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Abstract: This article investigates a class of hyperbolic equations of the fractional Kirchhoff type
with viscoelastic and nonlinear terms:

utt + M([u]2
s)(−∆)su −

∫ t

0
g(t − τ)(−∆)su(τ)dτ + |ut|

a−2ut + ut + u = |u|b−2u,
in Ω × (0,T ),

u(x, t) = 0, on ∂Ω × (0,T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

where [u]s is the Gagliardo semi-norm of u, Ω ⊂ RN is a confined area featuring a smooth boundary,
(−∆)s is the fractional Laplacian with s ∈ (0, 1), 2 < a < 2γ < b < 2∗s, u0 and u1 are the initial function.
First, we obtain the existence of global solutions by combining the potential wells with the Galerkin
method. Moreover, employing the perturbed energy approach, we systematically study the asymptotic
behavior of solutions.

Keywords: hyperbolic; fractional Kirchhoff type; viscoelastic; global existence; asymptotic behavior

1. Introduction

In this paper, we deal with the following initial boundary value problem for a fractional hyperbolic
equation involving the Kirchhoff term, the viscoelastic term, and the nonlinear dissipative term:


utt + M([u]2

s)(−∆)su −
∫ t

0
g(t − τ)(−∆)su(τ)dτ + g(ut) + u = f (u),

in Ω × (0,∞),
u(·, t) = 0, in ∂Ω × (0,∞),
u(·, 0) = u0, ut(·, 0) = u1, in Ω,

(1.1)
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where the definition of the Gagliardo semi-norm [u]s is given by

[u]s =

("
R2N

|u(x, t) − u(y, t)|2

|x − y|N+2s dxdy
) 1

2

.

And for s ∈ (0, 1) and ∀φ ∈ C∞0 (RN), give insight into the traits of the fractional Laplacian (−∆)s

(−∆)sφ(x) = 2 lim
θ1→0+

∫
RN\Bθ1(x)

φ(x) − φ(y)
|x − y|N+2s dy,

and it goes up to a normalized constant, Bθ1(x) here means that the sphere in RN where radius θ1 >
0. Besides, it is imperative to point out that the Kirchhoff function M(m) = 1 + mγ−1 is a positive
C1−function for all m ≥ 0, γ > 1, the damping term g(ut) = |ut|

a−2ut + ut, and the source term f (u) =
|u|b−2u.

Considerable work has been devoted to analyzing the following wave equation:

utt − ∆u + h(ut) = f (u),

with appropriate initial values and boundary constraints, leading to established theories concerning
solution existence and asymptotic trends, more details can be see [1, 2]. Physically, h accounts for
friction or damping effects, whereas f corresponds to the external source. The dynamics of an elastic
string undergoing nonlinear vibrations can be modeled through the Kirchhoff equation

utt + M(||A1/2u||2)Au + |ut|
βut = f (u), (1.2)

where A ≡ −∆ is the Laplace operator. In [3], Ono established comprehensive results for
problem (1.2), including global existence, solution decay rates, and finite-time blowup criteria,
provided that appropriate assumptions are made regarding f (u). On a more fundamental level,
Esquivel-Avila examined the case where the nonlinear dissipative term |ut|

βut in (1.2) is replaced by
δ|ut|

a−2ut, with parameters δ ≥ 0, a > 2, while adopting the power-type source term f (u) = µ|u|b−2u,
µ > 0, b > 2 in the fourth part of [4]. Consequently, the author demonstrated that the system (1.2)
augmented by a nonlinear source term admits both global and non-global solutions, employing the
potential wells method for the proof. In [5], the global solvability and blowup of solutions to the
nonlinear damped and perturbed Klein–Gordon equation were analyzed by Aassila via the potential
well theory. A broader discussion of related results is available in references [6, 7]. Pan et al. [8]
treatment of the fractionally damped Kirchhoff equation considered weak damping with
nonlinear perturbations

utt + [u]2θ−2
s (−∆)su + |ut|

a−2ut + u = |u|b−2u.

Their application of potential wells theory yielded complete characterization of solution behavior,
including global existence, vacuum isolation, long-term dynamics, and blow-up phenomena. In
subsequent developments, the potential well theory has become a standard tool for analyzing solution
existence in evolution equations, as demonstrated by numerous studies, for example, [9, 10].

Before proceeding further, the following nonlinear integro-differential equation

utt + M(||∇u||22)∆u +
∫ t

0
g(t − τ)∆u(τ)dτ − ∆ut = |u|p−2u
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describes the motion of deformable solids while accounting for hereditary effects. In [11], Wu
established that subject to specific constraints on g, the system admits global solutions with
exponential energy decay. As a natural extension, Wu [12] considered the dissipative term |ut|

p−1ut

instead of ∆ut, providing a comprehensive study on the long-time behavior and blow-up of solutions
for this system. Besides, Boumaza and Gheraibia [13] considered a nonlinear degenerate viscoelastic
equation of Kirchhoff type with source term and established the global existence of solutions, general
decay properties, and finite-time blow-up of solutions with negative initial energy. More recently,
in [14], through various analytical approaches, the authors had obtained solutions to the fractional
viscoelastic hyperbolic equation with the Kirchhoff term, accounting for both strong damping effects
and nonlinearity with variable coefficients

utt + M([u]2
α,2)(−∆)αu −

∫ t

0
g(t − τ)(−∆)αu(τ)dτ + (−∆)sut = λ|u|b−2u,

where 0 < s ≤ α < 1, 1 < b < ∞, λ > 0. Depending on the parameter values of b and λ, they
employed the Galerkin method to obtain both local and global solutions, respectively. Furthermore,
they established global nonexistence results through blow-up analysis.

Partial differential equations serve as powerful tools for modeling complex phenomena across
various fields such as biomechanics, fluid dynamics, and financial analysis. Among these,
Kirchhoff-type equations—originally developed to describe vibrations of elastic plates—have been
extensively investigated in their classical form, which employs a local Laplacian operator and does
not account for memory effects. However, such models fail to capture critical features of modern
applications, such as anomalous diffusion in porous media, viscoelastic damping in polymers, or
memory-dependent stiffness in biological tissues. To address these limitations, we investigate a
fractional Kirchhoff equation incorporating dissipative terms and viscoelastic terms. From a
mathematical perspective, the fractional Laplacian introduces memory effects, which are essential for
modeling complex media with nonlocal diffusion or dispersion (e.g., porous materials, turbulent
flows). The viscoelastic term (e.g.,

∫ t

0
g(t − τ)(−∆)su(τ)dτ) accounts for time-dependent material

relaxation, requiring delicate analysis of integro-differential operators and energy decay rates.
Physically, such equations model, e.g., viscoelastic plates with fractional damping or biological
tissues with memory-dependent stiffness, where classical PDEs fail to capture multiscale behaviors.
In addition, the existence of solutions for certain related problems possessing nonlocal characteristics
could be considered, as addressed in [15–17].

Motivated by the above works, in this paper we are mainly interested in the effects of the Kirchhoff
function, the memory kernel, and the damping term on the evolution behavior of solutions to
viscoelastic Kirchhoff equations with fractional Laplacian. Note that the joint presence of the
Kirchhoff function, the viscoelastic term and the damping term introduces challenges; we choose the
potential wells and the Galerkin method to study the global existence of the solutions. Of course, in
studying the asymptotic behavior of solutions, we repeatedly employ Hölder’s inequality, Young’s
inequality and Cauchy’s inequality to overcome the analytical challenges posed by the viscoelastic
and dissipative terms. The subsequent content consists of five parts: In Section 2, we give the relevant
definitions about fractional Sobolev some necessary notation and lemmas. In addition, we present the
formal definition of a potential well and systematically investigate its mathematical properties.
Section 3, we construct approximate solutions by using Galerkin method, thus discussing the
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existence of global solutions. Section 4: Through an application of the potential well theory in
conjunction with the perturbed energy technique [18–20], we derive the asymptotic properties of
global solutions. Section 5, we present a comprehensive summary of the main results established
in this article.

2. Preliminaries

The following introduces key concepts and notation for fractional Sobolev spaces. Additional
background on fractional-order operators is available in the literature [21, 22]. In what follows,
s ∈ (0, 1) and N > 2s are considered. The critical exponent in the fractional setting, denoted 2∗s, is

2∗s =
2N

N − 2s
.

The Lebesgue space Lm(Ω) for m ≥ 1 consists of measurable functions u with finite norm

∥u∥m =
(∫
Ω

|u|mdx
) 1

m

.

Denote Q = RN\D , D = (RN\Ω) × (RN\Ω) ⊂ R2N . Write X as a linear space, and it consists of,
Lebesgue measurable function u: Rn → R, ensuring that ∀u ∈ L2(Ω) holds for the restriction to Ω in
X and "

Q
|u(x) − u(y)|2K(x − y)dxdy < ∞.

The canonical norm of X is

∥u∥X = ∥u∥L2(Ω) +

("
Q
|u(x) − u(y)|2K(x − y)dxdy

) 1
2

.

And we introduce the following closed linear subspace of X:

X0 =
{
u ∈ X|u(x) = 0 a.e. in RN\Ω

}
,

and the norm

∥u∥X0 =

("
Q

|u(x) − u(y)|2

|x − y|N+2s dxdy
) 1

2

.

Besides, we restrict our consideration to the canonical kernel K(x−y) = |x−y|−(N+2s),which captures
the essential features of the general case. The foundational theory for such kernels is developed in [23].

Now, we begin by stating the general assumptions imposed on the memory kernel g:

(A1) g(t) : [0,+∞)→ [0,+∞) is a C1 function and satisfies

g′(t) ≤ 0, k(t) = 1 −
∫ t

0
g(τ)dτ ≥ 1 −

∫ +∞

0
g(τ)dτ = k > 0.

(A2) ∃ϱ > 0 such that g′(t) ≤ −ϱg(t) holds for all t > 0.

Electronic Research Archive Volume 33, Issue 8, 5085–5099.
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From now on, the specific expression of the total energy functional is given below

E(t) =
1
2
∥ut∥

2
2 +

1
2γ
∥u∥2γX0

+
1
2

(
1 −

∫ t

0
g(τ)dτ

)
∥u∥2X0

+
1
2

(g ◦ u)(t) −
1
b
∥u∥bb +

1
2
∥u∥22 (2.1)

for u ∈ X0, where

(g ◦ u)(t) =
∫ t

0
g(t − τ)∥u(τ) − u(t)∥2Xo

dτ.

The potential well W is given by

W =

u ∈ X0

∣∣∣∣∣∥u∥X0 <

(
2b

(b − 2)k
d
) 1

2
 , (2.2)

whose boundary ∂W is given by

∂W =

u ∈ X0

∣∣∣∣∣∥u∥X0 =

(
2b

(b − 2)k
d
) 1

2
 , (2.3)

with d being the potential well depth

d =
b − 2

2b
k

b
b−2 E

− 2b
b−2

1 , (2.4)

and E1 is the best Sobolev constant for the embedding X0 ↪→ Lb(Ω), i.e.,

E1 = sup
u∈X0\{0}

∥u∥b
∥u∥X0

.

Lemma 2.1. (1) There exists α = α(N, υ, s), where υ ∈ [1, 2∗s], such that, for all v ∈ X0

∥v∥2Lυ(Ω) ≤ α

"
Ω×Ω

|v(x) − v(y)|2

|x − y|N+2s dxdy ≤
α

β

"
Q
|v(x) − v(y)|2K(x − y)dxdy.

(2) There exists α̃ = α̃(N, s, β,Ω) > 0 such that, for arbitrary v ∈ X0,"
Q
|v(x) − v(y)|2K(x − y)dxdy ≤ ∥v∥2X ≤ α̃

"
Q
|v(x) − v(y)|2K(x − y)dxdy.

(3) There exists v ∈ Lυ(RN) such that up to a subsequence, where {v j} ∈ X0 is a bounded sequence and
∀υ ∈ [1, 2∗s),

v j → v strongly in Lυ(Ω) as j→ ∞.

Lemma 2.2. Let (A1) and (A2) be fulfilled. This leads to the following propositions:
(1) If u ∈ W and ∥u∥X0 , 0, then k∥u∥2X0

> ∥u∥bb.
(2) If u ∈ ∂W, then k∥u∥2X0

≥ ∥u∥bb.
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Proof. (1) The condition u ∈ W coupled with (2.2) yields

∥u∥X0 <

(
2b

(b − 2)k
d
) 1

2

.

An application of (2.4) leads to the conclusion that

∥u∥X0 < k
1

b−2 E
− b

b−2
1 .

Observing that ∥u∥X0 is nonvanishing, we derive

E b
1 ∥u∥

b
X0
< k∥u∥2X0

.

Hence, we attain
∥u∥bb < k∥u∥2X0

.

(2) The condition u ∈ ∂W coupled with (2.3) yields

∥u∥X0 =

(
2b

(b − 2)k
d
) 1

2

.

By employing reasoning parallel to that used in establishing (1), we can straightforwardly demonstrate
the inequality k∥u∥2X0

≥ ∥u∥bb. □

Overall, Section 3 and 4 contain the proofs of our main results.

3. Global existence of the solutions

Definition 3.1. Function u = u(t) ∈ L∞(0,∞; X0) is called a weak solution of problem (1.1), in the
event of ut ∈ L∞(0,∞; L2(Ω)) and for ∀φ ∈ X0 satisfy

(ut(·, t), φ) +
∫ t

0
M([u(·, τ)]2

s)(u(·, τ), φ)X0dτ −
∫ t

0

∫ s

0
g(s − τ)(u(·, τ), φ)X0dτds

+

∫ t

0
(|ut(·, τ)|a−2ut(·, τ), φ)dτ + (u(·, t), φ) +

∫ t

0
(u(·, τ), φ)dτ

=(u1, φ) + (u0, φ) +
∫ t

0
(|u(·, τ)|b−2u(·, τ), φ)dτ,

(3.1)

where

(u(·, t), φ)X0 =

"
Q

[u(x, t) − u(y, t)][φ(x) − φ(y)]K(x − y)dxdy.

Theorem 3.1. Let (A1) and (A2) be fulfilled. For initial conditions u0 ∈ W, u1 ∈ L2(Ω), and E(0) < d,
the problem (1.1) admits a global solution u(t) ∈ W := W ∪ ∂W for all t ∈ (0,∞).
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Proof. To start with, consider {ω j} ⊂ C∞0 , the eigenfunctions of the fractional Laplace operator (−∆)s,

which form an orthogonal basis for both X0 and L2(Ω). The approximate solution un of problem (1.1)
can be formulated as:

un(x, t) =
n∑

j=1

ξ jn(t)ω j(x), n = 1, 2, · · · , (3.2)

meet with

(untt(·, t),ω j) + M([u]2
s)(un(·, t), ω j)X0 −

∫ t

0
g(t − τ)(un(·, τ), ω j)X0dτ

+ (|unt(·, t)|a−2unt(·, t), ω j) + (unt(·, t), ω j) + (un(·, t), ω j)
= (|un(·,t)|b−2un(·, t), ω j), j = 1, 2, · · · , n,

(3.3)

un(·, 0) =
n∑

j=1

ξ jn(0)ω j(x)→ u0(x) in X0, (3.4)

unt(·, 0) =
n∑

j=1

ξ′jn(0)ω j(x)→ u1(x) in L2(Ω). (3.5)

Equation (3.3), when multiplied by ξ′jn(t) and summed over j, produces

(untt(·, t),unt(·, t)) + M([u(·, t)]2
s)(un(·, t), unt(·, t))X0 −

∫ t

0
g(t − τ)(un(·, τ), unt(·, t))X0dτ

+ (|unt(·, t)|a−2unt(·, t), unt(·, t)) + (unt(·, t), unt(·, t)) + (un(·, t), unt(·, t))
= (|un(·,t)|b−2un(·, t), unt(·, t)).

(3.6)

It should be noted that∫ t

0
g(t − τ)(un(·, τ), unt(·, t))X0dτ

=

∫ t

0
g(t − τ)(un(·, τ) − un(·, t), unt(·, t))X0dτ +

∫ t

0
g(t − τ)(un(·, t), unt(·, t))X0dτ

= −
1
2

∫ t

0
g(t − τ)

d
dt
∥un(·, τ) − un(·, t))∥2X0

dτ +
1
2

∫ t

0
g(t − τ)

d
dt
∥un(·, t)∥2X0

dτ

= −
1
2

d
dt

(
(g ◦ un)(·, t) −

∫ t

0
g(τ)dτ∥un(·, t)∥2X0

)
+

1
2

(g′ ◦ un)(·, t) −
1
2

g(t)∥un(·, t)∥2X0
.

With this in (3.6), integrating over t, implies

En(t) +
∫ t

0

(
∥unt(·, τ)∥aa + ∥unt(·, τ)∥22 −

1
2

(g′ ◦ un)(·, τ) +
1
2

g(τ)∥un(·, τ)∥2X0

)
dτ = En(0) (3.7)

for all t ∈ [0,T ], where

En(t) =
1
2
∥unt(·, t)∥22 +

1
2γ
∥un(·, t)∥2γX0

+
1
2

(
1 −

∫ t

0
g(τ)dτ

)
∥un(·, t)∥2X0

+
1
2

(g ◦ un)(·, t) −
1
b
∥un(·, t)∥bb +

1
2
∥un(·, t)∥22.

(3.8)
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In light of (3.4)–(3.5), the established results show for a sufficiently large n, both En(0) < d and
un(·, 0) ∈ W are satisfied. Next, we verify that

un(·, t) ∈ W. (3.9)

Postulate that there exists some t ∈ (0,T ) such that un(·, t) < W, i.e., by continuity, we attain un(·, t0) ∈
∂W for 0 < t0 < T as well as un(·, t) ∈ W for 0 ≤ t < t0. This implies

∥un(·, t0)∥X0 =

(
2b

(b − 2)k
d
) 1

2

.

Through (3.8), Lemma 2.2 (2) and (A1), we obtain

En(t0) ≥
1
2

(1 −
∫ t

0
g(τ)dτ)∥un(·, t0)∥2X0

−
1
b
∥un(·, t0)∥bb

≥
1
2

k∥un(·, t0)∥2X0
−

1
b
∥un(·, t0)∥bb

= (
1
2
−

1
b

)k∥un(·, t0)∥2X0
+

1
b

(k∥un(·, t0)∥2X0
− ∥un(·, t0)∥bb)

≥
b − 2

2b
k∥un(·, t0)∥2X0

= d,

this in contradiction with En(0) < d specified in (3.7). Hence, it is clearly seen that un(·, t) ∈ W.
For one thing, from (3.8), (3.9), and (1) in Lemma 2.2, we attain

En(t) ≥
1
2
∥unt(·, t)∥22 +

1
2γ
∥un(·, t)∥2γX0

+
1
2

(1 −
∫ t

0
g(τ)dτ)∥un(·, t)∥2X0

−
1
b
∥un(·, t)∥bb +

1
2
∥un(·, t)∥22

≥
1
2
∥unt(·, t)∥22 +

1
2γ
∥un(·, t)∥2γX0

+
1
2

k∥un(·, t)∥2X0

−
1
b
∥un(·, t)∥bb +

1
2
∥un(·, t)∥22

≥
1
2
∥unt(·, t)∥22 +

1
2γ
∥un(·, t)∥2γX0

+
b − 2

2b
k∥un(·, t)∥2X0

+
1
b

(
k∥un(·, t)∥2X0

− ∥un(·, t)∥bb
)
+

1
2
∥un(·, t)∥22

≥
1
2
∥unt(·, t)∥22 +

1
2γ
∥un(·, t)∥2γX0

+
b − 2

2b
k∥un(·, t)∥2X0

+
1
2
∥un(·, t)∥22,

(3.10)

this, along with (3.7), implies

1
2
∥unt(·, t)∥22 +

1
2γ
∥un(·, t)∥2γX0

+
b − 2

2b
k∥un(·, t)∥2X0

+
1
2
∥un(·, t)∥22 < d

for all t ∈ [0,T ].
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For another, a direct consequence of (3.7) and (3.8)∫ t

0
∥unt(·, τ)∥aadτ ≤ En(0) < d.

To put it another way,
∥unt(·, t)∥22 < 2d, (3.11)

∥un(·, t)∥2X0
<

2b
(b − 2)k

d, (3.12)∫ t

0
∥unt(·, τ)∥aadτ < d, (3.13)

∥un(·, t)∥22 < 2d. (3.14)

.
Besides, Lemma 2.1 gives

∥un(·, t)∥bb ≤ E b
1 ∥un(·, t)∥bX0

≤ E b
1

(
2b

(b − 2)k
d
) b

2

. (3.15)

Therefore, combing (3.11)–(3.15), there exists κ, ς, u and a subsequence of {un}
∞
n=1 , still denoted by

{un}
∞
n=1 , such that

un
∗
⇀ u in L∞(0,∞; X0), (3.16)

unt
∗
⇀ ut in L∞(0,∞; L2(Ω)), (3.17)

|un|
b−2un

∗
⇀ κ in L∞(0,∞; L

b
b−1 (Ω)), (3.18)

|unt|
a−2unt ⇀ ς in L∞(0,∞; L

a
a−1 (Ω)), (3.19)

as n→ ∞.
Performing time-integration on (3.3) results in

(unt(·,t), ω j) +
∫ t

0
M([un(·, τ)]2

s)(un(·, τ), ω j)X0dτ −
∫ t

0

∫ s

0
g(s − τ)(un(·, τ), ω j)X0dτds

+

∫ t

0
(|unt(·, τ)|a−2unt(·, τ), ω j)dτ + (un(·, t), ω j) +

∫ t

0
(un(·, τ), ω j)dτ

= (unt(·, 0), ω j) + (un(·, 0), ω j) +
∫ t

0
(|un(·, τ)|b−2un(·, τ), ω j)dτ.

For fixed j, letting n→ ∞, from this we deduce the additional result

(ut(·, t), ω j) +
∫ t

0
M([u·, τ]2

s)(u(·, τ), ω j)X0dτ −
∫ t

0

∫ s

0
g(s − τ)(u(·, τ), ω j)X0dτds

+

∫ t

0
(ς, ω j)dτ + (u(·, t), ω j) +

∫ t

0
(u(·, τ), ω j)dτ

= (u1,ω j) + (u0, ω j) +
∫ t

0
(κ, ω j)dτ.
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Therefore, since C∞0 is dense in X0, as is shown [22], and the fact that {ω j} ⊂ C∞0 is an orthonormal
basis of L2(Ω), we get for all ρ ∈ X0

(ut(·, t), ρ) +
∫ t

0
M([u(·, τ)]2

s)(u(·, τ), ρ)X0dτ −
∫ t

0

∫ s

0
g(s − τ)(u(·, τ), ρ)X0dτds

+

∫ t

0
(ς, ρ)dτ + (u(·, t), ρ) +

∫ t

0
(u(·, τ), ρ)dτ = (u1, ρ) + (u0, ρ) +

∫ t

0
(κ, ρ)dτ.

Using the method in [24], we have therefore shown that κ = |u|b−2u and ς = |ut|
a−2ut. By virtue

of (3.4)–(3.5), u(·, 0) = u0 in X0 is obtained, and ut(·, 0) = u1 in L2(Ω) as well. Besides, setting
ρ(x) = φ(·, t), fixing t here, as well as integrating with respect to t for ∀φ ∈ L1(0,∞; X0). By reason of
the foregoing, there exists a consequence that u(·, t) serves as a global solution to question (1.1).

In addition, via the norm’s weak lower semi-continuity, this leads to

∥u(·, t)∥X0 ≤ lim
n→∞

inf ∥un(·, t)∥X0 ,

combining this with (3.12), tells us that

∥u(·, t)∥X0 ≤

(
2b

(b − 2)k
d
) 1

2

i.e., u(·, t) ∈ W for all t ∈ (0,∞). □

4. Asymptotic behavior of the solutions

Theorem 4.1. Under the hypotheses of Theorem 3.1. Impose that for all t ∈ [0,∞) and two positive
constants p, q, we have

∥u(t)∥2X0
+ ∥ut(t)∥22 ≤ pe−qt, ∀t ∈ [0,∞).

Proof. We construct
L (t) = En(t) + δQ(t), ∀t ∈ [0,∞), (4.1)

where Q(t) =
∫
Ω

un(t)unt(t)dx and δ > 0 is a constant to be determined later.
It can be shown that there exist two numbers ιi > 0(i = 1, 2), such that

ι1En(t) ≥ L (t) ≥ ι2En(t), ∀t ∈ [0,∞). (4.2)

In reality, by application of Hölder’s inequality and Young’s inequality, we find

|Q(t)| ≤
1
2
∥un(t)∥22 +

1
2
∥unt(t)∥22,

and thus

|Q(t)| ≤
E 2

2

2
∥un(t)∥2X0

+
1
2
∥unt(t)∥22, (4.3)

gives the constant E2 for which the Sobolev embedding X0 ↪→ L2(Ω) remains valid. By
combining (3.10) and (4.3), we get a conclusion that |Q(t)| ≤ C1En(t) with C1 > 0. The validity of
(4.2) is consequently established via (4.1).
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The results indicate that

E′n(t) =
1
2

(
g′ ◦ un

)
(t) −

1
2

g(t)∥un(t)∥2X0
− ∥unt(t)∥aa − ∥unt(t)∥22.

By performing the calculation explicitly in the next, we attain

L ′(t) =
1
2

(
g′ ◦ un

)
(t) −

1
2

g(t)∥un(t)∥2X0
− ∥unt(t)∥aa − ∥unt(t)∥22 + δ∥unt(t)∥22

− δ∥un(t)∥2γX0
− δ∥un(t)∥2X0

+ δ

∫ t

0
g(t − τ)(un(τ), un(t))X0dτ

− δ(|unt(t)|a−2unt(t), un(t)) − δ(unt(t), un(t)) − δ∥un(t)∥22 + δ∥un(t)∥bb.

(4.4)

Through simple mathematical manipulations of these three terms, we first find that it follows from
Cauchy’s inequality with σ1 > 0 that∫ t

0
g(t − τ)(un(τ), un(t))X0dτ

=

∫ t

0
g(t − τ)∥un(t))∥2X0

dτ +
∫ t

0
g(t − τ)(un(τ) − un(t), un(t))X0dτ

≤

∫ t

0
g(τ)dτ∥un(t))∥2X0

+ σ1

∫ t

0
g(τ)dτ∥un(t))∥2X0

+
1

4σ1
(g ◦ un)(t)

≤(1 − k)∥un(t))∥2X0
+ σ1(1 − k)∥un(t))∥2X0

+
1

4σ1
(g ◦ un)(t).

Next follows from Young’s inequality with σ2 > 0 that

−(|unt(t)|a−2unt(t), un(t)) ≤ σ2∥un(t))∥aa +C(σ2)∥unt(t))∥aa.

As a final step, an application of Cauchy’s inequality with σ3 > 0 yields

−(un(t), unt(t)) ≤ σ3∥un(t))∥22 +
1

4σ3
∥unt(t))∥22

≤ σ3E
2

2 ∥un(t))∥2X0
+

1
4σ3
∥unt(t))∥22.

From these considerations we attain

L ′(t) ≤
(
δ +

δ

4σ3
− 1

)
∥unt(t))∥22 − δ∥un(t)∥2γX0

+ δ(σ1(1 − k) + σ3E
2

2 − k)∥un(t)∥2X0
− δ∥un(t)∥22

+

(
δ

4σ1
−
ϱ

2

)
(g ◦ un)(t) + δ∥un(t)∥bb

+ δσ2∥un(t))∥aa + (δC(σ2) − 1)∥unt(t))∥aa,
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and so,

L ′(t) ≤ − δλEn(t) +
(
δ +

δ

4σ3
+
δλ

2
− 1

)
∥unt(t))∥22 + δ

(
λ

2γ
− 1

)
∥un(t)∥2γX0

+ δ
(
σ1(1 − k) + σ2E

2
2 +
λ

2
− k

)
∥un(t)∥2X0

+ δ
(
λ

2
− 1

)
∥un(t)∥22

+

(
δ

4σ1
+
δλ

2
−
ϱ

2

)
(g ◦ un)(t) + δ

(
1 −
λ

b

)
∥un(t)∥bb + δσ2∥un(t)∥aa

+ (δC(σ2) − 1)∥unt(t))∥aa,

(4.5)

where the parameter λ > 0 will be chosen appropriately subsequently. It follows from (3.7)
and (3.8) that

b − 2
2b

k∥un(t)∥2X0
≤ En(t) ≤ En(0),

which leads to

∥un(t)∥X0 ≤

(
2b

(b − 2)k
En(0)

) 1
2

.

Hence, we have

∥un(t)∥bb ≤ E b
1 ∥un(t)∥b−2

X0
∥un(t)∥2X0

≤ E b
1

(
2b

(b − 2)k
En(0)

) b−2
2

∥un(t)∥2X0
,

∥un(t)∥aa ≤ E a
a ∥un(t)∥a−2

X0
∥un(t)∥2X0

≤ E a
a

(
2b

(b − 2)k
En(0)

) a−2
2 2b

(b − 2)k
En(t) ≡ REn(t),

where the best Sobolev constant Ea is achieved for the embedding X0 ↪→ La(Ω).
When this inequality is substituted into (4.5), the result is

L ′(t) ≤ − δ(λ − σ2R)En(t) +
(
δ +

δ

4σ3
+
δλ

2
− 1

)
∥unt(t))∥22 + δ

(
λ

2γ
− 1

)
∥un(t)∥2γX0

+ δ

σ1(1 − k) + σ2E
2

2 +
λ

2
+ E1

b
(

2b
(b − 2)k

En(0)
) b−2

2

− k

 ∥un(t)∥2X0

+ δ
(
λ

2
− 1

)
∥un(t)∥22 +

(
δ

4σ1
+
δλ

2
−
ϱ

2

)
(g ◦ un)(t) + (δC(σ2) − 1)∥unt(t))∥aa.

Combined with En(0) < d, we claim that

E1
b
(

2b
(b − 2)k

En(0)
) b−2

2

< E1
b
(

2b
(b − 2)k

d
) b−2

2

= k.

Let

µ = k − E1
b
(

2b
(b − 2)k

En(0)
) b−2

2

− σ1(1 − k) − σ2E
2

2 .

We select the sufficiently small parameter σi(i = 1, 2, 3) to ensure that

σ2R < λ < min {2µ, 2} .
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Accordingly, for fixed σi(i = 1, 2, 3) and λ, we settle on

δ < min
{

1
C(σ2)

,
4σ3

4σ3 + 2λσ3 + 1
,

2ϱσ1

1 + 2λσ1

}
such that

L ′(t) ≤ −δ(λ − σ2R)En(t)

which, applying the second inequality in (4.2) simultaneously, yields

L ′(t) ≤ −
δ(λ − σ2R)
ι2

L (t).

Therefore, the argument establishes the existence of a constant C2 > 0 with the property that

L (t) ≤ C2e−
δ(λ−σ2R)
ι2

t
, ∀t ∈ [0,∞).

An additional conclusion can be drawn from the first inequality in (4.2), namely that

En(t) ≤
C2

ι1
e−
δ(λ−σ2R)
ι2

t
, ∀t ∈ [0,∞). (4.6)

Given that the norm is weakly lower semicontinuous, it follows that

∥u(t)∥2X0
+ ∥ut(t)∥22 ≤ lim

n→∞
inf

(
∥un(t)∥2X0

+ ∥unt(t)∥22
)
,

which, combing with (3.8) and (4.6), gives

lim
n→∞

inf
(
∥un(t)∥2X0

+ ∥unt(t)∥22
)
≤ lim

n→∞
inf C3En(t) ≤

C
ι1

e−
δ(λ−σ2R)
ι2

t
.

Letting p = C/ι1 and q = δ(λ − σ2R)/ι2, the conclusion of Theorem (4.1) is valid. □

5. Conclusions

This work examines well-posedness issues for fractional viscoelastic Kirchhoff equations with a
nonlinear dissipative term and a nonlinear source term. Firstly, we introduced fractional Sobolev
spaces; in addition, the correlation function E(t) and some necessary lemmas were introduced. Based
on these, we combined the Galerkin method and potential wells to prove the global existence of the
solutions. Then, using the perturbed energy technique and Gronwall’s inequality, the solutions decay
exponentially in time was proven.
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