Research article

An integrated Laplace transform and accelerated Adomian decomposition approach for solving time-fractional nonlinear partial differential equations

  • Published: 05 August 2025
  • This study focuses on the efficient and accurate solution of time-fractional nonlinear partial differential equations (PDEs), which arise in various scientific and engineering applications but are often challenging to solve due to their complexity. We propose a novel method that integrates the Laplace transform with the accelerated Adomian decomposition method (AADM), forming the Laplace transform accelerated Adomian decomposition method (LAADM). The key innovation of this approach lies in its ability to handle the fractional time derivative expressed in the Caputo sense, while enhancing convergence speed and reducing computational effort. The methodology is systematically formulated, and several numerical experiments are conducted to validate its performance. The results demonstrate that LAADM provides highly accurate solutions and exhibits superior efficiency when compared to traditional solution techniques for fractional PDEs.

    Citation: Mohamed A. Ramadan, Mahmoud A. A. Abd El-Latif, Mohammed Z. Alqarni. An integrated Laplace transform and accelerated Adomian decomposition approach for solving time-fractional nonlinear partial differential equations[J]. Electronic Research Archive, 2025, 33(7): 4398-4434. doi: 10.3934/era.2025201

    Related Papers:

  • This study focuses on the efficient and accurate solution of time-fractional nonlinear partial differential equations (PDEs), which arise in various scientific and engineering applications but are often challenging to solve due to their complexity. We propose a novel method that integrates the Laplace transform with the accelerated Adomian decomposition method (AADM), forming the Laplace transform accelerated Adomian decomposition method (LAADM). The key innovation of this approach lies in its ability to handle the fractional time derivative expressed in the Caputo sense, while enhancing convergence speed and reducing computational effort. The methodology is systematically formulated, and several numerical experiments are conducted to validate its performance. The results demonstrate that LAADM provides highly accurate solutions and exhibits superior efficiency when compared to traditional solution techniques for fractional PDEs.



    加载中


    [1] I. Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198 (1999), 924–34008.
    [2] J. F. G. Aguilar, A. Atangana, Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense, Eur. Phys. J. Plus, 132 (2017), 100. https://doi.org/10.1140/epjp/i2017-11371-6 doi: 10.1140/epjp/i2017-11371-6
    [3] O. Defterli, D. Baleanu, A. Jajarmi, S. S. Sajjadi, N, Alshaikh, J. H. Asad, Fractional treatment: An accelerated mass-spring system, 2022 (2022).
    [4] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative, Chaos Solitons Fractals, 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [5] A. V. Karmishin, A. I. Zhukov, V. G. Kolosov, Methods of dynamics calculation and testing for thin-walled structures, Mashinostroyenie Moscow, 1990 (1990), 137–149.
    [6] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971). 1192. https://doi.org/10.1103/PhysRevLett.27.1192
    [7] A. M. Lyapunov, The general problem of the stability of motion, Int. J. Control, 55 (1992), 531–534. https://doi.org/10.1080/00207179208934253 doi: 10.1080/00207179208934253
    [8] J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3
    [9] N. H. Sweilam, M. M. khader, Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method, Comput. Math. Appl., 58 (2009), 2134–2141. https://doi.org/10.1016/j.camwa.2009.03.059 doi: 10.1016/j.camwa.2009.03.059
    [10] J. Saberi-Nadjafi, A. Ghorbani, He's homotopy perturbation method: An effective tool for solving nonlinear integral and integro-differential equations, Comput. Math. Appl., 58 (2009), 2379–2390. https://doi.org/10.1016/j.camwa.2009.03.032 doi: 10.1016/j.camwa.2009.03.032
    [11] G. C. Wu, J. H. He, Fractional calculus of variations in fractal spacetime, Nonlinear Sci. Lett. A, 1 (2010), 281–287.
    [12] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Springer Dordrecht, 1994. https://doi.org/10.1007/978-94-015-8289-6
    [13] G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl., 27 (1994), 145–154. https://doi.org/10.1016/0898-1221(94)90132-5 doi: 10.1016/0898-1221(94)90132-5
    [14] Y. Khan, F. Austin, Application of Laplace decomposition method to nonlinear homogeneous and non-homogenous advection equations, Z. Naturforsch. A, 65 (2010), 849–853. https://doi.org/10.1515/zna-2010-1011 doi: 10.1515/zna-2010-1011
    [15] H. Kocak, Z. Pinar, On solutions of the fifth-order dispersive equations with porous medium type nonlinearity, Waves Random Complex Media, 28 (2018), 516–522. https://doi.org/10.1080/17455030.2017.1367438 doi: 10.1080/17455030.2017.1367438
    [16] A. Prakash, M. Kumar, Numerical method for fractional dispersive partial differential equations, Commun. Numer. Anal., 1 (2017), 1–18. https://doi.org/10.5899/2017/cna-00266 doi: 10.5899/2017/cna-00266
    [17] A. R. Kanth, K. Aruna, Solution of fractional third-order dispersive partial differential equations, Egypt. J. Basic Appl. Sci., 2 (2015), 190–199. https://doi.org/10.1016/j.ejbas.2015.02.002 doi: 10.1016/j.ejbas.2015.02.002
    [18] R. K. Pandey, H. K. Mishra, Homotopy analysis Sumudu transform method for time-Fractional third order dispersive partial differential equation, Adv. Comput. Math., 43 (2017), 365–383. https://doi.org/10.1007/s10444-016-9489-5 doi: 10.1007/s10444-016-9489-5
    [19] T. Sultana, A. Khan, P. Khandelwal, A new non-polynomial spline method for solution of linear and nonlinear third order dispersive equations, Adv. Differ. Equations, 2018 (2018), 316. https://doi.org/10.1186/s13662-018-1763-z doi: 10.1186/s13662-018-1763-z
    [20] H. Jafari, C. M. Khalique, M. Nazari, Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations, Appl. Math. Lett., 24 (2011), 1799–1805. https://doi.org/10.1016/j.aml.2011.04.037 doi: 10.1016/j.aml.2011.04.037
    [21] S. Yang, N. Li, Chaotic behavior of a new fractional-order financial system and its predefined-time sliding mode control based on the RBF neural network, Electron. Res. Arch., 33 (2023), 2762–2799. https://doi.org/10.3934/era.2025122 doi: 10.3934/era.2025122
    [22] S. I. Araz, M. A. Cetin, A. Atangana, Existence, uniqueness and numerical solution of stochastic fractional differential equations with integer and non-integer orders, Electron. Res. Arch., 32 (2024), 733–761. https://doi.org/10.3934/era.2024035 doi: 10.3934/era.2024035
    [23] L. Guo, W. Wang, C. Li, J. Zhao, D. Min, Existence results for a class of nonlinear singular p-Laplacian Hadamard fractional differential equations, Electron. Res. Arch., 32 (2024), 928–944. https://doi.org/10.3934/era.2024045 doi: 10.3934/era.2024045
    [24] A. A. Kilbas, H. M. Srivastava, J. J, Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
    [25] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
    [26] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordan and Breach Science, 1993.
    [27] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, US Government Printing Office, 1948.
    [28] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Willey & Sons, 1993.
    [29] S. Sattaso, K. Nonlaopon, H. Kim, Further properties of Laplace-typed integral transforms, Dyn. Syst. Appl., 28 (2019), 195–215.
    [30] H. Eltayeb, I. Bachar, Y. T. Abdalla, A note on time-fractional Navier-Stokes equation and multi-Laplace transform decomposition method, Adv. Differ. Equations, 2020 (2020), 519. https://doi.org/10.1186/s13662-020-02981-7 doi: 10.1186/s13662-020-02981-7
    [31] X. B. Yin, S. Kumar, D. Kumar, A modified homotopy analysis method for solution of fractional wave equations, Adv. Mech. Eng., 7 (2015), 1687814015620330. https://doi.org/10.1177/1687814015620330 doi: 10.1177/1687814015620330
    [32] X. Hai, G. Ren, Y. Yu, L. Mo, C. Xu, Stability analysis of short memory fractional differential equations, preprint, arXiv: 2007.05755. https://doi.org/10.48550/arXiv.2007.05755
    [33] O. G. Gaxiola, The Laplace-Adomian decomposition method applied to the Kundu-Eckhaus equation, Int. J. Math. Appl., 5 (2017), 1–12.
    [34] R. Shah, H. Khan, M. Arif, P. Kumam, Application of Laplace-Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations, Entropy, 21 (2019), 335. https://doi.org/10.3390/e21040335 doi: 10.3390/e21040335
    [35] M. A. Ramadan, M. A. Abd El-Latif, Laplace transform coupled with accelerated Adomian decomposition method: A semi-analytic approach to nonlinear fractional differential equations, Prog. Fractional Differ. Appl., Forthcoming.
    [36] W. Sumelka, B. Łuczak, T. Gajewski, G. Z. Voyiadjis, Modelling of AAA in the framework of time-fractional damage hyperelasticity, Int. J. Solids Struct., 206 (2020), 30–42. https://doi.org/10.1016/j.ijsolstr.2020.08.015 doi: 10.1016/j.ijsolstr.2020.08.015
    [37] M. Qayyum, E. Ahmad, M. B. Riaz, J. Awrejcewicz, Improved soliton solutions of generalized fifth order time-fractional KdV models: Laplace transform with Homotopy perturbation algorithm, Universe, 8 (2022), 563. https://doi.org/10.3390/universe8110563 doi: 10.3390/universe8110563
    [38] A. Singh, S. Pippal, Solution of nonlinear fractional partial differential equations by Shehu transform and Adomian decomposition method (STADM), Int. J. Math. Ind., 16 (2024), 2350011. https://doi.org/10.1142/S2661335223500119 doi: 10.1142/S2661335223500119
    [39] S. R. Khirsariya, S. B. Rao, J. P. Chauhan, Semi-analytic solution of time-fractional Korteweg-de Vries equation using fractional residual power series method, Results Nonlinear Anal., 3 (2022), 222–234. https://doi.org/10.53006/rna.1024308 doi: 10.53006/rna.1024308
    [40] S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A novel Homotopy perturbation method with applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel, J. Funct. Spaces, 2021 (2021), 8770488. https://doi.org/10.1155/2021/8770488 doi: 10.1155/2021/8770488
    [41] S. Noor, W. Albalawi, R. Shah, A. Shafee, S, M. E. Ismaeel, S. A. El-Tantawy, A comparative analytical investigation for some linear and nonlinear time-fractional partial differential equations in the framework of the Aboodh transformation, Front. Phys., 12 (2024), 1374049. https://doi.org/10.3389/fphy.2024.1374049 doi: 10.3389/fphy.2024.1374049
    [42] M. Merdan, Solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville derivative, Int. J. Phys. Sci., 7 (2012), 2317–2326. https://doi.org/10.5897/IJPS12.027 doi: 10.5897/IJPS12.027
    [43] R. T. Shwayyea, A novel approach for solving nonlinear time fractional fisher partial differential equations, J. Adv. Math., 22 (2023). https://doi.org/10.24297/jam.v22i.9558
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(655) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(22)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog