Research article

Asymptotic representations for Spearman's footrule correlation coefficient

  • Published: 21 August 2025
  • This study addressed the theoretical challenges faced by rank-dependence structures in Spearman's footrule correlation coefficient. Two asymptotic representations were proposed to approximate its null distribution. The first approach simplifies dependencies by substituting empirical distribution functions with their population counterparts. The second employs Hájek projection technique to decompose the initial form into a sum of independent components, establishing rigorous asymptotic normality. Simulation experiments combined with real-world data analyses validated both representations, demonstrating their excellent approximation to the limiting normal distribution under the independence hypothesis.

    Citation: Liqi Xia, Li Guan, Weimin Xu. Asymptotic representations for Spearman's footrule correlation coefficient[J]. Electronic Research Archive, 2025, 33(8): 4893-4916. doi: 10.3934/era.2025220

    Related Papers:

  • This study addressed the theoretical challenges faced by rank-dependence structures in Spearman's footrule correlation coefficient. Two asymptotic representations were proposed to approximate its null distribution. The first approach simplifies dependencies by substituting empirical distribution functions with their population counterparts. The second employs Hájek projection technique to decompose the initial form into a sum of independent components, establishing rigorous asymptotic normality. Simulation experiments combined with real-world data analyses validated both representations, demonstrating their excellent approximation to the limiting normal distribution under the independence hypothesis.



    加载中


    [1] C. Spearman, 'Footrule' for measuring correlation, Br. J. Med. Psychol., 2 (1906), 89–108. https://doi.org/10.1111/j.2044-8295.1906.tb00174.x doi: 10.1111/j.2044-8295.1906.tb00174.x
    [2] D. K. Bukovšek, B. Mojškerc, On the exact region determined by Spearman's footrule and Gini's gamma, J. Comput. Appl. Math., 410 (2022), 114212. https://doi.org/10.1016/j.cam.2022.114212 doi: 10.1016/j.cam.2022.114212
    [3] C. Chen, W. Xu, W. Zhang, H. Zhu, J. Dai, Asymptotic properties of Spearman's footrule and Gini's gamma in bivariate normal model, J. Franklin Inst., 360 (2023), 9812–9843. https://doi.org/10.1016/j.jfranklin.2023.07.024 doi: 10.1016/j.jfranklin.2023.07.024
    [4] A. Pérez, M. Prieto-Alaiz, F. Chamizo, E. Liebscher, M. Úbeda-Flores, Nonparametric estimation of the multivariate Spearman's footrule: A further discussion, Fuzzy Set Syst., 467 (2023), 108489. https://doi.org/10.1016/j.fss.2023.02.010 doi: 10.1016/j.fss.2023.02.010
    [5] R. B. Nelsen, An Introduction to Copulas, 2$^{nd}$ edition, Springer, 2006. https://doi.org/10.1007/0-387-28678-0
    [6] B. S. Kim, S. Y. Rha, G. B. Cho, H. C. Chung, Spearman's footrule as a measure of cDNA microarray reproducibility, Genomics, 84 (2004), 441–448. https://doi.org/10.1016/j.ygeno.2004.02.015 doi: 10.1016/j.ygeno.2004.02.015
    [7] R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math., 17 (2003), 134–160. https://doi.org/10.1137/S0895480102412856 doi: 10.1137/S0895480102412856
    [8] S. Mikki, Comparing Google Scholar and ISI Web of Science for earth sciences, Scientometrics, 82 (2010), 321–331. https://doi.org/10.1007/s11192-009-0038-6 doi: 10.1007/s11192-009-0038-6
    [9] F. Iorio, R. Tagliaferri, D. di Bernardo, Identifying network of drug mode of action by gene expression profiling, J. Comput. Biol., 16 (2009), 241–251. https://doi.org/10.1089/cmb.2008.10TT doi: 10.1089/cmb.2008.10TT
    [10] S. Lin, J. Ding, Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA studies, Biometrics, 65 (2009), 9–18. https://doi.org/10.1111/j.1541-0420.2008.01044.x doi: 10.1111/j.1541-0420.2008.01044.x
    [11] V. Vitelli, Ø. Sørensen, M. Crispino, A. Frigessi, E. Arjas, Probabilistic preference learning with the Mallows rank model, J. Mach. Learn. Res., 18 (2018), 1–49.
    [12] A. W. van der Vaart, Asymptotic Statistics, Cambridge university press, 1998. https://doi.org/10.1017/CBO9780511802256
    [13] J. E. Angus, A coupling proof of the asymptotic normality of the permutation oscillation, Probab. Eng. Inf. Sci., 9 (1995), 615–621. https://doi.org/10.1017/S0269964800004095 doi: 10.1017/S0269964800004095
    [14] S. Chatterjee, A new coefficient of correlation, J. Am. Stat. Assoc., 116 (2021), 2009–2022. https://doi.org/10.1080/01621459.2020.1758115 doi: 10.1080/01621459.2020.1758115
    [15] H. Shi, M. Drton, F. Han, On the power of Chatterjee's rank correlation, Biometrika, 109 (2022), 317–333. https://doi.org/10.1093/biomet/asab028 doi: 10.1093/biomet/asab028
    [16] Z. Lin, F. Han, On boosting the power of Chatterjee's rank correlation, Biometrika, 110 (2023), 283–299. https://doi.org/10.1093/biomet/asac048 doi: 10.1093/biomet/asac048
    [17] L. Xia, R. Cao, J. Du, X. Chen, The improved correlation coefficient of Chatterjee, J. Nonparam. Stat., 37 (2025), 265–281. https://doi.org/10.1080/10485252.2024.2373242 doi: 10.1080/10485252.2024.2373242
    [18] P. Diaconis, R. L. Graham, Spearman's footrule as a measure of disarray, J. R. Stat. Soc. Ser. B. Stat. Methodol., 39 (1977), 262–268. https://doi.org/10.1111/j.2517-6161.1977.tb01624.x doi: 10.1111/j.2517-6161.1977.tb01624.x
    [19] P. K. Sen, I. A. Salama, The Spearman footrule and a Markov chain property, Stat. Probab. Lett., 1 (1983), 285–289. https://doi.org/10.1016/0167-7152(83)90046-9 doi: 10.1016/0167-7152(83)90046-9
    [20] D. C. Kleinecke, H. K. Ury, L. F. Wagner, Spearman's Footrule–-An Alternative Rank Statistic, 1962. Available from: https://apps.dtic.mil/sti/html/tr/AD0403502/.
    [21] W. Hoeffding, A combinatorial central limit theorem, Ann. Math. Stat., 22 (1951), 558–566. https://doi.org/10.1214/aoms/1177729545 doi: 10.1214/aoms/1177729545
    [22] X. Shi, M. Xu, J. Du, Max-sum test based on Spearman's footrule for high-dimensional independence tests, Comput. Stat. Data Anal., 185 (2023), 107768. https://doi.org/10.1016/j.csda.2023.107768 doi: 10.1016/j.csda.2023.107768
    [23] L. H. Y. Chen, X. Fang, Q. Shao, From Stein identities to moderate deviations, Ann. Probab., 41 (2013), 262–293. https://doi.org/10.1214/12-AOP746 doi: 10.1214/12-AOP746
    [24] X. Shi, W. Zhang, J. Du, E. Kwessi, Testing independence based on Spearman's footrule in high dimensions, Commun. Stat. Theory Methods, 54 (2025), 2360–2377. https://doi.org/10.1080/03610926.2024.2369313 doi: 10.1080/03610926.2024.2369313
    [25] C. G. Small, Expansions and Asymptotics for Statistics, Chapman and Hall/CRC, 2010. https://doi.org/10.1201/9781420011029
    [26] G. Schröer, D. Trenkler, Exact and randomization distributions of Kolmogorov-Smirnov tests two or three samples, Comput. Stat. Data Anal., 20 (1995), 185–202. https://doi.org/10.1016/0167-9473(94)00040-P doi: 10.1016/0167-9473(94)00040-P
    [27] D. Harrison Jr, D. L. Rubinfeld, Hedonic housing prices and the demand for clean air, J. Environ. Econ. Manage., 5 (1978), 81–102. https://doi.org/10.1016/0095-0696(78)90006-2 doi: 10.1016/0095-0696(78)90006-2
    [28] M. R. Kosorok, Introduction to Empirical Processes and Semiparametric Inference, Springer, 2008. https://doi.org/10.1007/978-0-387-74978-5
    [29] A. C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Am. Math. Soc., 49 (1941), 122–136. https://doi.org/10.1090/S0002-9947-1941-0003498-3 doi: 10.1090/S0002-9947-1941-0003498-3
    [30] R. J. Serfling, Approximation Theorems of Mathematical Statistics, John Wiley & Sons, 1980.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(522) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog