This article investigates a class of hyperbolic equations of the fractional Kirchhoff type with viscoelastic and nonlinear terms:
$ \left\{ \begin{array}{ll} u_{tt} +M([u]^{2}_{s})(-\Delta)^su-\int_{0}^{t}g(t-\tau)(-\Delta)^su(\tau)d\tau+|u_t|^{a-2}u_t+u_t+u = |u|^{b-2}u,\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{in } \Omega\times (0,T), \\ u(x,t) = 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{on } \partial \Omega \times (0,T),\\ u(x,0) = u_0(x),\ \ \ u_t(x,0) = u_1(x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{in } \Omega, \end{array} \right. $
where $ [u]_{s} $ is the Gagliardo semi-norm of $ u $, $ \Omega \subset \mathbb{R}^N $ is a confined area featuring a smooth boundary, $ (-\Delta)^s $ is the fractional Laplacian with $ s\in(0, 1) $, $ 2 < a < 2\gamma < b < 2_s^* $, $ u_0 $ and $ u_1 $ are the initial function. First, we obtain the existence of global solutions by combining the potential wells with the Galerkin method. Moreover, employing the perturbed energy approach, we systematically study the asymptotic behavior of solutions.
Citation: Lijun Zhou, Ning Pan. A class of hyperbolic fractional Kirchhoff equations involving viscoelastic and dissipative terms[J]. Electronic Research Archive, 2025, 33(8): 5085-5099. doi: 10.3934/era.2025228
This article investigates a class of hyperbolic equations of the fractional Kirchhoff type with viscoelastic and nonlinear terms:
$ \left\{ \begin{array}{ll} u_{tt} +M([u]^{2}_{s})(-\Delta)^su-\int_{0}^{t}g(t-\tau)(-\Delta)^su(\tau)d\tau+|u_t|^{a-2}u_t+u_t+u = |u|^{b-2}u,\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{in } \Omega\times (0,T), \\ u(x,t) = 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{on } \partial \Omega \times (0,T),\\ u(x,0) = u_0(x),\ \ \ u_t(x,0) = u_1(x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{in } \Omega, \end{array} \right. $
where $ [u]_{s} $ is the Gagliardo semi-norm of $ u $, $ \Omega \subset \mathbb{R}^N $ is a confined area featuring a smooth boundary, $ (-\Delta)^s $ is the fractional Laplacian with $ s\in(0, 1) $, $ 2 < a < 2\gamma < b < 2_s^* $, $ u_0 $ and $ u_1 $ are the initial function. First, we obtain the existence of global solutions by combining the potential wells with the Galerkin method. Moreover, employing the perturbed energy approach, we systematically study the asymptotic behavior of solutions.
| [1] |
R. Ikehata, Decay estimates of solutions for the wave equations with strong damping terms in unbounded domains, Math. Methods Appl. Sci., 24 (2001), 659–670. https://doi.org/10.1002/mma.235 doi: 10.1002/mma.235
|
| [2] |
T. Kawakami, Y. Ueda, Asymptotic profiles to the solutions for a nonlinear damped wave equation, Differ. Int. Equations, 26 (2013), 781–814. https://doi.org/10.57262/die/1369057817 doi: 10.57262/die/1369057817
|
| [3] |
K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321–342. https://doi.org/10.1006/jmaa.1997.5697 doi: 10.1006/jmaa.1997.5697
|
| [4] |
J. A. Esquivel-Avila, A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations, Nonlinear Anal., 52 (2003), 1111–1127. https://doi.org/10.1016/S0362-546X(02)00155-4 doi: 10.1016/S0362-546X(02)00155-4
|
| [5] |
M. Aassila, Global existence and global nonexistence of solutions to a wave equation with nonlinear damping and source terms, Asymptot. Anal., 30 (2002), 301–311. https://doi.org/10.3233/ASY-2002-507 doi: 10.3233/ASY-2002-507
|
| [6] |
G. Autuori, P. Pucci, M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489–516. https://doi.org/10.1007/s00205-009-0241-x doi: 10.1007/s00205-009-0241-x
|
| [7] |
H. A. Levine, P. Pucci, J. Serrin, Some remarks on global nonexistence for nonautonomous abstract evolution equations, Contemp. Math., 208 (1997), 253–263. https://doi.org/10.1090/conm/208/02743 doi: 10.1090/conm/208/02743
|
| [8] |
N. Pan, P. Pucci, R. Z. Xu, B. L. Zhang, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equations, 19 (2019), 615–643. https://doi.org/10.1007/s00028-019-00489-6 doi: 10.1007/s00028-019-00489-6
|
| [9] |
M. S. T. Brahim, N. Doudi, R. Guefaifia, R. Jan, R. Alharbi, S. Boulaaras, Global existence and general decay of solutions for a wave equation with memory, fractional boundary damping terms and logarithmic non-linearity, Partial Differ. Equations Appl. Math., 10 (2024), 100742. https://doi.org/10.1016/j.padiff.2024.100742 doi: 10.1016/j.padiff.2024.100742
|
| [10] |
N. Irkıl, E. Pişkin, P. Agarwal, Global existence and decay of solutions for a system of viscoelastic wave equations of Kirchhoff type with logarithmic nonlinearity, Math. Methods Appl. Sci., 45 (2022), 2921–2948. https://doi.org/10.1002/mma.7964 doi: 10.1002/mma.7964
|
| [11] |
S. T. Wu, Exponential energy decay of solutions for an integro-differential equation with strong damping, J. Math. Anal. Appl., 364 (2010), 609–617. https://doi.org/10.1016/j.jmaa.2009.11.046 doi: 10.1016/j.jmaa.2009.11.046
|
| [12] |
S. T. Wu, On decay and blow-up of solutions for a system of nonlinear wave equations, J. Math. Anal. Appl., 394 (2012), 360–377. https://doi.org/10.1016/j.jmaa.2012.04.054 doi: 10.1016/j.jmaa.2012.04.054
|
| [13] |
N. Boumaza, B. Gheraibia, General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term, J. Math. Anal. Appl., 489 (2020), 124185. https://doi.org/10.1016/j.jmaa.2020.124185 doi: 10.1016/j.jmaa.2020.124185
|
| [14] |
M. Q. Xiang, D. Hu, Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity, Discrete Contin. Dyn. Syst. Ser., 14 (2021), 4609–4629. https://doi.org/10.3934/dcdss.2021125 doi: 10.3934/dcdss.2021125
|
| [15] |
N. S. Papageorgiou, J. Zhang, W. Zhang, Multiple solutions with sign information for Robin equations with indefinite potential, Bull. Math. Sci., 15 (2025), 2450013. https://doi.org/10.1142/S1664360724500139 doi: 10.1142/S1664360724500139
|
| [16] |
Q. Li, V. D. Rădulescu, J. Zhang, W. Zhang, Concentration of normalized solutions for non-autonomous fractional Schrödinger equations, Z. Angew. Math. Phys., 76 (2025), 132. https://doi.org/10.1007/s00033-025-02510-0 doi: 10.1007/s00033-025-02510-0
|
| [17] | W. Zhang, J. Zhang, Planar Hénon-type equation with Trudinger-Moser critical growth, Discrete Contin. Dyn. Syst., 45 (20), 4529–4553. https://doi.org/10.3934/dcds.2025066 |
| [18] |
A. Haraux, E, Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Ration. Mech. Anal., 100 (1988), 191–206. https://doi.org/10.1007/BF00282203 doi: 10.1007/BF00282203
|
| [19] |
Y. Liu, Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges, Commun. Anal. Mech., 15 (2023), 436–456. https://doi.org/10.3934/cam.2023021 doi: 10.3934/cam.2023021
|
| [20] |
Y. Liu, B. Moon, V. Rădulescu, R. Z. Xu, C. Yang, Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation, J. Math. Phys., 64 (2023), 051511. https://doi.org/10.1063/5.0149240 doi: 10.1063/5.0149240
|
| [21] | G. M. Bisci, V. D. Rădulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016. |
| [22] |
A. Fiscella, R. Servadei, E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235–253. https://doi.org/10.5186/aasfm.2015.4009 doi: 10.5186/aasfm.2015.4009
|
| [23] |
R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
|
| [24] | J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |