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Abstract: Brucellosis is currently recognized as one of the most serious zoonotic infectious diseases,
caused by Brucella abortus, and is classified by the World Organization for Animal Health as a
Category B zoonotic disease. In this study, we developed a new seven-compartment model of the
transmission dynamics brucellosis in sheep, which accounts for the combined effects of vaccination,
age structure, culling of infected sheep, and the impact of the contaminated environment. Our analysis
demonstrates that the DFE point of the system is globally and asymptotically stable when the basic
reproduction number Ry, < 1. Furthermore, we show that the disease persists when Ry > 1, in
accordance with the theory of uniform persistence. In the numerical simulation section, we fit data
on the number of Brucella infections in sheep in Egypt from 1999 to 2010 and estimate the model’s
parameters using the least squares method. Based on this, we propose four control strategies to
establish the optimal control system. We applied Pontryagin’s maximum principle to derive the
necessary conditions for optimal control and perform numerical simulations. A cost-benefit analysis
was conducted from the perspective of sheep farmers. Our findings suggest that the most cost-effective
strategy for reducing brucellosis infection rates in sheep is to uniformly house young sheep and
vaccinate them simultaneously.

Keywords: Brucellosis; vaccination; contaminated environments; uniform persistence; optimal
control

1. Introduction

Brucellosis is caused by Brucella abortus, a small, intracellular, Gram-negative,
coccoid-rod-shaped bacterium. Brucella organisms can invade the body via the digestive tract, the
respiratory tract, skin, or mucous membranes. Infections are typically acquired through handling
infected livestock, consumption of contaminated dairy products, or ingestion of undercooked meat
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from affected animals. Sheep, cattle, and pigs are particularly susceptible to this infection. The
disease presents in two stages: acute and chronic. Acute infection is characterized by symptoms such
as fever and arthralgia, while chronic infection is marked by prolonged low-grade fever and fatigue.
Since its discovery in 1886, brucellosis has been reported in approximately 85% of countries
worldwide, with widespread outbreaks occurring, particularly in China since the 1950s [1]. However,
its prevention and control pose substantial challenges: Brucella exhibits high resilience, with the
ability to parasitize and replicate within immune cells; it can persist in the environment for extended
periods; its transmission routes are diverse (encompassing the digestive tract, the respiratory tract,
skin, and mucous membranes); and available vaccines have limited efficacy. Common control
measures include disinfection, culling of infected animals, and vaccination, but the wide range of
transmission routes complicates comprehensive prevention [1].

Against this backdrop, dynamic modeling has emerged as a powerful tool for analyzing the
transmission of brucellosis. By examining the stability of these models, targeted prevention and
control strategies can be formulated, providing theoretical support for disease management, especially
in the agricultural and livestock sectors. Dynamic models can also predict the epidemiological trends
of the disease, facilitating the development of rational prevention and control strategies.

Numerous scholars have primarily employed transmission dynamics and statistical methods to
study brucellosis, with transmission dynamics being the most widely adopted approach. As early
as 1994, Gonzalez-Guzman and Naulin [2] developed a dynamic model for the transmission of
brucellosis in cattle, which included four compartments: Susceptible, abortion-infected, infected, and
vaccinated. They provided three mathematical characterizations of the disease (outbreak, evolution,
and epidemiological status) and determined the threshold for a brucellosis outbreak using singular
perturbation theory.

In the application of mathematical models to analyze disease transmission patterns, proving the
system’s stability is essential. Through stability analysis, we can determine whether brucellosis tends
to become endemic or be eradicated. Dynamic models of brucellosis have evolved from simple
three-dimensional, four-dimensional, and five-dimensional systems to higher-dimensional ones. As
more factors are incorporated, stability analysis becomes increasingly complex. Current research on
brucellosis encompasses intra-population, inter-population, and cross-population
transmission dynamics.

Studies have focused on the intra-population transmission of brucellosis. Reference [3] proves the
stability of two equilibrium points by directly constructing Lyapunov functions. Reference [4] does
not conduct a dynamic analysis but explores the conditions for disease elimination through a numerical
simulation. Similarly, [5, 6] also prove the stability of two equilibrium points by directly constructing
Lyapunov functions. The stability of the equilibrium point in [7] is proved using the comparison
principle and Poincaré mapping. In [8], the Lyapunov function is used to prove the stability of the
disease-free equilibrium (DFE) point, while the comparison principle and asymptotically autonomous
system theory are applied to the endemic equilibrium point. Reference [9] constructs an age-structured
dynamic model, uses the Hurwitz criterion to prove the local stability of the DFE point, applies center
manifold theory to the endemic equilibrium point, and then constructs Lyapunov functions to prove the
global stability of both equilibrium points.

Reference [10] establishes a dynamic model of sheep-human brucellosis transmission and proves
the stability of two equilibrium points by constructing Lyapunov functions. The model in [11] consists
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of two patch models: The stability of the DFE point is proved by directly constructing a Lyapunov
function, and the stability of the two patches is verified under specific conditions. Reference [12]
develops a dynamic model of cross-transmission between cattle and sheep based on mixed farming
systems. It first uses the Hurwitz criterion to prove the local stability of the DFE point and then verifies
its global attractivity. For the endemic equilibrium point, it confirms existence and uniqueness before
constructing a Lyapunov function to prove global stability.

Ainseba et al. [13] developed a dynamic model for sheep brucellosis that incorporates both direct
and indirect transmission. The study calculates the basic reproduction number, analyzes the global
system stability, and provides numerical simulations for slaughter strategies, concluding that
environmental pollution plays a significant role in disease persistence and control. In 2017,
Li et al. [14] established a seven-compartment human-sheep model considering environmental
infection pathways, dividing the infection period into acute and chronic stages, and deriving
prevention and monitoring strategies through a numerical simulation. In 2018, Meng and
Abdurahman [15] expanded on Li’s work by developing a six-compartment sheep model including
latent and immunized populations; numerical simulations indicated that increasing disinfection
frequency and improving immunization rates could effectively control transmission.

Zinsstag et al. [16] analyzed the epidemiological situation of brucellosis in Mongolia and
developed a coupled human-sheep-cattle three-herd dynamics model based on actual surveillance
data, predicting local epidemiological trends and proposing risk management strategies. Li et al. [17]
established a coupled human-sheep herd dynamics model to analyze brucellosis trends in major
Chinese provinces (e.g., Xing’anmeng and Inner Mongolia), finding that inoculation, detection, and
culling effectively controlled spread.

Many scholars have incorporated age structure into their models. For example, Holt et al. [18]
developed a stochastic age-structured model incorporating cattle herds’ demographic data to
characterize the intra- and inter-herd transmission of Brucella abortus. Their results suggested
prioritizing vaccination of replacement heifers on large farms (considering stakeholder acceptance
and vaccine supply constraints) as an effective strategy. Wang and Abdurahman [19] constructed a
multi-stage deterministic model for sheep brucellosis with incomplete immunity and later developed a
stochastic version incorporating ambient white noise effects on transmission, conducting a series of
dynamic analyses.

Zhou et al. [20] developed a human-sheep interaction model and proposed a multi-objective
optimization problem (transformed into a scalar optimization problem via the weighted sum method)
aimed at minimizing the total control costs. Using Pontryagin’s maximum principle, they determined
the optimal control strategies, concluding that brucellosis will continue to spread in Inner Mongolia
under current inadequate controls, recommending vaccination and health education as essential
interventions. Nannyonga et al. [21] constructed a model assessing brucellosis susceptibility,
considering direct transmission (contact with infected individuals/contaminated environments) and
vertical transmission (mother to child). They performed optimal control analysis using three
time-dependent measures (prevention of exposure, elimination of infected individuals, and reduction
in environmental transmission) to minimize costs and infection numbers, applying Pontryagin’s
maximum principle.

In summary, we conclude that vaccination, age structure, and environmental contamination
significantly influence the epidemiological trends of brucellosis. However, most existing models have
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incorporated only one of these factors. Therefore, we propose a new model that integrates
vaccination, age structure, and environmental contamination, building upon the framework of
transmission dynamics outlined in existing models. Additionally, since brucellosis-infected sheep are
typically culled once detected in a flock, and improper or delayed disposal of their carcasses poses a
high risk of further environmental contamination, we also account for the effect of culled sheep on
environmental contamination. In the numerical simulation section, we calibrate the model using data
on brucellosis-infected sheep in Egypt.

The paper is organized as follows: In Section 2, we introduce a new mathematical model for
brucellosis. In Section 3, we analyze the model’s dynamics. Section 4 presents various control
strategies and discusses the optimal control strategy. In Section 5, we calibrate the model using the
least squares method, employing Egyptian brucellosis data as an example, and then analyze the
cost-effectiveness. Finally, in Section 6, we discuss and summarize the conclusions.

2. Model formulation

This paper proposes a novel S;VS,EIS.W model with seven compartments, integrating
vaccination, age structure, and environmental contamination. The total sheep population is divided
into five epidemiological classes, namely susceptible juvenile sheep §;, vaccinated individuals V,
susceptible adult sheep S ,, exposed individuals E, and infected individuals /, with the total active
population given by N = S§; + V + §, + E + I. Additionally, S. denotes the count of
culled (inactivated) sheep, and W represents the level of environmental contamination. The schematic
diagram of the model is presented in Figure 1, and the detailed parameter definitions are provided in
Table 1.

ds;
? :A—ﬁISJ'I—O'lSjW—(d'Fk'Fm)Sj,
dv
a5 =kS;—=pVI -0, VW =4V,
ds,
W :mSj—ﬁ3Sa]—O'3SaW—dSa,
5 == PIBIS ;4 BS D +BoVI+ (1= )i j + T3S )W + VW = (d + W)E, 2.1)
d/
pm =hE+pBiS;+B3S) +q(oS;j+ 038 )W —(d+pu+yl,
ds.
= I_ SC’
dr Y n
dw
E :0.)11+(,U25C—I’LW

where k is non-negative, and all other parameters are positive.
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Figure 1. Flow diagram of the model.

Table 1. Meaning of the compartments and parameters in the model.

1. Meaning of each compartment

S; Susceptible juvenile sheep (young sheep that are not vaccinated and are susceptible to infection)
V' Vaccinated individuals (sheep that have received vaccination)

S+ Susceptible adult sheep (adult sheep that are not vaccinated and are susceptible to infection)

E  Exposed individuals (sheep that have been infected but are not yet infectious)

I  Infected individuals (sheep that are infected and are capable of transmitting the disease)

S. Inactivated sheep (sheep that have been culled or have died due to infection)

W Contaminated environment (environment polluted by brucellosis from infected or inactivated sheep)
2. Meaning of each parameter

A Recruitment rate of sheep

d  Natural mortality of sheep

p Disease-related mortality in sheep

k  Vaccination coverage of sheep

m  Lambing rate

B1 Contact rate between young susceptible sheep S ; and infected sheep 7

B>  Contact rate between vaccinated sheep V and infected sheep /

B3 Contact rate between susceptible adult sheep S, and infected sheep /

h  Rate of progression from exposed to infected individuals

w; Rate of viral shedding in infected sheep /

v Inactivation rate of infected sheep /

o1 Exposure rate of young susceptible sheep S ; to the contaminated environment W
o0, Exposure rate of vaccinated sheep V to the contaminated environment W

o3 Exposure rate of susceptible adult sheep S, to the contaminated environment W
w; Rate of environmental contamination by the inactivated corpses of infected sheep /
n  Rate of removal of the inactivated corpses of infected sheep /

n  Virus clearance in contaminated environments

p  Proportion of symptomatic brucellosis infections due to direct transmission

q  Proportion of symptomatic brucellosis infections due to indirect transmission
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3. Stability and persistence analysis

3.1. Existence and uniqueness of solutions

In the study of infectious disease models, the existence and uniqueness of solutions form the basis
for ensuring the validity of model analysis. This section will utilize the Picard-Lindelof theorem to
prove that the solution of model (2.1) exists and is unique within the biologically feasible region.

To prove the existence and uniqueness of solutions for model (2.1), we employ the Picard-Lindelof
theorem [22]. First, we rewrite the model equations in vector form

dX
— =f(X), 3.1
o7 —1X) (3.1
T
where X(1) = (S (1), V(1), S u(1), E(0), I(1), S (1), W(#)) and £(X) is the vector function composed of the
right-hand sides of the system (2.1).

Lemma 3.1 (Picard-Lindelof). Consider the system of ordinary differential equations % = (X, 1),
where f : D X [ty,t;] — R", and D C R" is an open set. If f is continuous on D X [ty, t;] and satisfies
the Lipschitz condition with respect to X, i.e., a constant L > 0 exists such that:

I£CX, 1) — £CY, Ol < LIX - YII, (3.2)

forall X, Y € D andt € [ty,t,]. Then for any initial condition X(ty) = Xy € D, the system has a unique
solution X(t) defined on some interval containing t,.

Proof. We need to verify that model (2.1) satisfies the conditions of the Picard-Lindel6f theorem.

Each component of the function f(X) consists of polynomials and rational functions of the variables
S, V.S4 E,I,S. and W. Since these functions are continuous within their domains and all variables
in biological models are non-negative, f(X) is continuous in the domain R? = {X € R” | x; > 0,i =
1,...,7}

To verify the Lipschitz condition, we consider two arbitrary points X = (S, V,S,, E,I,S., W) and
Y=(,,V.8,E, 1,8y, W), and estimate [[f(X) — £(Y)|I.

First, consider the first component of f(X)

AX) = AY) =S T-S;D)—oi(S;W-8;W)—d+k+m)S;-35))
=B (S;,U-D+1S;-8)) =i (S W= W)+ W(S;=8)) = (d+k+m)S,;-5).

Using the absolute value inequality and the triangle inequality, we obtain

LAX) = AOI<BIUS T = 11+ BTIS ;= S jl + oIS HIW = W+ oy [WIIS = 8l + (d + k+m)IS ;- §
<BMI -1+ BM+cM+d+k+m)S; -S|+ MW -W|,

where M is a sufficiently large positive constant such that all variables are bounded by M within the
bounded closed domain D = {X e R |0 < x;, < M,i=1,...,7}.
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Similarly, for other components of f(X), we can perform an item-by-item analysis. Summarizing
the estimation results of all terms, we have

X)) = L) < Ca1lS ;= 8 j| + CiplV = V| + Ci3lS . — 8 o] + CulE — E|
+ Cysll = I + Ca6lS . — So| + Cr|W = W],

where Cy4; are non-negative constants determined by the model parameters and M.
After conducting a similar analysis for all seven components, we can conclude that

I£(X) — (Dl < LIX = Ylleos (3.3)

.....

component with respect to the k-th variable.

Note that the functions f; are polyno-mial functions and, therefore, smooth functions on their
variables on a closed bounded set ofR7.  Therefore, these functions satisfy a Lipschitz
condition (see [22]).

Since f(X) is continuous and satisfies the Lipschitz condition on the bounded closed domain D C
R7, according to the Picard-Lindeldf theorem, for any initial condition X(0) € D, model (2.1) has a
unique solution X(¢) defined on some interval [0, T) containing ¢ = 0.

Further analysis shows that, in the biological context, all variables remain non-negative, and the
system has a positively invariant set. Therefore, the solution can be extended to the entire time
interval [0, +00).

Theorem 3.2. The system (2.1) admits a unique global non-negative solution for any non-negative
initial condition.

3.2. Positive invariant set

In what follows, we analyze the dynamical behavior of the system (2.1). First, we specify the initial
conditions of the system as follows:

o = (S (0), V(0),S 4(0), E0), 1(0), S (0), W(0)) € R™™.

Evidently, given the non-negative initial conditions, all solutions of the system remain non-negative.
Furthermore, we proceed to show that the solutions are uniformly bounded.

Theorem 3.3. The solutions of the system (2.1) are uniformly bounded, meaning that the solutions of
the system ultimately converge to the following

Q= {Sj(t), V(0),S (D), E(1), [(1), S (1), W(t) € R™*

0<S;(0)+ V@) +8,0) + E@) +1() < 5,0 < S.(1) < 2,0 < W(r) < mxloreally,

Proof. Tt is evident that R’ constitutes a positively invariant set for the system (2.1), implying that if
the initial conditions lie within R’, the corresponding trajectory will remain there for all time.
Consequently, N = §; +V+S,+E+1 >0, withS. > 0 and W > 0 also holding. From the
system (2.1), it follows that
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dN
E:A—de—dV—dSa—dE—(dtu)I
=A-S;+V+S,+E+Dd—pul
=A—-Nd—-ul
<A —dN.

By the comparison principle, a T > 0 exists such that N(¢) < % for all + > T. Analogously, applying
the same line of reasoning to the last two equations of system (2.1) yields

ds.

=yl —17S,
d yi—n
<yN-1S.
yA
<—-1nS..
d )7
dw
— =wil+w,S.—nW
dr (0]] () n

< max{wi, wy}]N — nW
max{wi, wy}A
= T -
Analogously, a T > 0 exists such that forallr > T, W < W, S. < %. In conclusion, all
solutions of the system are uniformly bounded.

nW.

3.3. The basic regeneration number

We first compute the DFE of the system. Setting £ = I = 0 immediately yields S, = 0 and W = 0.
From the first three equations of the system (2.1), we derive

A
A-d+k+mS; =0 S = —,
( ms - " d+k+m
A kA
——dV =0 Ve —ouoo .
d+k+m = dd +k+m) 34
A mA
——dSa:O Sa:—.
M k+m = dd + k +m)
From this, we derive the DFE of the system as follows:
A kA mA
E , , ,0,0,0]. 3.5
Nd+k+m dd+k+m) dd+k+m) ) (3-5)

Next, following the formulation of the basic reproduction number provided in [23, 24], we utilize
the next-generation matrix method to derive the basic reproduction number for the disease. According
to the framework introduced by van den Driessche and Watmough in [24], the matrices F and
V—which represent the new infection terms and the remaining transition terms, respectively—are
defined as follows:
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A=p)BiSiI+A=-p)BsSd+BVI+(A—-q)o S W+ A —-qos3S,W+o,VW
pBiS il + pB3S . + qoS ;W + gosS W

F = 0 , (3.6)
0
d+hE
| hE+(d+u+y)1
Vel s, (3.7)

—wil — wyS,. +mW

The partial derivatives of the aforementioned matrices are computed below. These derivatives are
essential for constructing the Jacobian matrix of the system evaluated at DFE.

0 (1=-pBiSL + (U =p)BsS " +BV° 0 (1-q)aiS,°+ (1= q)o3S," + 0, V°
0 0 0 0
F = 8 pﬁISj 'gpﬁ3sa 8 40'15] 8 610'35a , (38)
0 0 0 0
d+h 0 0 O
-h d+pu+ 0 O
V=l _“y 7 - (3.9)
0 —W1 —W» 0
The basic reproduction number is given by p(FV~!), and is thus expressed as
R() = R] +R2, (310)
where o o o o
R = [(1 = p)BiS,° + (1 = p)BaS.” + BVl + [pBiS ; + pBaS. i G.11)
1= , .
Sif2
nwi +yw, [(1 = @) S ° + (1 = 9)38 ° + VOl + [qorS [ + qosS 1 fy
R, = (3.12)

nn fifa ’

where fi =d + h, f, = d + u + 7y, R, denotes the average number of secondary infections generated
via direct transmission from infected individuals, and R, represents the average number of individuals
indirectly infected by viruses shed into the environment by infected individuals.
3.4. Stability of disease-free equilibrium points

In this subsection, we analyze the local and global asymptotic stability of the DFE.
Theorem 3.4. When Ry < 1, the system (2.1) is locally asymptotically stable at the DFE point E,,.
When Ry > 1, the system (2.1) becomes unstable at the DFE point E,.
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Proof. First, we linearize the system (2.1) at the DFE E,,. The Jacobian matrix J(E)) evaluated at the
DFE is expressed follows:

~d+k+m) 0 0 0 —BiS 0 -oyS)°
k -d 0 0 BV 0 =,V
m 0 —-d 0 B35S 0 —-038.°
0 0 0 —-d+h X 0 X5 |,
0 0 0 h X-f 0 X
0 0 O 0 0% -n 0
0 0O O 0 w1 ws -n

where
X, =(1=p)BiS;"+ (1= p)BsS + B V0,
X> = pBiS ° + pBaS.,
X;=(1-qoiS+ (1 -qo38, "+ V0,
Xy = qcrlSjO +qo3S L.

(3.13)

Recall that J(Ey) = ( g g ) where

—d+k+m) 0 O
A= k -d 0 0 —ﬁzvo 0 —0'2V0
m 0 —d 0 —3S.L 0 —-038,°

h X—-f6H 0 Xy

0 0% -n 0

0 w1 W, —-n

[0 —BiS,° 0 —alsjo}

2

then
AIl-A -C

AL = J(Ey) =( o B

):I/U—All/U—Bl,

A+d+k+m) O 0
Al —A| = —k A+d 0
—-m 0 A+d

=[A+(d+k+m)]A+d)(A+d).
A3 = —d.

Hence, 4, = —=(d + k+ m), A,

A+(d+h) -Xi 0 —-X3
—h A-X + fz 0 -Xu
0 -y A+n 0
0 —w —wy A+n

=0.

|Al — B

After simplification, we obtain

A+ DA+ f)A+mA+n) = @A+ fi)A+nd+n)X; + (A +n)d+n)Xh
+ X401 (A + fH)A+ 1) + Xz k(A + n) + Xgywr(A + fi) + Xshyw;.
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In what follows, we employ the contradiction method to prove that all eigenvalues of J(E,) have
negative real parts. Suppose at least one eigenvalue A, exists such that Re(4,) > 0. In this case,

X + X1h + Xyw Xyyws
1 =| At Qgrfoletf)) © AatfD)datn) — (Aatf)(Aat)(Aatn)
- 3hyws swih

(Aa+fD)Aat 2)(Aa+m)(Aa+n) + (Aat+fD)Aatf2)(Aatn)

X Xh X X X;h Xzwih
§—2 1 + 4w1+ 4yw2+ 3yw2+ 3W1

+
Lo Nk fn o fmn fifenm o fifon
_ X]h + X2fl nwi + yw, X’;h + X4f]

+
Nif nn Sif2
= Rl + R2

= Ry.

This contradicts the condition Ry < 1, so the assumption is invalid. Therefore, all eigenvalues of
J(Ey) must have negative real parts.

Theorem 3.5. The system (2.1) is globally asymptotically stable at the DFE point Ey when Ry < 1.

Proof. Following the construction approach of the positive-definite Lyapunov functions commonly
used in similar epidemic models , we introduce the following Lyapunov function:

wh[(1 = @)1 S P+ (1 = @3S 0 + VO] + wa filgo S ° + 6]0'3Sa0]S

L=hE+ fil + ¢
i (3.15)
.\ Rl = @)a1S P + (1 = @380 + VO + filgoiS ° + qosS ] W

n

For notational simplicity, we introduce the following symbols:

wh[(1 = @i S P+ (1 = 938 * + VOl + wa filgoi S [ + qo3S 0]
y1 = >
i (3.16)
_ h[(1 - Q1S L+ (1 = @3S0 + VOl + filgoiS ° + gosS °]

2 .
n

The selection of this functional form is motivated by its ability to capture the system’s key
epidemiological characteristics. Specifically, the coeflicients are chosen such that the time derivative
% along system trajectories satisfies

L=h|(1=p)BiS;+BS ) +BVI+ (1= g)c1S j+ 038 )W + VW = (d + DE)|
+ fi|hE + p(BiS ; + BsS ) + q(01S j + 038 JW = (d + p + )] |
+y1(yL =18 ) + ya(wi ] + WS — nW)
<h [(1 = p)BIS [ +BS N +BaVI+ (1 = g) (1S [ + 038 )W + 0 VW — (d + h)E]
+ fi|hE + p(BiS 0 + B3S M + q(01S j + 038 )W = (d + p + )] |
+y1(yL =18 ) + ya(wil + WS — nW)
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= h[ X, + X5W — fiE] + filhE + XoI + XyW — fo1]
+y1(yI = nS o) + yo(wil + WS . — nW)

= (hX1 + fiXo — fifa —yy1 + o) + (hfi + iWE
+ (=yin + way2)S ¢ + (hX; + fi1 X4 — ny)W

W h X3 + Wy [1 Xy to hXz + f1X4

=X+ fiXo-fifh—v e " )1
Xih+Xoft  nwi +yw Xsh+ Xy f
_ —1)z
hitz fifa " nn fifa
= fifal(Ri + Ry — I
= fifoa(Ro — DI

Since all parameters of the system (2.1) are positive, we immediately deduce that L < 0 when
Ry < 1. It follows that the maximal compact invariant subset of {(S;, V.S, E,[,S.,W) € Q : L =0}
is the singleton {E,}. By the LaSalle invariance principle [25], every solution of the system (2.1) with
the initial conditions in Q converges to Ej as t — +co whenever Ry, < 1. Therefore, the system (2.1) is
globally asymptotically stable at the DFE E, when Ry < 1.

3.5. Existence of endemic equilibrium

An endemic equilibrium (EE) is defined as an equilibrium state of the system where the infection-
related variables are non-zero. At the EE, all differential equations equal zero, i.e.

AN=B I+ oW +d+k+m)Sj,
ij- =Bl + W +d)V™,

mS; = (B + oW +d)S,,

Ap = (d+ h)E",

hE* + A4, =(d+p+y)I,

yI' =nS,,

w1 l" + WS, =nW",

where,
A =0 =p)BiS; + L3S +BVI+ (1 —g)(01Sj + 038 )W + 0, VW, (3.17)
A =pBiSj+B3SIH +q(o1Sj + 038 HW. '
We write
_I_
fi=d+h fr=d+u+y, c=1077%2 (3.18)
nmn
From B¢ = 0, we have

dt

c?
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From the equation for dd_VtV, we obtain
w I + wyS, = nW7,

w1 I + wy 771 _7](U]+')’CU2

W = I =cI".

n nn
From the equation for £, we have

(A =p)BiS;+BSII + BV I + (1 —q) 018 +03S )W + 0 VIW' = (d + h)E".
Substituting W* = ¢I* and dividing both sides by I* (I* # 0), we get

I*
B = 7 [(1 —P)BISS+B3SL) + BV + (1= q)(a1S7 + 038 D)e + Uzv*c].
1

From the equation for % = 0, we derive
A=+ W +d+k+m)S7,
S = A
I d+k+m+ By + ool

From the equation for ‘Z—‘; = (0, we obtain
kS}‘. = (Bl + R, W* + d)V7,
kS*
V= ! .
d+ (ﬂz + O'zC)I*
0, we have

mSj = (ﬂ3l* + 0'3VVSF +d)SZ,

dsy _

From the equation for <

%
ny .
* S J

S* = .
“d+ B3+ o0l
Thus far, we have obtained the following expressions of S ;‘., VS E*, S, W in terms of I

. A
I d+k+m+ B+ o0l
kS
V* — .]
d + (By + or0)I*’
mS'*
S* — J ,
“d+ (B3 + ool (3.19)
I*
== (1= P)BISG +BaS0) +BoV" + (1= @)1 + 038 e + 02 Ve
1
W = nwy + Y2 ol
nn
s =21p.
n
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To prove the existence of an EE, it suffices to show that I* > 0.
From the equation for 4/ = 0, we have

hE* + p(,BlS; -|'ﬁ3S:;)I>k + 6](0’15“; + O'3SZ)W* + o VW = le*

Substituting £ and W* = cI*, dividing both sides by I*, and rearranging terms, we obtain

h
FU) =+ [(1= p)BIST +B3S3) + BaV" + (1 = g1 + 38 ) + V|

+pB1S T +B3S,) + q(01S + 038 e+ 0aVie— L =0,
where F(I") = 0 1is an equation in /*. Note that S7, V* and S are all continuous and monotonically
decreasing functions of I*.
When I* = 0, we have S = S?, V* =V and S* = SY. Substituting these into F(I*) yields
F(0) = fa(Ro — 1).
When R, > 1, F(0) > 0.
As [* — oo, S;‘., Vv, 8§ — 0, so all terms involving Sj., V*, 8§ in F(I*) vanish, leaving only —f,
F(I')y - —-f, <0.
Clearly, F(I*) is continuous on [0, o), with

e F(0) >0 (when Ry > 1);
o F(I") » —oco (as I" — o0).

Therefore, a unique I* > 0 exists such that F(I*) = 0. Substituting this I* into the expressions for
S5 V5,8, E, S and W* gives an EE point with all positive variables. Hence, when Ry > 1, the system
has a unique EE.

Theorem 3.6. When R, > 1, the system admits a unique EF.

3.6. Uniformity and permanence
We now state a theorem regarding the uniform persistence of the system.

Theorem 3.7. When Ry > 1, the system described by the Eq (2.1) is uniformly persistent.
To prove this theorem, we first present the following lemma.

Lemma 3.8. [26] Suppose that

(1) Let X be a metric space, Xo C X be an open set, and define 0X, := X\ X, (where 0X, need not be the
topological boundary of X, following the standard notation in persistence theory). Let f : X — X
be a continuous map satisfying f(Xo) C Xy, and let A be the global attractor of f (i.e., a nonempty,
compact, invariant set that attracts every point in X).

(2) Let My = {x € 0Xy : f"(x) € 0Xy forall n > 0} (the set of points in 0X, whose positive orbits
remain in 0X,). Let Ay = A N My be the maximal compact invariant set of f in X, (which may be
empty). Suppose Ay admits a Morse decomposition {M, - -- , My} (a sequence of disjoint, compact,
invariant subsets) with the following properties:
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(a) Each M, is isolated in X (i.e., M; is the maximal invariant set in some neighborhood of itself).

(b) For each 1 < i < k, the stable set W*(M;) = {x € X : lim,_. d(f"(x), M;) = 0} satisfies
Ws(M) N Xy = @.

Then, 6 > 0 exists that for any compact internally chain transitive set L (a compact invariant set where,
for any a,b € L and € > 0, there is a finite e-chain connecting a and b within L) with L £ M; for all
1 <i <k we have inf,.; d(x,0Xy) > 0. In other words, f : X — X is uniformly persistent with respect
to (X, 0Xp).

Proof. Let us examine Condition 1. First, we define

X={S;,V.S..E,1,S.,,W) € Q},
Xo={S;,V.S.,E, LS., W)eX:E>0,I>0,§.>0,W>0}

It is evident that

0X0 = X\X()
It is straightforward to observe that for the system (2.1), both X and X are positively invariant sets,
and X is a closed subset of X. This implies f(Xj) C X,. Next, we consider the global attractor A of f.
By Theorem 3.1, the trajectories of the system are uniformly bounded, which guarantees the existence

of at least one global attractor A for f. Thus, Condition (1) is satisfied. We now proceed to verify
Condition (2), where we take

Ay ={(S ;(0), V(0), S «(0), E(0), 1(0), § (0), W(0)) € X :
S (D, V(®),S (), E(1),1(2),S (1), W(2)) € 0Xo, ¥Vt > 0}.

We proceed to prove this result as follows:
Ay=A,=1{(5;V,540,0,0,0)€0X : S >0,V >0}

It is evident that A}, C Ay. We next show that Ay C A). We use a proof by contradiction, supposing
that Ay C A’ does not hold. Let ¢(7) be a solution to the system with the initial condition ¢(0) that is
one-to-one, satisfying

(1) = (S j(0, V(0), S o(0), E@), (1), S (1), W(D)) € Ag, (D) & A,

Then, at least one of E(0), 1(0), S.(0), or W(0) is non-zero. Without loss of generality, suppose
E©) =0, 10) =0, S.0) =0, and W(0) > 0. From the system (2.1), ¢ exists such that the following

Electronic Research Archive Volume 33, Issue 8, 5100-5132.



5115

equation holds:

E(1) = e M[E(0) + fo [(L = p)B1S j() + B3S o) (u) + B2V ()l (1)
(1 = @)(01S () + 0738 (W)W () + 2 V()W (w)]e/V'du] > 0,

1) = LS s 10) + [ UHE@g(enS 00 + 0380
0

2= [y PBIS J(0+B3S A 111 > (),
1
S0 =e™S.(0) + f yI(u)e™du) > 0,
0

W(t) = e ™[W(0) + f (wiI(u) + wyS (u))e"™du] > 0.
0

This implies the existence of some ¢ such that ¢(f) ¢ 0Xy, hence () ¢ Ay, contradicting the
assumption ¢(7) € dAy. Therefore, A; = A),. It follows that A5 contains only the DFE m Ej, which is
evidently isolated and invariant. We now verify Condition (b) of Lemma 2, namely W*(Ey) N X, = @.
By the Lyapunov stability theorem, £ > 0 exists such that for any solution ®,(¢(0)) with the initial

conditions ¢(0) € Xy, the following holds:

D(®:(¢(0)), Eo)™ = &1,

We proceed by proof of contradiction, assuming that the above conclusion is false. Specifically, for

any g; > 0, we have

D(®@,(¢(0)), Ep)™ < &;.
This means that 7 > 0 exists such that for all > T, both

dik+m ° SSj(t)sd+l’c+m+81’
kA A
ddtkem S SVO= g T
mA m
dd+kam S S5O g T T

0<Elt)<e,0<cI)<e, 0<S()<eg, 0<W@ <e¢g.

For ¢t > T, consider the following subsystem:

dE
i Ar(eD] + Ax(e)W — (d + h)E,
d/
a = A3(81)I +A4(81)W + hE — (d +u+ ')/)I,
das.
=yl -nS,,
ar "
dw
O =wil +w)S. —nW,

(3.20)
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where
Ai(e) = (1= pIBISY — &) +B3(Sy — e + BV — &),
Axen) = (1= @loi(SY — &) + a3(Sy — eN] + o(V° = &), (3.21)
As(e)) = pIBi(SY — &) + B5(Sy — &), .
Ay(er) = qlo (S — 1) + 03(Sy — &)].
We define
df
< =A@, (3.22)
where
—(d+h) A (&) 0 Axern)
_ h As(e)—(d+p+y) 0 Aye)
Aen=| y B
0 w1 Wy -n

Recall that S (A(g1)) = max {Re A : A is an eigenvalue of A(g)}. According to the Perron-Frobenius
Theorem [27], since A(g;) is irreducible and non-negative with non-negative diagonal entries, S (A(&))
corresponds to a simple eigenvalue of A(g;) with a positive eigenvector. From the proofs of Lemma 2.1
in [28], Theorem 2 in [24], and our previously established Theorem 2.2, we deduce that for Ry > 1,
we have

S (A(0)) > 0.

Since S (A(g)) is a continuous function of &, sufficiently small g; exists such that S(A(g;)) > 0.
Consider the solution f(¢) = (f(1), f>(t), f5(£))T to the the system (2.1). As t — +o0, we have fi(t) —
+oo fori = 1,2, 3. Applying the comparison principle, we conclude that

lim E(t) = +oo, lim I(t) = +oo0, lim S.(f) = +o0, lim W(t) = +oo.
t—+o0 t—+00 t—+0o0 t—+0o0

This contradiction establishes that W*(Ey) N Xy = @, and € > 0 exists. Having verified all the
hypotheses of Lemma 3.5, we conclude that the solutions of the system (2.1) are uniformly persistent
when Ry > 1.

4. Optimal control problem

In the preceding section, we derived the basic reproduction number R,, which governs the
disease’s extinction, and analyzed the stability and persistence of the system (2.1). However, the
current epidemiological trends indicate that the disease control objectives will not be achieved within
the next decade. As highlighted in relevant reports, brucellosis remains a global concern due to
factors such as high direct contact rates between free-range sheep and other flocks, inadequate vaccine
coverage, and delayed remediation of virus-contaminated environments. Consequently, in the
subsequent section, we introduce four control variables u;(¢), uy(t), u3(t), us(t) to facilitate effective
control of brucellosis.
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The control variable u;(f) indicates the confinement of young sheep to reduce their contact with
external sheep and contaminated environments, u,(¢) indicates that immunized adult sheep should be
isolated from external sheep to avoid contact, u3(#) corresponds to increasing the vaccination rate of
young sheep, and u(f) represents enhanced virus clearance in  contaminated
environments—specifically, the timely removal of contaminated environments and the carcasses of
infected sheep that have been culled. On the basis of these assumptions, we present the following
controlled model in this section

ds ;
d—t’ = A= (1= u)BiS I — (1 —u)oiS;W = (1 +us)kS ; = (d +m)S ;,
v
o (1 4+ u3)kS j = (1 —up)BoVI — 0, VW — dV,
ds,

= mS = (1= )sS ol — 03, W - dS.
dE
7l (I=p)A =u)BS;I+ - p)1 —u)B3S.0 + (1 —u)BVI

! .1
+(1 = @)1 —up)o 1S ;W + (1 = q)o3S W+ 02VW = (d + hE,
dI
7 hE + (1 —u)pBS ;I + p(1 —u2)B3S I + g(1 —u)o 1S ;W + qosS W —(d + u+y)l,
ds,

=yl-(1 SC’

7 (I + ug)n
dw
I = wil +wrS. — (1 + uy)nW.

Next, consider the set of control variables S ;,5,,V,E,I,S, and W, which depend on the state
variables u(t) = (u (), u(t), u3(t), us(t)) € U,q. The admissible control set U,q is formally defined as

Uaa = {(ur,up, uz,u4) |0 <u; < 1, t €[0,Tol, i = 1,2,3,4, and u;(¢) is Lebesgue measurable on [0, Ty]},

where U (control region) refers to the range constraint [0, 1] for each control variable, and U,q4 further
incorporates the measurability condition of control variables over the time interval.
The objective is to minimize the following cost functional:

To 1 1
ﬂmmmmmmam@rif(aa0+&mw~ﬁﬁm+—&%m
0 2 2 (4.2)

+%&ﬁm+%&ﬁmﬁu

where Z; and Z, are the weighting constants for the latent and infected individuals, respectively, and
&1,6, &3, &, are the weight constants corresponding to the four control variables. The objective is to
find an optimal set of controls (uj(?), u;(t), u3(), u;(?)) that minimizes the control cost, the number of
latent individuals, and the number of infected individuals. Specifically, we aim to satisfy the condition

J (i (0), (1), w3 (1), uy (1)) = MIIElli]nd J(u (1), ux(1), uz(1), ua(t)).
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In the following, we first estimate the costs associated with the four control strategies. Given the
lack of prior literature supporting these assumptions, we adopt the perspective of sheep farmers to
derive the cost estimates.

First, consider the cost of the control strategy u;, which involves confining young sheep to
minimize their contact with external flocks and contaminated environments. This strategy is relatively
straightforward for farmers to implement, as it requires only minimal additional feed for young
sheep (which are too small for early free-ranging). Thus, we assume the cost of u; to be $2 per sheep
per year.

Next, u, denotes the strategy of isolating immunized adult sheep from external flocks. This is more
challenging for farmers, as it necessitates additional forage for adult sheep and incurs substantial labor
costs due to restricted free-ranging. Therefore, we assume the cost of u, to be $35 per sheep per year.

As usz represents the vaccination rate of young sheep (with the goal of increasing this rate), the
brucellosis vaccine is priced at approximately $4.50. Consequently, we assume the cost associated
with uz to be $4.50 per sheep per year.

Finally, u, represents enhanced virus removal from contaminated environments. We estimate the
cost of this control strategy to be $0.5 per sheep per year.

Thus, we set & =2, &, =35,& =4.5,and & = 0.5.

Applying Pontryagin’s maximum principle, we can express the corresponding Hamiltonian function
as follows:

1 1 1 1
H=Z,E@) + Z,1(0) + Eglu%(t) + Egzug(z) + §§3u§(z‘) + §§4uﬁ(t)

d$; dv _ds, _dE _dI _dS. _dw
+/11I+/12§+/13 T +/l4a+/l5a+/lé a +/17E,

4.3)

where A; (i = 1,2,...,7) are the associated costate parameters.

In accordance with Pontryagin’s maximum principle, we observe that

da, (9_H da, B H_H das 0H  dA oH

W ey @ av @ s, @ oE
dAs OH dAe OH dA, OH

dr 9 dr 84S, dr oW’

Hence,
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% =4l —u)Bil + (A —up)oW+ (1 +uz)k + (d +m)] — Azm — (1 + uz)k
=41 = p)d —u)B I+ (1 —g)(1 —up)o W]
= As[(1 = up)pPil + q(1 —uy)o],

da

d_tz = L[(1 = u)Bol + oW +d] — 4[(1 — up)Bol + oW1,

dAa

< = Al =)l + s W+ dl = 41 = p)(1 = u)fsl +(1 = s W]
= As[p(1 = up)B31 + qo3s W1,

dA,

Nz d+ ) - Ash,
dr tF Ay(d+h) = As 4.4)

dAa
d—j =2+ L(1 —uBiS; + (1 — ux)B,V + A3(1 — u2)BsS 4
— Ll = )1 —upBiS; + (1 = )1 —uz)B3S o + (1 — ur)B, V]
— 501 = u)pBiS j + p(1 — u)B3S , — (d + p + y)] — dsy — Ay,
dAa,
—0 = _dywy + A6(1 + ug),
dr
da
d_t7 = /11(1 - M1)0'1Sj + LoV + /130'3551

= A[(I =)l —up)oS;+ (1 = q)o3S, + o, V]
- /15[61(1 - ul)O’lSj + C]O'3Sa] + /17(1 + Lt4)l’l.

Since the state variables of the controlled system do not have specified terminal values, the
transversality conditions hold at the final time 7

Ai(Ty) =0 (G=1,2,...,7).

According to Pontryagin’s maximum principle, the optimal control variables u](7), u5(1), u;(¢) and (1)

satisfy W = 0 and are constrained by 0 < u; < 1 fori = 1,2, 3,4. Therefore, the optimal controls

1
are characterized as follows:

u; = min {max {u;, 0}, 1},

where

[A4(1 = p) + Asp = 41B1S T + [A4(1 — q) + Asq — 4]0 S W

Uil = s
&
- [A4 = LIBV I + [A4(1 = p) + Asp — 31838/ T”
22 — )
&
. 4.5
(L) — K, (43)
Uy = ————,
&
AenS.* + AnW*
l/l44 = )
&4
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where S ;*, V*, S, I", S ., W* is the optimal solution obtained in by solving, on each iteration, problem
with the boundary conditions and A4;,i = 1...7 is the adjoint function.

5. Model calibration

In this subsection, we first fixed certain parameters by referring to relevant literature [10, 17,29,30]
and then estimated the remaining parameters using the least squares method. The estimation was based
on the brucellosis prevalence data of Egyptian sheep from January 1999 to December 2010, as reported
in the General Veterinary Organization’s report [31]. The total number of annual brucellosis infections
in sheep was calculated using the total population of Egyptian sheep and the prevalence rate.

We employed a weighted least squares approach to minimize the mean squared errors (MSEs)
between the observed data and the model’s predictions. The dataset used in this study was extracted
from the brucellosis prevalence records of Egyptian sheep, as reported by the General Veterinary
Organization, spanning from January 1999 to December 2010. Specifically, we minimized the
following MSE function:

N 2
MSE = Z % (5.1)
i=1

where X; denotes the observed data values, and x(#;) represents the model-predicted values at the exact
time points #; corresponding to the observed data. This method ensures that

x(t;) = I(t;). (5.2)

As noted in [31], the number of test animals in that study was consistently very small relative to the
total size of Egypt’s animal population. Moreover, since no sampling plan was provided, sampling bias
cannot be ruled out. Therefore, we preprocessed the data as follows: the positive rate detected in 2009,
which contained obvious errors, was replaced with the average of the positive rates detected in 2008
and 2010. The relevant specific data are presented in Table 2, and the specific parameter values can be
found in Table 3.

The fit of the model (2.1) to the brucellosis prevalence data in Egypt from January 1999 to 2010
is shown in Figure 2, where the purple points represent the actual observed data, and the blue curves
denote the model-predicted outcomes.

Due to the significant difficulty in obtaining data on brucellosis in sheep, we only found data on
brucellosis infections in Egyptian sheep from 1999 to 2010, which were used to calibrate the model.
To demonstrate the predictive ability of the calibrated model for the period 2011-2025, we refer to
the summary of the actual brucellosis prevalence published by the Egyptian government, as reported
in [32]. As can be observed from Figure 3, the trend changes between 2010 and 2025 are roughly
consistent with those predicted by our model, which indirectly validates the predictive capacity of
our model.
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Table 2. Number of Brucellosis cases in Egypt, January 1999-2010.

Years  Total for Egypt ~ Number of tests ~ Number of positives ~ Rate of infection ~ Total number of infections
1999 4,390,730 62,151 1437 2.31 1,014,263
2000 4,469,130 68,342 1303 1.91 85,360
2001 4,671,240 78,310 1967 2.51 117,248
2002 5,105,000 99,466 1111 1.12 57,176
2003 4,939,000 79,565 1755 2.21 109,152
2004 5,043,000 68,122 1081 1.59 80,184
2005 5,232,000 69,571 1203 1.73 90,514
2006 5,385,000 71,929 905 1.26 67,851
2007 5,467,470 68,171 924 1.36 74,358
2008 5,498,030 106,215 968 0.91 50,032
2009 5,591,850 84,798 3095 0.85 47,531
2010 5,529,530 66,412 525 0.79 43,683

Table 3. Values for each parameter of the model.
Parameters Parameter value Unit Source
A 946,292 sheep/year Fitted
d 0.25 1/year [31]
u 0.15 1/year [10]
k 0.316 1/year [10]
m 1.06 1/year [31]
Bi 1.56 x 107° 1/(sheep-year) Fitted
B> 54x107° 1/(sheep-year) Fitted
B3 2.58 x 107 1/(sheep-year) Fitted
w1 16 1/year [31]
Yy 0.09 1/year Fitted
ol 3.6x 107! 1/(sheep-year) Fitted
o) 4.7 %1078 1/(sheep-year) Fitted
o3 2.47 x 10710 1/(sheep-year) Fitted
Wy 16 1/year [31]
n 0.14 1/year Fitted
h 1.64 x 107 1/year Fitted
n 0.1 1/year Fitted
p 0.1 Unitless Assumed
q 0.2 Unitless Assumed

Using the parameter values in Table 3, we calculate the basic reproduction number Ry, = 1.56, which
exceeds unity. This result indicates that, in the absence of control measures, brucellosis will persist
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endemically in Egypt and will not naturally vanish.
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Figure 2. Model calibration of brucellosis infection cases in Egypt.
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Figure 3. (a) Review of the current prevalence of brucellosis in Egypt (blue curve:
government reports). (b) Prediction of brucellosis infections in Egypt (2005-2025) by the
calibrated model.

6. Numerical simulation of optimal control

The correctness of the optimal control theory results and the impact of parameter values on
infectious diseases were verified through numerical simulation analysis of the model. Numerical
simulations were performed using MATLAB(2021a) software.

Let the state variables be X = (S, V, S, E, I,S ., W),

the costate variables be A = (A, A;, A3, A4, A5, Ag, A7),

and the control variables be U,; = (uy, uz, 43, is).

The basic algorithm steps are as follows:
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(1) Make an initial estimation of U within the time range [0, #/].

(2) Using the initial conditions and the estimated U values, solve X forward in time based on the
system (4.1).

(3) Solve the costate variables backward in time using the transversality conditions, control functions,
and the values of state variables.

(4) Update U by inputting the new state variable and costate variable values into the optimal control.

(5) Check for convergence and repeat the above steps until the current state values, adjoint values, and
control values converge sufficiently.

The parameter values in Table 3 were adopted as the model’s parameter values.

Figure 4 shows the time dynamics of the susceptible adult sheep population § ,, the vaccinated sheep
population V, the exposed sheep population E, and the infected sheep population / under both optimal
control and no control measures. It deeply reveals the practical effectiveness of the control strategies
in mitigating the transmission of brucellosis within the sheep population.

Specifically, Figure 4(a) presents the trajectory of changes in the susceptible adult sheep
population S ,. In the absence of any control measures, a sharp decline in S, can be observed early on,
compared with the situation with optimal control. This is because the transmission of the pathogen is
unimpeded, leading to a rapid transition of a large number of susceptible adult sheep to the infected
state.  Although, over time, the disease transmission exhibits a natural weakening trend, this
uncontrolled state results in a significant number of sheep dying. These losses not only impose a
direct economic burden on farmers, including decreased livestock productivity and increased
death-related costs, but also exacerbate the indirect costs caused by the disease’s spread to other
populations and even humans. In stark contrast, after implementing the optimal control measures, this
situation is significantly improved: S, remains at a higher, stable level for a longer period. This
stability indicates that, under control conditions, a large number of sheep can continuously be bred
each year, highlighting the critical role of active interventions in protecting the susceptible adult
population, which is crucial for maintaining the population’s productivity.

Figure 4(b) depicts the dynamic changes in the vaccinated sheep population V. Under the optimal
control measures, V shows a clear upward trend. The significant increase in the vaccinated population
reflects the successful implementation of the vaccination strategy. This strategy effectively enhances
herd immunity by reducing the proportion of susceptible individuals available for infection.
Vaccination not only directly protects vaccinated sheep from brucellosis but also indirectly limits the
transmission chain by lowering the overall susceptibility of the population. This is a key mechanism
for reducing the pathogen’s reproduction number R,. The continued increase in V observed in the
controlled scenario further demonstrates that sustained and timely vaccination can establish a robust
immune barrier, thereby reducing the risk of large-scale outbreaks.

Figure 4(c) shows the dynamic changes in the exposed sheep population E. The exposed sheep
population, representing individuals who have been infected but are not yet infectious, plays a key
role in the disease transmission cycle. In the absence of control measures, E increases sharply and
significantly because the sheep are continually exposed to infected sheep or contaminated
environments (such as shared grazing areas or water sources). The explosive rise in exposed
individuals indicates that the number of infected sheep will surge, thereby exacerbating the disease
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burden. In contrast, after implementing optimal control measures (such as early detection and
isolation of exposed individuals, or disinfection of high-risk environments), E remains at a lower level
and ultimately approaches zero. The near elimination of the exposed population highlights the
effectiveness of interrupting the transition from exposure to infection, which is crucial for breaking
the disease transmission cycle and preventing the disease from becoming entrenched in
the population.

Finally, Figure 4(d) focuses on the dynamic changes in the infected sheep population /, the main
source of pathogen transmission. In the uncontrolled scenario, I shows an initial exponential growth
pattern, which is typical of the disease’s spread when it is uncontained, as the pathogen efficiently
replicates and spreads among susceptible individuals. In sharp contrast, under optimal control
measures, the growth of [/ is effectively suppressed from the outset, and its curve remains flat and at a
low level, indicating that disease transmission is rapidly curtailed.

-10° v
« 108 S, 8 :
26T T
7
24
22 6
2 Optimal control 5
- No contral &
S8} = Optimal control | |
= 2 4 No control
S 16 «
= 3
1.4
2
12
:
1 "
Dﬂl' - 0 —e——————— e et — i — e —
2000 2005 2010 2015 2020 2025 2030 2035 2000 2005 2010 20156 2020 20256 2030 2035
Year Year
(a) Trajectory of changes in the susceptible adult (b) Dynamic changes in the vaccinated sheep
sheep population S . population V.
108 , E 12 210° !

25

e Optimal control Optimal contral
No control Na control

Population
=
Population
(=]

-

0.5

° 2000 2005 2010 2015 2020 2025 2030 2035 0 2000 2005 2010 2015 2020 2025 2030 2035
Year Year
(c) Dynamic changes in the exposed sheep (d) Dynamic changes in the infected sheep
population E. population /.

Figure 4.  Simulation showing the comparison between optimal control and no
control applied.

Overall, the trends presented in Figure 4 highlight the multifaceted effectiveness of optimal control
measures in regulating the dynamics of brucellosis. By implementing the strategies we propose, it is
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possible not only to alleviate the short-term impacts of the disease but also to contribute to the long-
term health and sustainability of the population. Given the zoonotic potential of brucellosis, this is of
significant importance for both livestock production and public health.

7. Constant control strategies and cost-benefit analysis

To investigate the impact of different control strategies on prevention and control of the epidemic,
we first clarify the design logic of control variable settings in subsequent numerical simulations,
addressing concerns about the distinction between constant control and optimal control.

In the analysis of various control strategies (single, dual, triple, and quadruple control) below, the
control variables uy, u,, us, uy are set to 0.5. This setting does not represent “optimal control”—a
dynamically adjusted strategy derived via Pontryagin’s maximum principle presented in Section 6 and
Figure 4—but rather serves as a comparative experiment with a constant control intensity. The
essence of setting ; = 0.5, where 1 < i < 4, is to standardize control effort. Since u; ranges
within [0, 1], 0.5 corresponds to medium-intensity measures such as 50% increases in vaccination
coverage or environmental pathogen clearance. This standardization enables a fair comparison of
effectiveness across strategy combinations such as single vs. dual strategies under uniform control
intensity, intuitively revealing which combinations perform better.

Including constant control simulations is motivated by two key considerations. First, from a
practical standpoint, constant measures such as fixed vaccination rates are easier to implement than
optimal control, which requires real-time adjustments. Comparing these strategies highlights the
superiority of dynamic optimal control while acknowledging the operational simplicity of constant
control. Second, the cost-benefit analysis detailed in Table 4 shows that constant
strategies—particularly the quadruple control strategy—exhibit higher cost-effectiveness than optimal
control, offering a pragmatic policy compromise

Table 4. Comparison of total avoidance, total cost, and unit cost of implementing different
control strategies, 1999-2035.

Control strategy Total number of infections Total number of infections averted Total cost (US$) Unit cost (US$)
No control 2,376,673 — — —
Strategy u, 873,662 1,503,011 1.47 x 10° 978
Strategy ui, u3 1,642,376 734,297 2.73 x 107 37
Strategy uy, u3, us 1,597,018 779,655 1.82 x 108 233
Strategy w1, up, uz, us 536,831 1,839,842 1.69 x 10° 918
Optimal control 194,640 2,182,033 3.34x 10° 1,531
In summary, simulations with u; = 0.5 serve as a standardized benchmark, facilitating the

evaluation of strategy combinations and supporting subsequent cost-benefit analyses and comparisons
with optimal control. They enrich our understanding of a strategy’s effectiveness under varying
implementation frameworks rather than representing optimal control itself.

Beyond optimal control, we propose several alternative control strategies and conduct numerical
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simulations on the control the system (4.1) to examine their impacts. To clarify how these strategies
influence the progression of brucellosis, we analyze trends in infected sheep populations under different
control measures.

The target for control effectiveness is based on relevant guidelines and literature: according to the
Ministry of Agriculture and Rural Affairs, “Five-Year Action Program for the Prevention and Control
of Inter-Animal Brucellosis (2022-2026)”, the target individual positivity rate should remain
below 0.4%. However, the literature [31] indicates that brucellosis positivity rates in Egyptian cattle
are significantly lower than in sheep, so we aim to reduce the sheep positivity rate to 0.7% or less
by 2035. To operationalize this, we calculated the average annual number of Egyptian sheep
from 1999 to 2010, multiplied by 0.7%, and set the target for infected individuals to be below 35,000.

Finally, we evaluate all proposed strategies from three perspectives: Total cost, unit cost (ratio of
total cost to infections averted), and incremental cost-effectiveness ratio (ICER). The trend of infected
individuals under single control measures is specifically shown in Figure 5.

x10*

u1=015,u2=0,u3=0,u4=0
u1=0,u2=0.5,u3=0,u4=0
u1=0,u2=0,u3=015,u4=0
u1=0,u2=0,u3=0,u4=0,5
without control

y = 35000

2000 2005 2010 2015 2020 2025 2030 2035
Year

Figure S. Comparison plot for a single control strategy. The dashed line represents the target
we aim to achieve.

It can be observed that without the implementation of relevant control strategies, the number of
sheep infected with brucellosis will decrease by 2035 compared with 1999 but will still fall short of
our set target. All four control strategies effectively reduce the total number of brucellosis infections in
sheep. However, compared with u;, u3, and uy, control strategy u, is the most effective in controlling
brucellosis infections. It significantly reduces the number of infected sheep and successfully meets our
goal, while u;, us, and u, also achieve the target we set. Therefore, the single control strategy u, is
sufficient to reach our goal. Since u, alone can achieve the desired outcome, we will not consider it in
the subsequent analysis of multiple control strategies.

We now examine the dual control strategies, as shown in Figure 6. It is evident that all three dual
control strategies effectively reduce the number of brucellosis infected individuals. Compared with
Figure 7, the dual control strategies perform significantly better than the single control strategies, with
the exception of u,. By simultaneously implementing both u; and u3, we can achieve the proposed goal.
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Figure 6. Comparison of dual control strategies. The dashed line represents the target we
aim to achieve.

Next, we examine the triple control strategy, as shown in Figure 7. It is evident that the targets set
for 2035 can be achieved.

510

uI=0.5,u2=0,u3=0.5,u4=0.5
1"y without control
y = 35000

5 L . L . . .
2000 2005 2010 2015 2020 2025 2030 2035
Year

Figure 7. Comparison plot of the triple control strategy. The dotted line represents the target
we aim to achieve.

Finally, we examine the quadruple control strategy and the optimal control strategy, as shown in
Figures 8 and 9. Both strategies result in an initial rapid reduction in the number of infections,
ultimately leading to the elimination of brucellosis. By synthesizing the results from Figures 5-9, we
observe that the following strategies all achieve the predefined target: the single control strategy ( u,);
the dual control strategy (u; and u3); the triple control strategy ( u;, us, and uy); the quadruple control
strategy (u;, u,, us, and uy); and the optimal control strategy. Among these, the quadruple control
strategy and the optimal control strategy are the most effective in minimizing the number
of infections.
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Figure 8. Comparison plot of the four-fold control strategy. The dotted line represents the
target we aim to achieve.
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Figure 9. Comparison plot of the optimal re-control strategies. The dashed line represents
the target we aim to achieve.

8. Cost-benefit analysis

In this subsection, we conduct a cost-benefit analysis of the control strategies presented in the

previous section. We report the total cost of each strategy, the total number of infections averted, and
calculate the unit cost for each strategy. Finally, we identify the most cost-effective control method.
The total cost is defined as follows:

To

total costs = [E1u1S (1) + Eun(S (1) + V(1) + EusV(E) + E4us(V(0) + W(2))]dz. (8.1)
0
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In the previous subsection, we identified several control strategies that can achieve our proposed goal.
Below, we focus on the cost-benefit analysis of these five control strategies, as illustrated in Table 4.

From Table 4, we observe that in terms of the unit cost, the combined strategy u;, u3 has the lowest
unit cost while still achieving our goal. Therefore, confining and vaccinating young sheep constitutes
the most cost-effective approach for disease prevention, despite not completely eliminating
brucellosis. In contrast, strategy u,; the combined strategy u;, u,, u3 and uy; and the optimal control
strategy—though relatively more costly in terms of unit cost—can induce a rapid decline in the
number of brucellosis infections and eventually eradicate the pathogen. In the following section, we
will employ the ICER to compare these strategies, beginning with the presentation of the
ICER expression.

ICER = &= (8.2)
Ib - Ia

where C, and C, represent the total costs of Strategy a and Strategy b, respectively, and , and I,
represent the number of infections under Strategy a and Strategy b, respectively. From its expression
we can calculate. Strategy a and Strategy b correspond to any two different prevention and control
strategies in Table 4 respectively.

ICER(uy, up, u3,u3z) = 653.15, ICER(optimal control) = 48218.83. (8.3)

It can be observed that the ICER of the optimal control strategy is significantly higher than that of the
quadruple control strategy. Therefore, the quadruple control strategy is more cost-effective than the
optimal control strategy.

9. Conclusions and discussion

In this paper, we develop an S ;VS,EIS.W model for brucellosis with seven compartments,
incorporating vaccination, age structure, and environmental contamination. In the theoretical section,
we prove that the DFE of the system is globally asymptotically stable when Ry < 1. The system is
uniformly persistent when the basic reproduction number R, > 1. Additionally, we derive a
theoretical formulation for the optimal control.

In the numerical simulation section, we fit data on the incidence of brucellosis infections in Egyptian
sheep from 1999 to 2010 and estimate the model’s parameters using the least squares method.

Finally, we perform numerical simulations using the control system developed in the theoretical
section to conduct a cost-benefit analysis from the perspective of sheep farmers. Based on real-world
conditions, we consider four control strategies: Systematic confinement of young sheep, reducing
contact with external sheep and contaminated environments, preventing interaction between
immunized adult sheep and external sheep, and improving vaccination coverage while enhancing
pathogen clearance from contaminated environments. Our analysis indicates that confining and
vaccinating young sheep constitutes the most cost-effective strategy for reducing Brucella abortus
infections in sheep.

Brucellosis is a disease with extremely complex transmission patterns, affecting individuals of
various species including cattle, sheep, and dogs. In this paper, we only discuss the transmission of
brucellosis in sheep. Due to the complexity of the model, we do not consider the possibility of
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co-infections with other organisms. However, there are already many studies in the existing literature
that explore brucellosis transmission across multiple populations, and our model can still be applied
to other organisms. Compared with existing models, our model takes vaccination, contaminated
environments, and age structure into account. Nevertheless, due to the complexity of its transmission
patterns, it is difficult to comprehensively consider all aspects of its epidemiology. For example, our
data are annual, which overlook the differences in the reproductive capacity of sheep across different
seasons of the year.

In summary, we developed a seven-compartment brucellosis model that integrates vaccination, age
structure, and environmental contamination. We analyzed its dynamic behavior, calibrated the model
using empirical data, and proposed a set of control strategies along with cost-benefit analyses.
Although our study focuses on a specific sheep population, the model is applicable to brucellosis in
other species worldwide.
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