D. Suyama and H. Terao established an exact basis construction for the derivation modules of the cone over the Shi arrangements utilizing Bernoulli polynomials. In this paper, building on the above basis, we introduce an explicit basis construction for a class of Free arrangements that lie between the cone of Linial arrangements and Shi arrangements.
Citation: Ruimei Gao, Meihui Jiang. A basis construction for Free subarrangements of Shi arrangements[J]. Electronic Research Archive, 2025, 33(10): 6058-6069. doi: 10.3934/era.2025269
D. Suyama and H. Terao established an exact basis construction for the derivation modules of the cone over the Shi arrangements utilizing Bernoulli polynomials. In this paper, building on the above basis, we introduce an explicit basis construction for a class of Free arrangements that lie between the cone of Linial arrangements and Shi arrangements.
| [1] | K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 265–291. |
| [2] |
H. Terao, Multiderivations of Coxeter arrangements, Invent. Math., 148 (2002), 659–674. https://doi.org/10.1007/s002220100209 doi: 10.1007/s002220100209
|
| [3] | J. Y. Shi, The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Springer-Verlag, Berlin, 2006. |
| [4] |
T. Abe, H. Terao, Simple-root bases for Shi arrangements, J. Algebra, 422 (2015), 89–104. https://doi.org/10.1016/j.jalgebra.2014.09.011 doi: 10.1016/j.jalgebra.2014.09.011
|
| [5] |
D. Armstrong, B. Rhoades, The Shi arrangement and the Ish arrangement, Trans. Am. Math. Soc., 364 (2012), 1509–1528. https://doi.org/10.1090/s0002-9947-2011-05521-2 doi: 10.1090/s0002-9947-2011-05521-2
|
| [6] |
Z. X. Wang, G. F. Jiang, Free subarrangements of Shi arrangements, Graphs Comb., 38 (2022), 59–67. https://doi.org/10.1007/s00373-021-02399-2 doi: 10.1007/s00373-021-02399-2
|
| [7] |
M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math., 157 (2004), 449–454. https://doi.org/10.1007/s00222-004-0359-2 doi: 10.1007/s00222-004-0359-2
|
| [8] |
T. Abe, H. Terao, The freeness of Shi-Catalan arrangements, Eur. J. Comb., 32 (2011), 1191–1198. https://doi.org/10.1016/j.ejc.2011.06.005 doi: 10.1016/j.ejc.2011.06.005
|
| [9] |
D. Suyama, H. Terao, The Shi arrangements and the Bernoulli polynomials, Bull. London Math. Soc., 44 (2012), 563–570. https://doi.org/10.1112/blms/bdr118 doi: 10.1112/blms/bdr118
|
| [10] |
D. Suyama, A basis construction for the Shi arrangement of the type $B_\ell$ or $C_\ell$, Commun. Algebra, 43 (2015), 1435–1448. https://doi.org/10.1080/00927872.2013.865051 doi: 10.1080/00927872.2013.865051
|
| [11] |
R. M. Gao, D. H. Pei, H. Terao, The Shi arrangement of the type $D_\ell$, Proc. Japan Acad. Ser. A Math. Sci., 88 (2012), 41–45. https://doi.org/10.3792/pjaa.88.41 doi: 10.3792/pjaa.88.41
|
| [12] |
T. Abe, D. Suyama, A basis construction of the extended Catalan and Shi arrangements of the type $A_2$, J. Algebra, 493 (2018), 20–35. https://doi.org/10.1016/j.jalgebra.2017.09.024 doi: 10.1016/j.jalgebra.2017.09.024
|
| [13] |
D. Suyama, M. Yoshinaga, The primitive derivation and discrete integrals, SIGMA, 17 (2021), 563–570. https://doi.org/10.3842/SIGMA.2021.038 doi: 10.3842/SIGMA.2021.038
|
| [14] | P. Orlik, H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin, 1992. |