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Abstract: This article investigates a class of hyperbolic equations of the fractional Kirchhoff type
with viscoelastic and nonlinear terms:

Uy + M([u]?)(—A)u — fot g(t = (=N u()d7 + |u | u; + u, + u = |ul"u,

in Qx(0,7),
u(x,t) =0, on 0Q x (0, T),
u(x,0) = up(x), u(x,0)=u(x) in Q,

where [u], is the Gagliardo semi-norm of u, Q C R" is a confined area featuring a smooth boundary,
(=A)* is the fractional Laplacian with s € (0, 1), 2 < a < 2y < b < 2}, up and u; are the initial function.
First, we obtain the existence of global solutions by combining the potential wells with the Galerkin
method. Moreover, employing the perturbed energy approach, we systematically study the asymptotic
behavior of solutions.
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1. Introduction

In this paper, we deal with the following initial boundary value problem for a fractional hyperbolic
equation involving the Kirchhoff term, the viscoelastic term, and the nonlinear dissipative term:

o + MUUEN=A)Yu = [[ gt = YA u(r)dT + glug) + u = f(uw),

in Q X (0, ),
u(-,t) =0, in 0Q X (0, 00),
u(-,0) = ug, u,(-,0) =uy, in Q,

(1.1)
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where the definition of the Gagliardo semi-norm [u], is given by

B e, ) - u@y,OF . \*
[uls = (fjl;m Xy dxdy) .

And for s € (0,1) and Yy € Cy’ (RM), give insight into the traits of the fractional Laplacian (—A)*

o(x) — @(y)

(~A)'p(x) = 2 lim el

+
914)0 RN\BGI(X) |

and it goes up to a normalized constant, By, here means that the sphere in RY where radius 6; >
0. Besides, it is imperative to point out that the Kirchhoff function M(m) = 1 + m”~! is a positive
C'—function for all m > 0,y > 1, the damping term g(u,) = |u/* >u; + u,, and the source term f(u) =
[ul”u.

Considerable work has been devoted to analyzing the following wave equation:

uy — Au+ h(u,) = f(u),

with appropriate initial values and boundary constraints, leading to established theories concerning
solution existence and asymptotic trends, more details can be see [1, 2]. Physically, & accounts for
friction or damping effects, whereas f corresponds to the external source. The dynamics of an elastic
string undergoing nonlinear vibrations can be modeled through the Kirchhoff equation

g + M(A P ul)Au + |uPu, = f(u), (1.2)

where A = —A is the Laplace operator. In [3], Ono established comprehensive results for
problem (1.2), including global existence, solution decay rates, and finite-time blowup criteria,
provided that appropriate assumptions are made regarding f(x). On a more fundamental level,
Esquivel-Avila examined the case where the nonlinear dissipative term |u,/°u, in (1.2) is replaced by
Olu;|“"%u,, with parameters 6 > 0, a > 2, while adopting the power-type source term f(u) = ulul’~*u,
u > 0,b > 2 in the fourth part of [4]. Consequently, the author demonstrated that the system (1.2)
augmented by a nonlinear source term admits both global and non-global solutions, employing the
potential wells method for the proof. In [5], the global solvability and blowup of solutions to the
nonlinear damped and perturbed Klein—Gordon equation were analyzed by Aassila via the potential
well theory. A broader discussion of related results is available in references [6, 7]. Pan et al. [8]
treatment of the fractionally damped Kirchhoff equation considered weak damping with
nonlinear perturbations
wy + [P (=AY u+ g uy + u = )" u.

Their application of potential wells theory yielded complete characterization of solution behavior,
including global existence, vacuum isolation, long-term dynamics, and blow-up phenomena. In
subsequent developments, the potential well theory has become a standard tool for analyzing solution
existence in evolution equations, as demonstrated by numerous studies, for example, [9, 10].

Before proceeding further, the following nonlinear integro-differential equation

!
uy + M(||Vull3)Au + f g(t — D)Au(t)dt — Auy = |u|Pu
0
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describes the motion of deformable solids while accounting for hereditary effects. In [11], Wu
established that subject to specific constraints on g, the system admits global solutions with
exponential energy decay. As a natural extension, Wu [12] considered the dissipative term |u, [P~ u,
instead of Au,, providing a comprehensive study on the long-time behavior and blow-up of solutions
for this system. Besides, Boumaza and Gheraibia [13] considered a nonlinear degenerate viscoelastic
equation of Kirchhoff type with source term and established the global existence of solutions, general
decay properties, and finite-time blow-up of solutions with negative initial energy. More recently,
in [14], through various analytical approaches, the authors had obtained solutions to the fractional
viscoelastic hyperbolic equation with the Kirchhoff term, accounting for both strong damping effects
and nonlinearity with variable coefficients

e + M([u]} ) (=A)"u ~ f gt = (=AY u(r)dt + (=A)’u, = Aul">u,
0

where 0 < s < @ < 1,1 < b < 00,4 > 0. Depending on the parameter values of b and A, they
employed the Galerkin method to obtain both local and global solutions, respectively. Furthermore,
they established global nonexistence results through blow-up analysis.

Partial differential equations serve as powerful tools for modeling complex phenomena across
various fields such as biomechanics, fluid dynamics, and financial analysis. =~ Among these,
Kirchhoff-type equations—originally developed to describe vibrations of elastic plates—have been
extensively investigated in their classical form, which employs a local Laplacian operator and does
not account for memory effects. However, such models fail to capture critical features of modern
applications, such as anomalous diffusion in porous media, viscoelastic damping in polymers, or
memory-dependent stiffness in biological tissues. To address these limitations, we investigate a
fractional Kirchhoff equation incorporating dissipative terms and viscoelastic terms. From a
mathematical perspective, the fractional Laplacian introduces memory effects, which are essential for
modeling complex media with nonlocal diffusion or dispersion (e.g., porous materials, turbulent
flows). The viscoelastic term (e.g., fot g(t — T)(=A)’u(t)dt) accounts for time-dependent material
relaxation, requiring delicate analysis of integro-differential operators and energy decay rates.
Physically, such equations model, e.g., viscoelastic plates with fractional damping or biological
tissues with memory-dependent stiffness, where classical PDEs fail to capture multiscale behaviors.
In addition, the existence of solutions for certain related problems possessing nonlocal characteristics
could be considered, as addressed in [15-17].

Motivated by the above works, in this paper we are mainly interested in the effects of the Kirchhoff
function, the memory kernel, and the damping term on the evolution behavior of solutions to
viscoelastic Kirchhoff equations with fractional Laplacian. Note that the joint presence of the
Kirchhoft function, the viscoelastic term and the damping term introduces challenges; we choose the
potential wells and the Galerkin method to study the global existence of the solutions. Of course, in
studying the asymptotic behavior of solutions, we repeatedly employ Holder’s inequality, Young’s
inequality and Cauchy’s inequality to overcome the analytical challenges posed by the viscoelastic
and dissipative terms. The subsequent content consists of five parts: In Section 2, we give the relevant
definitions about fractional Sobolev some necessary notation and lemmas. In addition, we present the
formal definition of a potential well and systematically investigate its mathematical properties.
Section 3, we construct approximate solutions by using Galerkin method, thus discussing the
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existence of global solutions. Section 4: Through an application of the potential well theory in
conjunction with the perturbed energy technique [18-20], we derive the asymptotic properties of
global solutions. Section 5, we present a comprehensive summary of the main results established
in this article.

2. Preliminaries
The following introduces key concepts and notation for fractional Sobolev spaces. Additional

background on fractional-order operators is available in the literature [21, 22]. In what follows,
s € (0,1) and N > 2s are considered. The critical exponent in the fractional setting, denoted 27, is

2N
2F = .
$ N-=2s

The Lebesgue space L™ (Q2) for m > 1 consists of measurable functions u# with finite norm

1
lleelln = (f Iul’”dX)
Q

Denote Q = R"\2, 2 = RM\Q) x (RM\Q) c R?*M. Write X as a linear space, and it consists of,
Lebesgue measurable function u: R* — R, ensuring that Yu € L*(Q) holds for the restriction to Q in
X and

f lu(x) — u(y)*K (x — y)dxdy < oo.
0
The canonical norm of X is
3
lluellx = lullr2q) + (f u(x) — u()PK(x - y)dde) :
0

And we introduce the following closed linear subspace of X:

Xo = {u € X|lu(x) =0 a.e. in RN\Q} ,

e — |u<x)—u(y)|2 %
u”XO_ |N+2v '

Besides, we restrict our consideration to the canonical kernel K(x—y) = |x—y|"™*29, which captures
the essential features of the general case. The foundational theory for such kernels is developed in [23].
Now, we begin by stating the general assumptions imposed on the memory kernel g:

and the norm

(A1) g : [0, +00) — [0, +o0) is a C' function and satisfies

! + 00
g <0,k(t)y=1- f gmdr>1- f gmdr =k > 0.
0 0
(A2) do > 0 such that g'(t) < —og(t) holds for all t > 0.
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From now on, the specific expression of the total energy functional is given below

1 1 1 ! 1 1
E@) = Elluzllﬁ + leullz +3 (1 - fo g(T)dT) e, + S ow() - EIIMIIZ +

for u € Xy, where

(gou)t) = f gt = Dllu() - u@)llz, dr.
0

2\
2\

b-2_ ., _2b
k2 & "
T b2 | ,

The potential well W is given by

W:{MEXO

whose boundary dW is given by

8W:{u€X0

with d being the potential well depth

d=

and & is the best Sobolev constant for the embedding X, — L’(Q), i.e.,

lully

ueXo\{0 ||M||Xo

(501:

Lemma 2.1. (1) There exists @ = a(N, v, s), where v € [1,2}], such that, for all v € X,

2
=|[u
Sllullz

_ 2
M) < f fg Q'v(x) YO vy < % f ) = VO K(x =y

|X y|N+25

(2) There exists a = a(N, s, 8, Q) > 0 such that, for arbitrary v € X,,

f () = vO)PK (x - y)dxdy < M <@ f () = vO)PK (x - y)dxdy.
0 [

2.1)

(2.2)

(2.3)

(2.4)

(3) There exists v € LY(RY) such that up to a subsequence, where {v i} € Xy is a bounded sequence and

Yu € [1,2)),
v;j — v strongly in LY(Q) as j — oo.
Lemma 2.2. Let (A1) and (A2) be fulfilled. This leads to the following propositions:

(1) If u € W and ||ullx, # O, then kllullf(0 > ||I/t||Z.
(2) If u € OW, then kllully, = |lull).
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Proof. (1) The condition u € W coupled with (2.2) yields

”W“<(w—zmﬁ'

An application of (2.4) leads to the conclusion that
1 b
llullx, < k268 2.
Observing that ||ul|x, is nonvanishing, we derive
b1 1P
Ellully, < kil -

Hence, we attain

b 2
lully < kllullx, -

(2) The condition u € OW coupled with (2.3) yields

2\
nw%=(®_2mﬁ.

By employing reasoning parallel to that used in establishing (1), we can straightforwardly demonstrate
the inequality &llull3, > lull}. o

Overall, Section 3 and 4 contain the proofs of our main results.
3. Global existence of the solutions

Definition 3.1. Function u = u(t) € L*(0, 00; Xy) is called a weak solution of problem (1.1), in the
event of u, € L¥(0, 00; L*(Q)) and for Vo € X, satisfy

W&JL@+¥£AﬂthﬁXMvm¢kﬂr—l:l:ﬂs—ﬂWhTL@&mds
ﬁfwmﬂwaua@m+wma@+fwua@m 3.1)
0 0
:(ub ()0) + (uo’ 90) + f (ll/l(', T)lb_zu('7 T)7 ()D)dT’
0

where

(uC, 0, 0)x, = f fQ [u(x, ) = u(y, Dlp(x) — e(MIK(x = y)dxdy.

Theorem 3.1. Let (A1) and (A2) be fulfilled. For ﬂzitial conditions uy € W,u; € L*(Q), and E(0) < d,
the problem (1.1) admits a global solution u(t) € W := W U oW for all t € (0, o).
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Proof. To start with, consider {w;} C C’, the eigenfunctions of the fractional Laplace operator (—A)°,
which form an orthogonal basis for both X, and L,(€2). The approximate solution u, of problem (1.1)
can be formulated as:

(6,1 = ) EpOwi(0), n=1,2-, (32)

=1
meet with

(Ui, 1,0)) + MUT) (- 1), @), = f 8t = D)(un(, 1), w))x,dT
0

(U Dt 1,0 + (1 1), 0)) + (1)) G-
= (lun('9t)|b_2un(" t)’ a)j)9 .] = 1’ 2’ MY (X
(-, 0) = > £1(0)w;(x) = uo(x) in X, (34)
j=1
Uy (-,0) = Zg}n(O)wj(x) — u(x) in L*(Q). (3.5)
j=1
Equation (3.3), when multiplied by ¢, (r) and summed over j, produces
(Ute > Dt -, 1)) + M-, D) Wt (5 1), s -5 D)5, = fo 8(t = T)(un(, ), (-, 1) x,dT
(3.6)

+ (|unt(', t)la_zum‘(" t)’ unt(" t)) + (unt('9 t)5 unt(" t)) + (un('9 t)5 unt(" t))
= (lun("t)|b_2un(" t)’ um‘('7 t))

It should be noted that
!
f g(t - T)(Mn(', T)a l/lm(', t))XodT
0

= f g(t - T)(Ml’l(" T) - l/ln(', t)’ ul’ll‘(" t))X()dT + f g(t - T)(I/tn(', t)’ Mm(', t))XQdT
0 0

1 ! d 2 1 ' d 2
=5 | 8= g — B dT+ 5 | g =)l Dl dT

2
14 o )\ 1, 1 )
=37 (goun)(-,t)—fog(f) Tl (-, Dy, | + E(g o uy)(-, 1) — Eg(t)llun(-,t)llxo-

With this in (3.6), integrating over ¢, implies

! 1 1
E, (1) + fo (IIMm('J)IIZ ot -, DI = E(g' ou,)(-, 7) + Eg(T)Ilun(wT)llio) dr = E,(0) (3.7

for all ¢ € [0, T'], where

1 1 1 !
E,(1) =§|Ium(', Dl + Z/”un('a t)llfg} ) (1 - j(; g(T)dT) lita -, DI, 58)

1 1 1
+ 5@ o un)(, 1) = lluaC:, Dl + S llan Dl5.
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In light of (3.4)—(3.5), the established results show for a sufficiently large n, both E,(0) < d and
u,(-,0) € W are satisfied. Next, we verify that

up(-,1) € W. (3.9)

Postulate that there exists some ¢ € (0, T) such that u,(-,¢) ¢ W, i.e., by continuity, we attain u,(-,y) €
oW for 0 <ty < T as well as u,(-,1) € W for 0 < t < 1y. This implies

2w\
a1l = ( d) |

(b -2k
Through (3.8), Lemma 2.2 (2) and (A1), we obtain

1 ! 1
E\(1) 2 5(1 - f (g’(T)dT)llun(',to)llfg0 - Ellun(',to)lli

)

> =kl (-, 10)lI5, — IIMn(-, o)l

\®)

1 1
=G- —)kllun(-, to)llx, + Z(k”un(" t)lI%, = ltaC, 20)1I3)
b — 2
 —
- 2b
=d,

Kelluan (-, 10)I%,

this in contradiction with E,(0) < d specified in (3.7). Hence, it is clearly seen that u,(-,7) € W.
For one thing, from (3.8), (3.9), and (1) in Lemma 2.2, we attain

1 1 | '
En(t) 251l I + z—ynunc,t)nxz 5= fo g0l DI,
1 1
= 2l Ol + Sl
> Xl DI + —lltaC DI + <l 2
) 2 2,)/ Xo 2 Xo
1 1
= 2l 0l + —||un<-, N (3.10)
1 b-2
> -, DI + ||u,,< DI + 5kl O,
1
+ 3 (Rl DI, = Nt 1) + —||un<', o[k
1 1 b—- 2 1
> e, 013 + Znunc,r)n =Kl + 5l 01,
this, along with (3.7), implies
1 2 1 2
St DI + ||un< DIl knun( DI, + 3 llunC. DI < d
forallt € [0, T].
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For another, a direct consequence of (3.7) and (3.8)

f
f Nt (-, DllgdT < E(0) < d.
0

To put it another way,

e -5 DI < 24, 3.11)
2b
G DI d, 3.12
lian, 01, < G =5 (3.12)
!
f e (-, DllzdT < d, (3.13)
0
i (-, DII3 < 2d. (3.14)
Besides, Lemma 2.1 gives
b
b o gb b < &b 2b d 2 3.15
”un(',t)”b S o ”un(’,t)llxo S 6 (b -2k . (3.15)
Therefore, combing (3.11)—(3.15), there exists %, ¢, u and a subsequence of {u,}, , , still denoted by
{t,},2 , such that
Uy — win L°(0, 00; X), (3.16)
ty = Uy in L(0, 003 LA(Q)), (3.17)
Jual” 21, = 2 in L(0, 003 LT (), (3.18)
|1t =  in L2(0, 003 L1 (Q)), (3.19)

asn — oo,
Performing time-integration on (3.3) results in

(U (1), ) + f M ([, D) (Wt (-, T, ) x,dT = fo fo | 8(s = ) (un(-, 7), wyx,drds
0
+ f (ot DIt ), @))dT + (-5 1), @) + f (un(-, 7), w)dT
0 0

= (U (-, 0), w)) + (un(+, 0), w;) + f (1t DIt (-, 7), ).
0

For fixed j, letting n — oo, from this we deduce the additional result
! ! S
(-, D), w;) + f M([u, T, 1), w))x,dT — f f g(s — )(u(-, 1), w))x,drds
0 0 Jo
! !
+ f (S, wpdt + (u(-, 1), w;) + f(u(-,T), w;)dt
0 0

= (u1,w;) + (up, wj) + f(%,a)j)dr.
0

Electronic Research Archive Volume 33, Issue 8, 5085-5099.



5094

Therefore, since Cj is dense in Xo, as is shown [22], and the fact that {w;} C C7 is an orthonormal
basis of L*(Q), we get for all p € X,

(ut(-,t),p)+j;M([u(-,T)]f)(u(uT),p)xodT—j;fog(S—T)(M(-,T),p)xodes

ﬂﬁ@m&+w&&m+£w&ﬂmh=WMWHWM+LWth

Using the method in [24], we have therefore shown that x = |u|’~?u and ¢ = |u,|*?u,. By virtue
of (3.4)-(3.5), u(-,0) = uy in X, is obtained, and u,(-,0) = u; in L*(Q) as well. Besides, setting
p(x) = ¢(-, 1), fixing t here, as well as integrating with respect to t for V¢ € L!(0, 0o; X;). By reason of
the foregoing, there exists a consequence that u(-, r) serves as a global solution to question (1.1).

In addition, via the norm’s weak lower semi-continuity, this leads to

||M(" t)”XO S llm inf”l/ln(', t)”X()’
n—o00

combining this with (3.12), tells us that

G-, 1)y, < ( = 2)kd)

i.e., u(-,1) € W for all 7 € (0, o0). O
4. Asymptotic behavior of the solutions

Theorem 4.1. Under the hypotheses of Theorem 3.1. Impose that for all t € [0, c0) and two positive
constants p, q, we have
lu@ly, + (DI < pe™, Vit € [0, 00).

Proof. We construct
Z(t) = E, (1) + 62(1), VYt € [0,00), 4.1

where 2(r) = fg u,(Hu,(t)dx and 6 > 0 is a constant to be determined later.
It can be shown that there exist two numbers ¢; > 0(i = 1, 2), such that

LE, (1) > L) > LE, (1), Yte][0,). 4.2)

In reality, by application of Holder’s inequality and Young’s inequality, we find

1 1
|2(0)] < Ellun(t)lli + Ellum(t)lli,

and thus )

£]2 2 1 2
1201 < —=MlunOllx, + 5 eIl (4.3)

gives the constant & for which the Sobolev embedding X, < L*(Q) remains valid. By
combining (3.10) and (4.3), we get a conclusion that |2(f)| < C,E,(t) with C; > 0. The validity of
(4.2) is consequently established via (4.1).
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The results indicate that

1 1
E\(n) = 2 (8" o uy) (1) - Eg(t)llbtn(t)llfgO — Nt (DI = et (D)5

By performing the calculation explicitly in the next, we attain

1 1
Z'(1) =3 (8" ouy) (1) - Ezg’(t)llun(t)lli0 — et (NI = Nt (ON3 + Slluan (1113

= 0llun(Ol;, = Sl (D, + f 8t = Ty (7). (1))l (44)
0

= 6t DIty (1), (1)) = St (1), 14 (1)) = S|t (D13 + 6llua (D)l

Through simple mathematical manipulations of these three terms, we first find that it follows from
Cauchy’s inequality with oy > O that

f 8(t — T)(un(7), un(1))x,d
0
= j; (1 = Dllun )|, d7 + j; 8(t — T)(un(7) — (1), uy (1)) x,d7
t f 1
< f g@dtllu, )z, + o f g@dllu,())II%, + 4—(g o 1t )(1)
0 0 g1
1
<(1 = Dllun (DI, + o1 (1 = Ollun()II, + 4—(g 0 it )(1).
g
Next follows from Young’s inequality with o, > 0 that
~ (e (D)t (8), (1)) < 2l ltnO)IG + C(D) (DI

As a final step, an application of Cauchy’s inequality with o3 > 0 yields

—(tn(1), (1)) < T3 llun (DI + ﬁllum(t))llﬁ

1
2 2 2
< 0365 [l (D)llx, + gllum(t))llz.
3
From these considerations we attain

L0 < (6 + % . 1) it (DIE = Sl (DI

+ 601 (1 = k) + 07365 = Dllun(z, = Sllun DI

O 9o ’
+(4m 2)(g ) (1) + S| (DI}

+ 6072 [lun())llg + (6C(02) = Dl (D)llg,
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and so,

L) < - 6AE, (1) + (6 b o 1) (DB + 5(% - 1) lnOI

g3 2

#o(0a1 =0+ a6F g - k)l 01, + 5(4 - 1)l olB

2 4.5)

§ 61 o 2 , )
+ (E t - 5) (g0 un(®)+ 6 (1= 2 )l + 6ol Ol

+(6C(02) = Dl (D)l

where the parameter 4 > 0 will be chosen appropriately subsequently. It follows from (3.7)
and (3.8) that

b-2
Tkllun(t)llio < E\(t) < Ey(0),

which leads to 1
2b 2
W (1 <|———E.(0)] .
et (D1, ((b—2)k ( ))
Hence, we have
b-2

_ 2b 2
lun(Oll; < ENun Ol N (DI, < & ((b — 2)kEn(O)) [TNG]

2

2
E,(0 ———FE,(t) = RE (1),
b )) B0 = REL®
where the best Sobolev constant & is achieved for the embedding X, < L*(Q).
When this inequality is substituted into (4.5), the result is

letn DI < ENtnIE Nitn (DI, < 5(

0 oA A
Z'(1) £ =0(1 = 2R)E,(1) + (5 Y T2 1) ()5 + 5(5 - 1) et (D)5

b2

2 A b 2b ’ 2
+8|oi(L—k) + 0287 + 5 + & E,0)] —k|lu(0ll,

2 (b -2k
Pl , (6 61 o .
+6 (2 l)llun(t)llz + ( 7o T2 2)(go un)(t) + (6C(02) = Dllun (D)l
Combined with E,(0) < d, we claim that
2b 7 2w \T
&° E,(0 &° d| =k
1 ((b—Z)k ()) = ((b—2)k)
Let
b2
=k-&° 2b E,(0) o (1=k)— 02 &2
M= 1 (b — 2)k n o1 026, .

We select the sufficiently small parameter o;(i = 1, 2, 3) to ensure that

0oR < A <min{2u,2}.
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Accordingly, for fixed o;(i = 1,2, 3) and A, we settle on

405 2007
C(O’z),40'3 + 203 + 1’1 + 240

o< min{
such that
Z'(t) < =6(1 — »R)E, (1)
which, applying the second inequality in (4.2) simultaneously, yields

(5(/1 - O'zR)g

%)

L) < - (0.

Therefore, the argument establishes the existence of a constant C, > 0 with the property that

5(A-o5R)

L)< Cre 2 ', Vre[0, ).

An additional conclusion can be drawn from the first inequality in (4.2), namely that
C, _oa-oB
E() <=2 = ', ¥re[0,).
131

Given that the norm is weakly lower semicontinuous, it follows that
lu@llz, + lu D5 < r}gg inf(llun(t)lli0 + IIMm(t)Ilé),

which, combing with (3.8) and (4.6), gives

. . . . C _ 8Q-oR)
tim inf (|lu, (1)1}, + e ()I3) < lim inf C3E, (1) < =™ =
n—oo n—o0 L

Letting p = C/¢; and g = 6(Ad — 0,R) /15, the conclusion of Theorem (4.1) is valid.

5. Conclusions

(4.6)

This work examines well-posedness issues for fractional viscoelastic Kirchhoff equations with a
nonlinear dissipative term and a nonlinear source term. Firstly, we introduced fractional Sobolev
spaces; in addition, the correlation function E(f) and some necessary lemmas were introduced. Based
on these, we combined the Galerkin method and potential wells to prove the global existence of the
solutions. Then, using the perturbed energy technique and Gronwall’s inequality, the solutions decay

exponentially in time was proven.
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