Research article Special Issues

Efficient energy-stable second-order predictor-corrector SAV scheme for the Cahn-Hilliard equation: algorithm, analysis, and computation

  • Published: 24 October 2025
  • The Cahn-Hilliard equation plays a central role in modeling phase separation processes in complex systems, including alloys, polymers, and biological materials. Numerical schemes for this equation must balance efficiency, stability, and accuracy in order to capture the rich dynamics of interfacial evolution. In this work, we developed a new second-order predictor–corrector scheme within the scalar auxiliary variable (SAV) framework, combined with Crank–Nicolson (CN) time discretization. The proposed method is linear, uniquely solvable, and unconditionally energy stable, while also providing rigorous error estimates. Computational experiments demonstrated that the new scheme not only maintains second-order temporal accuracy for relatively large time steps, but also yields smaller numerical errors compared to standard SAV-CN methods. These results highlight both the theoretical advantages and practical potential of the predictor–corrector SAV approach for advancing accurate and efficient simulations of phase-field models in science and engineering.

    Citation: Shimin Lin, Chi Fui William Ni, Jun Zhang, Pengtao Yue. Efficient energy-stable second-order predictor-corrector SAV scheme for the Cahn-Hilliard equation: algorithm, analysis, and computation[J]. Electronic Research Archive, 2025, 33(10): 6298-6321. doi: 10.3934/era.2025278

    Related Papers:

  • The Cahn-Hilliard equation plays a central role in modeling phase separation processes in complex systems, including alloys, polymers, and biological materials. Numerical schemes for this equation must balance efficiency, stability, and accuracy in order to capture the rich dynamics of interfacial evolution. In this work, we developed a new second-order predictor–corrector scheme within the scalar auxiliary variable (SAV) framework, combined with Crank–Nicolson (CN) time discretization. The proposed method is linear, uniquely solvable, and unconditionally energy stable, while also providing rigorous error estimates. Computational experiments demonstrated that the new scheme not only maintains second-order temporal accuracy for relatively large time steps, but also yields smaller numerical errors compared to standard SAV-CN methods. These results highlight both the theoretical advantages and practical potential of the predictor–corrector SAV approach for advancing accurate and efficient simulations of phase-field models in science and engineering.



    加载中


    [1] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [2] J. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. A, 454 (1998), 2617–2654. https://doi.org/10.1098/rspa.1998.0273 doi: 10.1098/rspa.1998.0273
    [3] L. Chen, J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun., 108 (1998), 147–158. https://doi.org/10.1016/S0010-4655(97)00115-X doi: 10.1016/S0010-4655(97)00115-X
    [4] L. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32 (2002), 113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041 doi: 10.1146/annurev.matsci.32.112001.132041
    [5] J. Eggleston, G. Mcfadden, P. Voorhees, A phase field model for highly anisotropic interfacial energy, Physica D, 150 (2001), 91–103. https://doi.org/10.1016/S0167-2789(00)00222-0 doi: 10.1016/S0167-2789(00)00222-0
    [6] Q. Du, C. Liu, X. Wan, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., 212 (2006), 757–777. https://doi.org/10.1016/j.jcp.2005.07.020 doi: 10.1016/j.jcp.2005.07.020
    [7] M. Forest, Q. Wang, X. Yang, Lcp droplet dispersions: a two-phase, diffuse-interface kinetic theory and global droplet defect predictions, Soft Matter, 8 (2012), 9642–9660. https://doi.org/10.1039/c2sm25512j doi: 10.1039/c2sm25512j
    [8] C. Elliott, A. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal., 30 (1993), 1622–1663. https://doi.org/10.1137/0730084 doi: 10.1137/0730084
    [9] D. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS Online Proc. Lib., 529 (1998), 39–46. https://doi.org/10.1557/PROC-529-39 doi: 10.1557/PROC-529-39
    [10] J. Zhu, L. Q. Chen, J. Shen, V. Tikare, Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method, Phys. Rev. E, 60 (1999), 3564–3572. https://doi.org/10.1103/PhysRevE.60.3564 doi: 10.1103/PhysRevE.60.3564
    [11] J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discret. Contin. Dyn. Syst., 28 (2010), 1669–1691. https://doi.org/10.3934/dcds.2010.28.1669 doi: 10.3934/dcds.2010.28.1669
    [12] R. Chen, G. Ji, X. Yang, H. Zhang, Decoupled energy stable schemes for phase-field vesicle membrane model, J. Comput. Phys., 302 (2015), 509–523. https://doi.org/10.1016/j.jcp.2015.09.025 doi: 10.1016/j.jcp.2015.09.025
    [13] X. Yang, J. Zhao, Q. Wang, J. Shen, Numerical approximations for a three components cahn-hilliard phase-field model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci., 27 (2017), 1993–2030. https://doi.org/10.1142/S0218202517500373 doi: 10.1142/S0218202517500373
    [14] X. Yang, Linear, first and second order, and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys., 327 (2016), 294–316. https://doi.org/10.1016/j.jcp.2016.09.029 doi: 10.1016/j.jcp.2016.09.029
    [15] X. Yang, X. He, A fully-discrete decoupled finite element method for the conserved Allen–Cahn type phase-field model of three-phase fluid flow system, Comput. Methods Appl. Mech. Eng., 389 (2022). https://doi.org/10.1016/j.cma.2021.114376 doi: 10.1016/j.cma.2021.114376
    [16] M. Jiang, Z. Zhang, J. Zha, Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation, J. Comput. Phys., 456 (2002). https://doi.org/10.1016/j.jcp.2022.110954 doi: 10.1016/j.jcp.2022.110954
    [17] Z. Liu, Y. Zhang, X. Li, A Novel Energy-Optimized Technique of SAV-Based (EOP-SAV) Approaches for Dissipative Systems, J. Sci. Comput., 101 (2024). https://doi.org/10.1007/s10915-024-02677-0 doi: 10.1007/s10915-024-02677-0
    [18] J. Wu, X. Zhang, Y. Wu, Z. Tan, Consistency-enhanced E-SAV BDF2 time-marching method with relaxation for the hydrodynamically-coupled binary phase-field crystal model, Commun. Nonlinear Sci. Numer. Simul., 145 (2025). https://doi.org/10.1016/j.cnsns.2025.108730 doi: 10.1016/j.cnsns.2025.108730
    [19] S. Dai, Q. Du, Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility, J. Comput. Phys., 310 (2016), 85–108. https://doi.org/10.1016/j.jcp.2016.01.018 doi: 10.1016/j.jcp.2016.01.018
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(410) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog