet [65]. With radial 
injection, powder particles cross the jet transversely and spend a limited time in the high-temperature 
zone, which leads to uneven heating, incomplete melting, and lower sphericity of the resulting powder. 
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Theoretical studies of the kinetic conditions of radial feeding of powder into the plasma jet    
during plasma spheroidization of irregularly shaped Al2O3 powder [66], performed by solving the 
system of Stokes equations (Eq 4), showed that depending on the force F acting on the particle fed into 
the plasma jet and depending on the magnitude of this force, it can introduce particle into its central or 
peripheral zone: 

𝐹 = 6𝜋 × 𝑄 × 𝜈 × 𝑟 × 𝑉                                                          (4) 

where υ is the coefficient of kinematic viscosity of the plasma, V is the velocity of the particle in the 
direction perpendicular to the movement of the plasma jet, r is the radius of the particle, and Q is the 
flow rate of the plasma-forming gas. 

At the same time, experimental studies have shown that at the optimal flow rate of plasma-forming 
gas for a certain narrow fraction of powder, the exposure of particles into the central zone of the plasma 
jet, compared with the exposure into the peripheral zone, increases the degree of spheroidization of the 
powder by 30%–40%. 

During the flight, several forces act on the particle: the thermophoresis force, the Coriolis force, 
and others [67–69]. Theoretical studies of the motion of particles in a plasma jet [70,71] have shown 
that the greatest influence on the particle is exerted by the aerodynamic drag force. The velocity of a 
particle of arbitrary shape along the flight distance can be determined from Eqs 5–7: 

m୮W୮
ୢ୛౦

ୢ୸
= 0.5CୈS୮ρ୥(W୥ − W୮)หW୥ − W୮ห                                     (5) 

where mp and Wp are the mass and velocity of the particle, respectively; CD is the drag coefficient; Sp 
is the average cross-sectional area of the particle; and ρg and Wg are the density and velocity of the   
gas, respectively. 

The motion of a spherical particle in a plasma jet [72] can be described by the Eq 6: 

ρ୮
ୈ୴ౌ

ୢ୲
= Cୈ

ଷ஡౩൫୴౩ି୴౦൯
మ

ସୈ౦
                                                          (6) 

where ρp, vp, and Dp are the density, velocity, and diameter of the particle; ρs and vs are the density and 
velocity of the plasma jet; t is the time the particle spends in the plasma jet; and CD is the drag coefficient. 

It is known that the main difficulty in calculating the velocity of a particle in a plasma jet is 
associated with the uncertainty of the values of the coefficient СD in the plasma jet. 

In [73], Eq 7 was proposed by which one can find the relationship between the coefficients of 
aerodynamic resistance and the sphericity of particles: 

Сୈ =
ଶସ

ୖୣ
[1 + 8.1716exp(−0.40655Ø)]Re଴.଴ଽ଺ସା଴.ହହ଺ହØ +

଻ଷ.଺ଽୖୣ ୣ୶୮(ିହ.଻ସ଼Ø)

ୖୣାହ.ଷ଻଼ୣ୶୮ (଺.ଶଵଶଶØ)
             (7) 

where Re is the Reynolds criterion and Ø is the sphericity coefficient of the powder. 
Analyses of theoretical models of particle motion in a plasma jet from the point of view of 

spheroidizing irregularly shaped powders showed that the most effective is the axial powder feed 
scheme. It provides the introduction of particles directly into the central high-temperature zone of the 
jet, where the maximum level of thermal impact is realized, which contributes to intensive melting and 
the formation of a spherical morphology. To increase the degree of spheroidization, it is advisable to 
increase the residence time of particles in the plasma jet, which can be achieved by reducing the 
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velocity of the gas–powder mixture or using longer plasma jets with increased enthalpy. In the case of 
radial feed, the efficiency of the process largely depends on the dimensional uniformity of the material: 
it is necessary to use narrow powder fractions and select a flow rate of the transport gas in such a way 
that the trajectories of particle motion are focused in the central part of the plasma jet, where a sufficient 
level of thermal exposure is provided. 

3.2. Heating and melting of powder in a plasma jet 

When the powder enters the plasma jet, the individual particles are heated by thermal conduction 
and convection (Qcv) (Eq 8), while they lose energy through radiation, Qr (Eq 9) [74]. 

Qୡ୴ = ℎ(Tஶ − Tୱ)                                                              (8) 

Q୰ = εσ(Tୱ
ସ − T୵

ସ )                                                             (9) 

where h is the heat transfer coefficient, T∞ is the plasma temperature, Ts is the particle surface 
temperature, ε is the particle emissivity, and σ is the Stefan–Boltzmann constant. 

For complete melting of the particles, the energy obtained by the particles during their motion in 
the plasma jet Qnet (Eqs 10 and 11), which is the integral of the net energy obtained during their stay 
in the plasma, must be higher than the energy required to heat the particles to their melting point, the 
latent energy of melting, and a certain degree of superheating: 

Q୬ୣ୲ = Qୡ୴ − Q୰                                                            (10) 

∫ Q୬ୣ୲ > mc୮(T୫ − Tஶ) + mH୫ + mc୮(Tୱ − T୫)
த

଴
                                (11) 

where m is the mass of the particle, cp is the specific heat of the particle, Tm is the melting point of the 
particle, T∞ is the plasma temperature, Hm is the latent heat of fusion of the particle, s is the surface 
temperature of the particle, and τ is the residence time of the particle in the plasma jet.  

In [75], Eq 12 was proposed to calculate the thermal power that must be transferred to the particles 
for their spheroidization: 

Nୋ = G୮ ∙ ቂ∫ c୮୫ ∙ dT + Q୫ + ∫ c୮୪
୘ౘ

୘ౣ
∙ dT + ቀQ୴ + ∫ c୮୴

୘౬

୘ౘ
+ J ∙ Qାቁ

୘ౣ

୘బ
ቃ ∙ ൬1 −

୰౦
య

୰౦బ
య ൰     (12) 

where Gp is the mass flow rate of the powder, Tm is the melting point of the material, cpm is the specific 
heat of the material in the solid state, Qm is the specific heat of fusion, cpl is the specific heat of the 
material in the liquid state, Tb is the boiling point of the material, Qv is the specific heat of vaporization 
of the material, cpv is the specific heat of the material in the vapor state, Tv is the ionization temperature 
of the material, J is the degree of ionization, and Q+ is the specific heat of formation of a singly    
ionized vapor. 

Moreover, an important characteristic of the process under consideration is the time of heating 
the particle surface to the melting temperature, the calculations of which can be carried out using          
Eq 13 [76,77]: 

t୫ =
୰஛

ଷ஑
ln

൫୘ౝି୘బ൯

୘ౝି୘ౣ
                                                            (13) 
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Theoretical analysis of the mechanisms of heat exchange between the plasma and the particles 
injected into it showed that for complete melting of the particles, it is necessary to ensure that the 
integral heat obtained during their stay in the plasma jet exceeds the total energy consumption for 
heating to the melting point, the latent heat of fusion, and subsequent overheating of the melt. This 
requires optimization of both the plasma torch’s parameters (temperature and enthalpy of the plasma 
jet) and the parameters of powder injection (mass, size distribution, speed, and duration of stay in the 
torch). The time of heating the particles to the melting temperature is also of practical importance, 
which depends on their size and thermophysical properties. An increase in the particle size 
significantly increases the time to reach the melting temperature, which complicates complete 
spheroidization. In addition, the heating efficiency significantly depends on the choice of              
plasma-forming gas. The use of gases with high thermal conductivity and enthalpy (helium, nitrogen, 
hydrogen, air, and methane) promotes more intense heat transfer to the surface of the particles, reduces 
their heating time, and expands the range of sizes suitable for spheroidization. 

3.3. Formation of a spherical particle shape 

In the molten state, surface tension forces smooth out irregularities and angles, bringing the 
particle to the minimum free energy of the surface—a sphere. At this stage, uniformity of heating and 
a sufficient duration of the particles’ stay in the high-temperature zone are important. 

Theoretical calculations given in [78] showed that an increase in the degree of superheating of 
the liquid metal (particles) leads to a decrease in the surface tension force, while the kinetic energy of 
atoms increases, interatomic bonds at the liquid–gas interface weaken, and the energy required for the 
formation of a new surface decreases, which facilitates the formation of drops of a regular shape and 
promotes the process of their spheroidization. The surface tension force of a drop (Eq 14) is determined 
as a function of temperature [79]: 

𝜎 = 𝜎௠ − 𝑘(𝑇 − 𝑇௠)                                                         (14) 

where σm is the surface tension force of the particle at the melting temperature Tm and k is the 
temperature coefficient of the material. 

Mikhalev and Petrunichev [80] believe that the residence time of the powder in the plasma jet t 
is the limiting factor of the spheroidization process and can be determined from Eq 15: 

t = ට
ଶୗ

୅୚ౝ
, A =

ସ.ହ஗

୰మ஡
                                                            (15) 

Another formula for determining the time required for the spheroidization of powder was 
proposed in [81], as Eq 16: 

τୱ୮୦ =
ଵ.଻଼ହ஠∙୰ౡ∙ஜౣ

஢೘
                                                            (16) 

where rk is the radius of the particle after its solidification, μm is the dynamic viscosity of the molten 
particle, and σm is the surface tension coefficient of the metal. 

In [82], Eq 17 was proposed, which can be used to determine the criterion B, which characterizes 
the intensity of the spheroidizing effect of plasma on powder particles: 
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B =
୲

୲ౣ
=

ଶ஑ටୗ/൫஗஡ ౝ൯

ୡ౦ ୪୬ቂଶቀ୘ౝି୘బ/൫୘ౝି୘ౣ൯ቁቃ
                                                (17) 

Thus, a spheroidization criterion value of B ≥ 0.8 corresponds to a yield of spherical particles 
greater than 60%. 

Analysis of the equations above for determining the residence time of the powder in the plasma 
jet showed that for effective spheroidization of particles, it is necessary to ensure conditions of uniform 
heating and sufficient residence time in the central high-temperature zones of the plasma jet [83–85]. 
In this case, increasing the degree of overheating of the molten particles by increasing the power of 
the plasma torch and the enthalpy of the plasma jet reduces the surface tension force, which facilitates 
the formation of the spherical shape of the droplets and contributes to an increase in the proportion of 
spherical granules in the final product. At the same time, the residence time in the torch acts as a 
limiting factor to ensure a spheroidization efficiency of 95%–100%. It is necessary to select the feed 
parameters and gas flow rate so that the particles pass through the hottest parts of the jet. In addition, 
increasing the length of the plasma jet contributes to the lengthening of the trajectory of particle motion 
in the high-temperature zone, which increases their residence time in the plasma and, accordingly, 
increases the efficiency of the spheroidization process. 

3.4. Cooling and solidification of the powder 

Upon exiting the hot zone, the particles cool down rapidly by heat exchange with the plasma and 
surrounding gas. Rapid quenching fixes the spherical shape and can lead to the formation of a fine 
dendritic structure or amorphous areas, depending on the material and cooling regime. 

The analytical equation that can be used to calculate the time required for the particles to solidify 
after passing through the plasma jet is as Eq 18 [77,81]: 

τ௦ =
ୡౣ∙஡р∙ୢౡ

଺஑
ln

୲ౣି୲ౝ

୲ౣ౛ౢି୲ౝ
                                                        (18) 

where cm is the specific heat capacity of the metal, tm is the temperature of the metal, tg is the 
temperature of the gas, tmel is the crystallization temperature of the metal, and α is the heat transfer 
coefficient for the final drop. 

Theoretical analysis of the equations above showed that for reliable fixation of the spherical shape 
of particles, especially in the case of materials with low thermal conductivity (particularly ceramics), 
solidification of the particles must occur before the particles collide with the walls of the receiving 
chamber (powder collection hopper). Otherwise, their deformation and deterioration of their spherical 
shape are possible. 

4. Technological schemes of the spheroidization process of irregularly shaped powders using DC 
plasma torches 

Studies have been devoted to the spheroidization of ceramic powder of Al2O3 (Figure 8a,b) and 
stainless steel SS316L (Figure 8c,d) with particle sizes of –25 and –45 μm, respectively, at a plasma 
torch power of 18–43 kW [86,87]. They found that radial powder feeding when using single-electrode 
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conventional plasma torches (Figure 2a) in the general case provides no more than 70–80 wt.% of 
spheroidized powder. In addition, the productivity of the process with such a spheroidization scheme 
does not exceed 2–17 g/min. 

 

Figure 8. (a) Scheme of the F4MB-XL plasma torch with a single cathode–anode and 
radial powder feed into the plasma jet. Appearance of the powder (b, d) before and (c, e) 
after spheroidization process. (b, c) Al2O3 fraction, –25 μm; (d, e) stainless steel SS316L 
fraction, –45 μm (Reproduced from Ref. [86,87] with permission). 

In one study [88], the efficiency of the spheroidization of oxide powders (Zr2O3–7YSZ and Al2O3) 
with a particle size of 40–120 µm was investigated in a nitrogen plasma jet with the addition of a 
combustible gas (methane), using a cascade-type plasma torch and radial injection of the powder into 
the plasma jet from four points. It is noted that nitrogen plasma at a plasma torch power of 50–75 kW 
enables effective spheroidization of the initial irregularly shaped powders (Figure 9), produced by 
spray-drying technology, while the process’s throughput can reach 20 kg/h. This is attributed,                
on the one hand, to the higher enthalpy of nitrogen plasma, which, in the temperature range                       
of 10,000–20,000 K, reaches 50–175 kJ/kg, compared with argon plasma, where the enthalpy does not 
exceed 5–30 kJ/kg [89]; on the other hand, it is attributed to the four-point powder injection method, 
which also significantly increases the process’s productivity. 
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Figure 9. Appearance of spheroidized aluminum oxide powder (Al2O3) with a particle size 
of 15–45 μm after spheroidization using a cascade plasma torch (Reproduced from Ref. 
[88] with permission). 

However, a significant disadvantage of this type of plasma torch is that it can only operate when 
nitrogen and air are used as the plasma-forming gases, which makes it impossible to process chemically 
active materials such as titanium, aluminum, zirconium, etc. 

In some research [90], an example of implementing an axial scheme for feeding powder into a 
plasma jet using a specialized three-cathode plasma torch with a common anode (Figure 10), which is 
powered by three independent DC sources, is given. 

 

Figure 10. Scheme of the plasma torch for a three-cathode spheroidization process with 
axial powder feed (Reproduced from Ref. [44] with permission). 

Authors investigated the influence of the nozzle-anode’s geometry on the efficiency of spheroidizing 
stabilized zirconium oxide (ZrO2–7YSZ) powder of the +10, –80 μm fraction [90]. By solving the 
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system of magnetohydrodynamics equations, the velocity and temperature characteristics of the plasma 
jets were determined, depending on the geometry of the nozzle part of the plasma torch, which provide 
a plasma jet outflow mode from subsonic to supersonic and their influence on the processes of     
powder spheroidization. 

It was found that the highest percentage of spheroidized particles (96.6%) was obtained when 
using a medium-speed nozzle with a nozzle channel diameter of 17 mm, which provided an optimal 
balance among temperature, velocity, and length of the plasma jet (Table 1). 

Table 1. Efficiency of the spheroidization process of ZrO2–YSZ powder of the +10, –80 μm 
fraction using a three-cathode scheme with an axial feed. 

Nozzle type Spheroidization rate (%) d10 (µm) d50 (µm) d90 (µm) 

Without nozzle 62.5 20.83 37.63 57.01 

High-speed 94.8 11.05 22.90 42.43 

Intermediate-speed 96.6 26.67 53.17 82.15 

Low-speed 90.8 26.21 43.31 62.71 

At the same time, it should be noted that despite the use of a three-cathode system and an axial 
powder feed, the process’s productivity remained quite low, up to 12 g/min. This may be due to 
difficulties in achieving a stable powder feed into the axis of the plasma jet, possible powder sticking 
to the inner walls of the nozzle-anode, or other design features of the system that were not disclosed 
in detail in the work. 

A slightly different design of a multi-cathode plasma torch with an axial powder feed to the arc 
column is presented in [91,92]. In this device, six independent DC arc sources feed six plasma arcs 
formed between six lanthanated tungsten cathodes (2% La2O3, 6 mm in diameter) arranged in a circle 
and a common anode: a copper nozzle with a refractory tungsten insert and a central hole with a 
diameter of 20 mm. 

An irregularly shaped powder is fed into the central (axial) zone of the plasma jet’s outflow, 
which, passing through the zone of the high-temperature arc column, is heated, spheroidized, carried 
out through the nozzle, cooled, and solidified due to contact with the surrounding cold gas. 

Experiments on spheroidization of irregularly shaped tungsten powder of the –45 μm fraction at 
a current of 450 A and an average voltage of 32.8–34.3 V for each of the power sources showed that 
the maximum degree of spheroidization of ~96% was achieved only when using the Ar–He 40/60 
mixture as the plasma-forming gas and the powder feed rate was no more than 20 g/min [92]. 

The design disadvantages of the specified device include difficulties associated with the axial 
injection of powder into the arc column zone. The presence of six arcs, which are formed inside the 
plasma torch with significant gaps between them leads to an unstable powder supply directly into the 
arc column zone and a decrease in the number of processed particles. In addition, part of the powder 
can settle on the anode’s surface and form a crust of melted particles. Further detachment of this crust 
as a result of the temperature and gas-dynamic effects of the plasma can lead to the formation of 
conglomerates, which, falling into the plasma jet, do not have time to completely melt. This, in turn, 
causes the appearance of a certain number of particles of irregular shape in the final product. There are 
also operational difficulties associated with the design of a six-cathode device, such as the need to use 
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six power sources instead of one, the difficulty in controlling and coordinating them to ensure a 
uniform current and voltage on all electrodes, the increase in costs for electrical equipment, etc. 

Another approach to the spheroidization process is the scheme of radial feeding of powder into 
the section of the plasma arc column [93–96]. In devices of this scheme, the plasma arc burns between 
a tungsten cathode and a remote water-cooled copper anode (Figure 11) [94,97,98]. 

 

Figure 11. (a) Scheme and (b) external view of a plasma torch for microplasma spraying 
with radial feed of the powder or wire into the arc column. 1: Anode; 2: plasma jet;  3: wire 
feeding mechanism; 4: cathode; 5: plasma-forming gas supply; 6: raw material; 7: coolant 
and sheilding gas supply; 8: plasma arc; 9: powder supply (Reproduced from Ref. [94] 
with permission). 

In the 1980s, equipment for microplasma spraying of coatings was developed at the E.O. Paton 
Institute of Electric Welding [93,99]. Metal and ceramic powders were used, which were fed into the 
arc column. Studies of the coatings obtained using this method [100–103] confirmed that high-density 
coatings were formed during the spraying process, even in the case of using a low-amperage (<50 A) 
arc. In [95], it was shown that with a limited plasma torch power of 3 kW, implementation of the 
specified powder injection scheme allows for the effective heating of ceramic powders such as 
stabilized zirconium oxide (ZrO2–8YSZ) with a 40-μm fraction, while the process is characterized by 
indicators of quite high energy efficiency, which are ~20 kW/kg, and the thermal efficiency of the 
plasma torch, which can reach η = 0.73, compared with other powder injection schemes [104–106]. 

Another technical device of the abovementioned scheme is a plasma torch with water arc 
stabilization [106]. In this device, the plasma arc is also formed between a lanthanated tungsten cathode 
and an external copper electrode (Figure 12), the anode, which rotates [107]. 
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Figure 12. Scheme of the WSP®H plasma torch with a rotating copper anode (Reproduced 
from Ref. [107] with permission). 

An experimental study of the abovementioned process [107] showed that the anode’s rotation 
speed is ~47 m/s, while the speed of movement of the anode arc’s attachment (Figure 13) along the 
anode’s surface is 298 ± 14 m/s. This allows the operator to reduce, first of all, the electrical erosion 
of the external copper electrode and to operate at currents of 200–600 A, increasing the total thermal 
power to 200 kW. 

 

Figure 13. Location of the arc’s attachment on the surface of the rotating copper anode 
(Reproduced from Ref. [107] with permission). 

Another significant feature of the abovementioned plasma torch design is the compression of the 
arc column with water, which leads to an increase in the energy density, an increase in the voltage to 
values of 270–320 V and an increase in the arc column temperature from 16,000 to 28,000 K compared 
with conventional plasma torches with a power of up to 50 kW, where the stabilization of the arc 
discharge is carried out only by a flow of cold gas [106]. 

The use of a WSP®H plasma torch with an external copper electrode [108] for spheroidization of 
Al2O3 ceramic powder of the +38, –75 μm fraction can achieve productivity values of 10 kg/h with a 
total plasma torch power of 150 kW. 
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The design disadvantages of the specified device include its significant dimensions and weight 
due to the addition to the design of the plasma torch of a copper anode rotation unit with an 
asynchronous motor and a complex system for supplying coolant to the rotating anode [109]. This 
significantly complicates the placement of the plasma torch in vacuum chambers with a controlled 
atmosphere. Other drawbacks are the large dimensions of the anode unit  and its fixed position, which 
makes it impossible to supply powder directly to the area from the end of the plasma torch’s nozzle to 
the place of anode attachment (in the arc column), where the highest temperature of the plasma jet is 
diagnosed, since this will lead to powder sticking to the anode’s surface. Operational disadvantages 
include the presence of a significant hydrogen and oxygen content in the plasma-forming gas, which, 
when working with such reactive metals as titanium and zirconium, leads to an increase in the hydrogen 
and oxygen content in the powder above permissible limits and subsequently to a decrease in the 
mechanical properties of products obtained using such powders. 

For the task of spheroidizing powders, the design of the Axial III plasma torch (Mettech) is also 
of considerable interest due to its multi-cathode system and axial powder feed [110,111]. The use of 
three independent cathode–anode assemblies allows for the formation of a high-power torch with 
extended possibilities for regulating the thermal characteristics. The axial powder feed ensures the 
uniform introduction of particles directly into the central region of the plasma flow, which minimizes 
the influence of cold zones and increases the probability of complete melting of particles with an 
irregular shape. This makes it promising for the spheroidization of refractory materials and coarse-
dispersed fractions. 

At the same time, studies performed on this type of plasma torch revealed a number of features 
that require further study [43]. In particular, the “petal” temperature distribution of the jets, 
characteristic of the design associated with three arcs, leads to temporal and spatial inhomogeneity of 
the heating of the dispersed material (Figure 14). 

Although, individual streams merge at a certain distance from the nozzle (~30 mm from the nozzle 
end), the question remains about the optimal length of the processing zone and the influence of plasma 
jet fluctuations on the stability of spheroidization (Figure 14). 

It should also be noted that despite a considerable amount of research [55,57,59,61,112] on the 
thermal characteristics of plasma torches with tubular electrodes, there is no information regarding 
their application specifically in the process of spheroidization of irregular-shaped powders. The 
available data primarily concern their efficient use in the production of spherical powders via wire 
spraying technology [61,113,114]. 

Analyses of the thermal characteristics of DC plasma torch designs (Table 2) [115] shows           
that the highest efficiencies are observed in plasma torches with an external extended electrode serving 
as the anode (direct polarity, with the tungsten electrode acting as the cathode) and in plasma torches 
with tubular copper electrodes, where the efficiency can reach 82% and 87%, respectively. Plasma 
torches with tubular copper electrodes operating in reverse polarity make it possible to generate      
high-enthalpy plasma jets when using either argon as the plasma-forming gas, where the enthalpy can 
reach 6.5 × 106 J/kg, or nitrogen, where the enthalpy may reach 15.8 × 106 J/kg. This makes such 
plasma torches highly promising for spheroidization processes, enabling increased productivity and 
improved efficiency in treatment of the feedstock powder. From the standpoint of spheroidization 
efficiency, significant interest has been attracted by multi-electrode (three-cathode and six-cathode) 
plasma torch designs, where the degree of powder spheroidization can reach 96% or higher. However, 
despite the high plasma jet enthalpy of 36.7–46.1 × 106 J/kg, the reason for the low process throughput 
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in the spheroidization of both ceramic and metallic materials remains unclear. For zirconium            
oxide (ZrO2), throughput does not exceed 0.75 kg/h, and for tungsten (W), it is around 1.2 kg/h. The 
analysis of plasma torch designs also showed that at present, the spheroidization of ceramic       
materials (primarily metal oxides) is most effectively achieved using cascade-type plasma torches 
operating with air or nitrogen as the plasma-forming gas. When combined with four-point radial 
powder injection, such systems may reach throughputs of up to 20 kg/h. 

 

Figure 14. Tomographic 3D reconstruction of the temperature field in the plasma jet of 
the Axial III plasma torch using a new set of cathodes and anodes (operating time, t < 5 h). 
(a) Nozzle with a diameter of 3/8´´; (b) nozzle with a diameter of 9/16´´; (c) nozzle with a 
diameter of 5/16´´ (Reproduced from Ref. [43] with permission). 

Table 2. Comparison of the thermal characteristics of direct current plasma torches. 

Torch/scheme Thermal 
efficiency, % 

Arc 
voltage, 
V 

Current, 
A 

Plasma gas 
flow rate 
(slpm), 
*(g/s) 

Plasma 
enthalpy, 
J/kg 

Material Spheroidization 
rate, % 

Productivity, 
kg/h 

Metco F4MB 
[86] (one 
cathode, one 
anode) 
Radial powder 
feeding into the 
plasma jet from a 
single point 

- *18 kW 
*28 kW 

- Ar (40)–He 
(15) 
Ar (40)–N2 
(3) 

- Al2O3 (–
25 µm) 

67 
97 

0.10 
0.10 

Continued on next page 
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Torch/scheme Thermal 

efficiency, % 
Arc 
voltage, 
V 

Current, 
A 

Plasma gas 
flow rate 
(slpm), 
*(g/s) 

Plasma 
enthalpy, 
J/kg 

Material Spheroidization 
rate, % 

Productivity, 
kg/h 

Metco F4MB 
[87] (one 
cathode, one 
anode) 
Radial powder 
feeding into the 
plasma jet from a 
single point 

- 30 
30 
30 
*15 kW 

400 
545 
655 
 
- 

Ar (40)–He 
(10) 
Ar (40)–He 
(10) 
Ar (40)–He 
(10) 
Ar (40)–He 
(15) 

- Stainless 
steel 
SS316L 
(+10, –150 
µm) 
(+15, –45 
µm) 

80 
77 
86 
80 

0.30 
0.30 
0.30 
2.8 

Metco 
F4MB-XL [115] 
(one cathode, 
one anode) 

49 
60 
60 
54 
58 
61 

32 
38 
42 
32 
37 
41 

600 
600 
600 
800 
800 
800 

Ar (40) 
Ar (60) 
Ar (80) 
Ar (40) 
Ar (60) 
Ar (80) 

- - - - 

Metco 
SinplexPro [34] 
(cascade, one 
cathode, one 
anode) 

51 
73 

89 
81 

500 
500 

Ar-
H2*(1.50) 
Ar–He 
*(1.44) 

15.1ꞏ× 
106 
20.1ꞏ× 
106 

- - - 

Khristianovich 
Institute of 
Theoretical and 
Applied 
Mechanics [88] 
(cascade, one 
cathode, one 
anode) 
Radial powder 
feeding into the 
plasma jet from 
four points  

60–70 300 250 Air–CH4 or 
N2 

(100) 

- Al2O3, 
ZrO2–
YSZ 
(+40, –120 
µm) 

- 20 

Sichuan 
University [90] 
(three cathodes, 
one anode) 
Axial powder 
feeding into the 
plasma jet 

40 
41 
44 

129 
138 
170 

3 × 120 
3 × 120 
3 × 120 

N2 (10) 
Nozzle: 12 
mm 
N2 (10) 
Nozzle: 17 
mm 
N2 (10) 
Nozzle: 22 
mm 

36.7 
37.4 
46.1 

ZrO2–
YSZ 
(+10, –80 
µm) 

94.8 
96.6 
90.8 

0.75 

Hefei University 
[92] (six 
cathodes, one 
anode) 
Axial powder 
feeding into the 
plasma jet 

- 20.5 
25.8 
30.7 
34.2 

6 × 450 
6 × 390 
6 × 390 
6 × 390 

Ar–He (20 
Vol) 
Ar–He (20 
Vol) 
Ar–He (40 
Vol) 
Ar–He (60 
Vol) 

- W (–45 
µm) 

62 
59 
73 
96 

1.2 
1.2 
1.2 
1.2 

WSP®H [93] 
(external copper 
anode), Radial 
feeding of 
powder into arc 
column 

82 260 600 Ar 
(40) 

- - - - 

MPN-04 [82] 
(external copper 
anode), Radial 
feeding of 
powder into arc 
column 

73 40 45 Ar 
(3) 

- ZrO2–
7YSZ 
(–40 µm) 

- 0.15 

Continued on next page 
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Torch/scheme Thermal 

efficiency, % 
Arc 
voltage, 
V 

Current, 
A 

Plasma gas 
flow rate 
(slpm), 
*(g/s) 

Plasma 
enthalpy, 
J/kg 

Material Spheroidization 
rate, % 

Productivity, 
kg/h 

RPT [61] 
(tubular copper 
cathode–anode) 

74 
70 
87 

202 
137 
193 

140 
120 
80 

Ar (120) 
Ar (60) 
Ar (150) 

5.9 × 106 
6.5 × 106 

3.1 × 106 

- - - 

RPT [57,112] 
(tubular copper 
cathode–anode) 

71 
73 
67 

255 
846 
890 

70 
350 
506 

N2 (50) 
N2 (1050) 
N2 (1050) 

- 
10.1 × 
106 

15.8 × 
106 

- - - 

5. Conclusions 

The present review highlights the following key findings: 
1. As a result of the classification and analytical generalization of the current designs of DC 

plasma torches, it has been established that the use of plasma torches with “hot” tungsten electrodes 
has proven effective in industry when operating at high currents (up to 800 A) with gas mixtures based 
on argon with the addition of small amounts of helium, nitrogen, or hydrogen (mainly up to 5%–10%), 
where a high service life of the plasma torch is achieved and the electrode erosion rate does not     
exceed 1 × 10–12 kg/C. However, for modern tasks of spheroidizing powder material, it is necessary to 
use mixtures based not only on argon but also on nitrogen and helium, where the amount of the additive 
gas may exceed 20%. Under such conditions, the operation of tungsten electrodes becomes impossible, 
or, as in the case of using nitrogen as the plasma-forming gas, the erosion intensity increases fivefold. 

Possible solutions to these challenges include the following: 
(1) The use of local blowing of the tungsten cathode surface with a small amount of inert               

gas (argon), followed by passing the main gas flow (N2, H2, CH4, CO2, etc.) through the plasma to 
create a protective sheath around the tungsten cathode. 

(2) The use of low-current (I = 70–300 A) and relatively high-voltage (U = 150–1000 V) plasma 
torch designs with “cold” autoemissive cathodes (tubular copper), where the cathode erosion intensity 
may decrease to ~1 × 10–14 kg/C. 

2. Theoretical analysis of the physical processes occurring in a DC plasma arc during the 
interaction of the plasma with the dispersed material showed that the efficiency of spheroidization is 
determined by the set of plasma torch parameters (current, voltage, enthalpy of the plasma flow), gas 
velocity, and the particles’ size and time of their stay in the plasma jet. Effective formation of a 
spherical morphology is ensured if the particles pass through the central high-temperature zone of the 
plasma jet, where they are uniformly heated and completely melted. A comparison of powder feeding 
schemes has shown that with radial feeding, the spheroidization efficiency is usually limited                     
to 70%–82% at a plasma torch power of 15–18 kW and when using a plasma-forming mixture based 
on argon with nitrogen or helium. At the same time, when the plasma torch power is increased                 
to 20–28 kW and, accordingly, the enthalpy of the plasma flow increases, the degree of spheroidization 
for radial feeding can rise to 86%–97%, which corresponds to certain high-power modes and 
experimental data on the treatment of oxide and metallic powder particles. In turn, axial feeding 
provides significantly better thermal conditions for particle heating, allowing more than 95% spherical 
particles to be achieved. In particular, in a three-cathode plasma torch with a power of 50 kW and axial 
feeding of ZrO2–YSZ powder, a spheroidization degree of 96.6% was recorded when operating with 
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nitrogen plasma. When processing tungsten powder in an argon–helium plasma jet of a six-cathode 
plasma torch with a power of up to 80 kW, the degree of spheroidization reaches up to 96%. 

3. Based on a review of current design and technological solutions, promising directions have 
been identified for improving the efficiency of plasma processing and the productivity of the 
spheroidization of ceramic and metallic materials. Plasma torches capable of generating a high-enthalpy 
plasma jet using nitrogen as the plasma-forming gas demonstrate the highest thermal efficiency for the 
spheroidization of ceramic materials, ensuring intensive and uniform particle melting. An additional 
way to enhance the degree of spheroidization and the overall process’s productivity for both ceramic 
and metallic powders is to introduce the material directly into the arc column, where the energy density 
is significantly higher than in the peripheral regions of the plasma jet. Implementation of this approach 
requires the use of external electrodes, as in plasma torches of the MPN-04 and WSP® types, which 
opens up prospects for the substantial expansion of industrial applications of DC plasma torches in 
high-productivity powder spheroidization processes. 

Another promising option for achieving a high degree of spheroidization of the feedstock powder 
is the use of plasma torch designs with axial powder injection, where this parameter can reach 96%–97%. 
However, existing laboratory-scale designs still require further optimization of gas-dynamic and 
thermal parameters to ensure stable and reliable operation, increase productivity, and improve the 
overall energy efficiency of the process. 
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