Research article

Modeling and optimal control analysis of age-structured Brucellosis under environmental transmission with vaccination and culling

  • Published: 29 August 2025
  • Brucellosis is currently recognized as one of the most serious zoonotic infectious diseases, caused by Brucella abortus, and is classified by the World Organization for Animal Health as a Category B zoonotic disease. In this study, we developed a new seven-compartment model of the transmission dynamics brucellosis in sheep, which accounts for the combined effects of vaccination, age structure, culling of infected sheep, and the impact of the contaminated environment. Our analysis demonstrates that the DFE point of the system is globally and asymptotically stable when the basic reproduction number $ R_0 < 1 $. Furthermore, we show that the disease persists when $ R_0 > 1 $, in accordance with the theory of uniform persistence. In the numerical simulation section, we fit data on the number of Brucella infections in sheep in Egypt from 1999 to 2010 and estimate the model's parameters using the least squares method. Based on this, we propose four control strategies to establish the optimal control system. We applied Pontryagin's maximum principle to derive the necessary conditions for optimal control and perform numerical simulations. A cost-benefit analysis was conducted from the perspective of sheep farmers. Our findings suggest that the most cost-effective strategy for reducing brucellosis infection rates in sheep is to uniformly house young sheep and vaccinate them simultaneously.

    Citation: Qun Dai, Liming Guo. Modeling and optimal control analysis of age-structured Brucellosis under environmental transmission with vaccination and culling[J]. Electronic Research Archive, 2025, 33(8): 5100-5132. doi: 10.3934/era.2025229

    Related Papers:

  • Brucellosis is currently recognized as one of the most serious zoonotic infectious diseases, caused by Brucella abortus, and is classified by the World Organization for Animal Health as a Category B zoonotic disease. In this study, we developed a new seven-compartment model of the transmission dynamics brucellosis in sheep, which accounts for the combined effects of vaccination, age structure, culling of infected sheep, and the impact of the contaminated environment. Our analysis demonstrates that the DFE point of the system is globally and asymptotically stable when the basic reproduction number $ R_0 < 1 $. Furthermore, we show that the disease persists when $ R_0 > 1 $, in accordance with the theory of uniform persistence. In the numerical simulation section, we fit data on the number of Brucella infections in sheep in Egypt from 1999 to 2010 and estimate the model's parameters using the least squares method. Based on this, we propose four control strategies to establish the optimal control system. We applied Pontryagin's maximum principle to derive the necessary conditions for optimal control and perform numerical simulations. A cost-benefit analysis was conducted from the perspective of sheep farmers. Our findings suggest that the most cost-effective strategy for reducing brucellosis infection rates in sheep is to uniformly house young sheep and vaccinate them simultaneously.



    加载中


    [1] D. Shang, D. Xiao, J. Yin, Epidemiology and control of brucellosis in China, Vet. Microbiol., 90 (2002), 165–182. https://doi.org/10.1016/s0378-1135(02)00252-3 doi: 10.1016/s0378-1135(02)00252-3
    [2] J. González-Guzmán, R. Naulin, Analysis of a model of bovine brucellosis using singular perturbations, J. Math. Biol., 33 (1994), 211–223. https://doi.org/10.1007/BF00160180 doi: 10.1007/BF00160180
    [3] J. Nie, G. Sun, X. Sun, J. Zhang, N. Wang, Y. Wang, et al., Modeling the transmission dynamics of dairy cattle brucellosis in Jilin Province, China, J. Biol. Syst., 22 (2014), 533–554. https://doi.org/10.1142/S021833901450020X doi: 10.1142/S021833901450020X
    [4] J. Zhang, G. Sun, X. Sun, Q. Hou, M. Li, B. Huang, et al., Prediction and control of brucellosis transmission of dairy cattle in Zhejiang Province, China, PLoS ONE, 9 (2014), 108592. https://doi.org/10.1371/journal.pone.0108592 doi: 10.1371/journal.pone.0108592
    [5] G. Sun, Z. Zhang, Global stability for a sheep brucellosis model with immigration, Appl. Math. Comput., 246 (2014), 336–345. https://doi.org/10.1016/j.amc.2014.08.028 doi: 10.1016/j.amc.2014.08.028
    [6] Q. Hou, Global analysis of a multi-group animal epidemic model with indirect infection and time delay, J. Appl. Anal. Comput., 6 (2016), 1023–1040. https://doi.org/10.11948/2016066 doi: 10.11948/2016066
    [7] P. O. Lolika, S. Mushayabasa, C. P. Bhunu, C. Modnak, J. Wang, Modeling and analyzing the effects of seasonality on brucellosis infection, Chaos Solitons Fractals, 104 (2017), 338–349. https://doi.org/10.1016/j.chaos.2017.08.027 doi: 10.1016/j.chaos.2017.08.027
    [8] L. Zhou, M. Fan, Q. Hou, Z. Jin, X. Sun, Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China, Math. Biosci. Eng., 15 (2018), 543–567. https://doi.org/10.3934/mbe.2018025 doi: 10.3934/mbe.2018025
    [9] Q. Hou, X. Sun, Modeling sheep brucellosis transmission with a multi-stage model in Changling County of Jilin Province, China, J. Appl. Math. Comput., 51 (2016), 227–244. https://doi.org/10.1007/s12190-015-0901-y doi: 10.1007/s12190-015-0901-y
    [10] Q. Hou, X. Sun, J. Zhang, Y. Liu, Y. Wang, Z. Jin, Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242 (2013), 51–58. https://doi.org/10.1016/j.mbs.2012.11.012 doi: 10.1016/j.mbs.2012.11.012
    [11] C. Yang, P. O. Lolika, S. Mushayabasa, J. Wang, Modeling the spatiotemporal variations in brucellosis transmission, Nonlinear Anal. Real World Appl., 38 (2017), 49–67. https://doi.org/10.1016/j.nonrwa.2017.04.006 doi: 10.1016/j.nonrwa.2017.04.006
    [12] M. Li, G. Sun, Y. Wu, J. Zhang, Z. Jin, Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl. Math. Comput., 237 (2014), 582–594. https://doi.org/10.1016/j.amc.2014.03.094 doi: 10.1016/j.amc.2014.03.094
    [13] B. Aïnseba, C. Benosman, P. Magal, A model for ovine Brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4 (2010), 2–11. https://doi.org/10.1080/17513750903171688 doi: 10.1080/17513750903171688
    [14] C. Li, Z. Guo, Z. Zhang, Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis, Chaos Solitons Fractals, 104 (2017), 161–172. https://doi.org/10.1016/j.chaos.2017.08.013 doi: 10.1016/j.chaos.2017.08.013
    [15] K. Meng, X. Abdurahman, Study of the brucellosis transmission with multi-stage, Commun. Math. Biol. Neurosci., 2018 (2018), 20. https://doi.org/10.28919/cmbn/3796 doi: 10.28919/cmbn/3796
    [16] J. Zinsstag, F. Roth, D. Orkhon, G. Chimed-Ochir, M. Nansalmaa, J. Kolar, et al., A model of animal-human brucellosis transmission in Mongolia, Prev. Vet. Med., 69 (2005), 77–95. https://doi.org/10.1016/j.prevetmed.2005.01.017 doi: 10.1016/j.prevetmed.2005.01.017
    [17] M. Li, G. Sun, J. Zhang, Z. Jin, X. Sun, Y. Wang, et al., Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China, Math. Biosci. Eng., 11 (2014), 1115–1137. https://doi.org/10.3934/mbe.2014.11.1115 doi: 10.3934/mbe.2014.11.1115
    [18] H. R. Holt, M. Walker, W. Beauvais, P. Kaur, J. S. Bedi, P. Mangtani, et al., Modelling the control of bovine brucellosis in India, J. R. Soc. Interface, 20 (2023), 20220756. https://doi.org/10.1098/rsif.2022.0756 doi: 10.1098/rsif.2022.0756
    [19] W. Wang, X. Abdurahman, Dynamics of a stochastic multi-stage sheep brucellosis model with incomplete immunity, Int. J. Biomath., 16 (2023), 08. https://doi.org/10.1142/S1793524522501388 doi: 10.1142/S1793524522501388
    [20] L. Zhou, M. Fan, Q. Hou, Z. Jin, X. Sun, Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China, Math. Biosci. Eng., 15 (2018), 543–567. https://doi.org/10.3934/mbe.2018025 doi: 10.3934/mbe.2018025
    [21] B. Nannyonga, G. G. Mwanga, L. S. Luboobi, An optimal control problem for ovine brucellosis with culling, J. Biol. Dyn., 9 (2015), 198–214. https://doi.org/10.1080/17513758.2015.1056845 doi: 10.1080/17513758.2015.1056845
    [22] H. Khalil, Nonlinear Systems, Prentice Hall, 3$^{rd}$ edition, 2002.
    [23] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [24] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6
    [25] J. P. La Salle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, 1976. https://doi.org/10.1137/1.9781611970432
    [26] X. Zhao, Dynamical Systems in Population Biology, Spring, $2^nd$ edition, 2017. https://doi.org/10.1007/978-3-319-56433-3
    [27] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 2012. https://doi.org/10.1017/CBO9780511810817
    [28] W. Wang, X. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112. https://doi.org/10.1016/j.mbs.2002.11.001 doi: 10.1016/j.mbs.2002.11.001
    [29] O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885. https://doi.org/10.1098/rsif.2009.0386 doi: 10.1098/rsif.2009.0386
    [30] Z. Yue, Y. Mu, K. Yu, Dynamic analysis of sheep Brucellosis model with environmental infection pathways, Math. Biosci. Eng., 20 (2023), 11688–11712. https://doi.org/10.3934/mbe.2023520 doi: 10.3934/mbe.2023520
    [31] G. Wareth, A. Hikal, M. Refai, F. Melzer, U. Roesler, H. Neubauer, Animal brucellosis in Egypt, J. Infect. Dev. Countries, 8 (2014), 1365–1373.
    [32] A. M. S. Menshawy, A. F. Vicente, Y. M. Hegazy, V. Djokic, M. E. R. Hamdy, L. Freddi, et al., Animal brucellosis in Egypt: Review on evolution, epidemiological situation, prevalent brucella strains, genetic diversity, and assessment of implemented national control measures, Microorganisms, 13 (2025), 170. https://doi.org/10.3390/microorganisms13010170 doi: 10.3390/microorganisms13010170
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(705) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog