
This paper investigates the chaotic dynamics and control of a fractional-order energy-saving and emission-reduction (ESER) system using a high-precision method. By constructing a four-dimensional fractional-order system, the complex interactions between new energy, carbon emissions, economic growth, and carbon trading volume are studied. A novel high-precision numerical method, based on generating functions, is introduced to analyze the dynamic behaviors of the system at various fractional derivatives and parameters. Numerical simulations find all kinds of dynamic behaviors, including stable, rapid divergence, and chaotic attractors. In this study, we design feedback and adaptive control strategies to achieve chaos synchronization and system stability. The results highlight the effectiveness of the proposed control methods in stabilizing the system and synchronizing drive-response systems, underscoring the pivotal role of fractional-order derivatives in regulating system dynamics.
Citation: XiongFei Chi, Ting Wang, ZhiYuan Li. Chaotic dynamics analysis and control of fractional-order ESER systems using a high-precision Caputo derivative approach[J]. Electronic Research Archive, 2025, 33(6): 3613-3637. doi: 10.3934/era.2025161
[1] | Luca Spiridigliozzi, Grazia Accardo, Emilio Audasso, Barbara Bosio, Sung Pil Yoon, Gianfranco Dell’Agli . Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications. AIMS Materials Science, 2019, 6(4): 610-620. doi: 10.3934/matersci.2019.4.610 |
[2] | Muhammad Awwaluddin, Sri Hastuty, Djoko Hadi Prajitno, Makmuri, Budi Prasetiyo, Yudi Irawadi, Jekki Hendrawan, Harry Purnama, Eko Agus Nugroho . Effect of Yttrium on corrosion resistance of Zr-based alloys in Ringer's lactate solution for biomaterial applications. AIMS Materials Science, 2024, 11(3): 565-584. doi: 10.3934/matersci.2024028 |
[3] | ME Makhatha . Effect of titanium addition on sub-structural characteristics of low carbon copper bearing steel in hot rolling. AIMS Materials Science, 2022, 9(4): 604-616. doi: 10.3934/matersci.2022036 |
[4] | Hung Nguyen Manh, Oanh Le Thi Mai, Chung Pham Do, Mai Vu Thanh, Anh Nguyen Thi Diep, Dao La Bich, Hang Lam Thi, Duyen Pham Thi, Minh Nguyen Van . Effect of monobasic/dibasic phosphate salts on the crystallinity, physical properties and photocatalytic performance of Ag3PO4 material. AIMS Materials Science, 2022, 9(5): 770-784. doi: 10.3934/matersci.2022047 |
[5] | Tim Slawik, Anne Günther, Tassilo Moritz, Alexander Michaelis . Co-Sintering behaviour of zirconia-ferritic steel composites. AIMS Materials Science, 2016, 3(3): 1160-1176. doi: 10.3934/matersci.2016.3.1160 |
[6] | Nuriya Mukhamedova, Yernat Kozhakhmetov, Mazhyn Skakov, Sherzod Kurbanbekov, Nurzhan Mukhamedov . Microstructural stability of a two-phase (O + B2) alloy of the Ti-25Al-25Nb system (at.%) during thermal cycling in a hydrogen atmosphere. AIMS Materials Science, 2022, 9(2): 270-282. doi: 10.3934/matersci.2022016 |
[7] | Marek Konieczny . Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites. AIMS Materials Science, 2020, 7(3): 312-322. doi: 10.3934/matersci.2020.3.312 |
[8] | Toshio Ogawa, Hiroyuki Dannoshita, Yoshitaka Adachi . Evaluation of tensile properties of ferrite single-phase low-carbon steel with different initial microstructures. AIMS Materials Science, 2019, 6(5): 798-805. doi: 10.3934/matersci.2019.5.798 |
[9] | Stefan Wagner, Astrid Pundt . Hydrogen as a probe for defects in materials: Isotherms and related microstructures of palladium-hydrogen thin films. AIMS Materials Science, 2020, 7(4): 399-419. doi: 10.3934/matersci.2020.4.399 |
[10] | Ravinder Kataria, Ravi Pratap Singh, Jatinder Kumar . An experimental study on ultrasonic machining of Tungsten carbide-cobalt composite materials. AIMS Materials Science, 2016, 3(4): 1391-1409. doi: 10.3934/matersci.2016.4.1391 |
This paper investigates the chaotic dynamics and control of a fractional-order energy-saving and emission-reduction (ESER) system using a high-precision method. By constructing a four-dimensional fractional-order system, the complex interactions between new energy, carbon emissions, economic growth, and carbon trading volume are studied. A novel high-precision numerical method, based on generating functions, is introduced to analyze the dynamic behaviors of the system at various fractional derivatives and parameters. Numerical simulations find all kinds of dynamic behaviors, including stable, rapid divergence, and chaotic attractors. In this study, we design feedback and adaptive control strategies to achieve chaos synchronization and system stability. The results highlight the effectiveness of the proposed control methods in stabilizing the system and synchronizing drive-response systems, underscoring the pivotal role of fractional-order derivatives in regulating system dynamics.
Hirota and Ito [1] proposed the following Sawada-Kotera equation to theoretically study the resonances of solitons in one dimension,
ut+b(15u3+15uuxx+uxxxx)x=0, | (1.1) |
which has a non-vanishing boundary condition
u|x=∞=constant. | (1.2) |
Replace u by u+a15b and apply the Galilei transformation to remove ux, then Eq (1.1) changes to the KdV-Sawada-Kotera equation [2]
ut+a(3u2+uxx)x+b(15u3+15uuxx+uxxxx)x=0, | (1.3) |
where a, b are constants. It is a linear combination of the Sawada-Kotera equation and the KdV equation, with considering a=0, Eq (1.3) reduces to the Sawada-Kotera equation, when b=0, Eq (1.3) reduces to the KdV equation. In the past few years, many achievements have been made in the study of KdV-Sawada-Kotera equation. About this equation, conservation laws are investigated by Konno [3], and traveling wave solutions are discovered in [4]. Quasi-periodic wave and exact solitary wave solutions to the KdV-Sawada-Kotera equation are obtained [5].
As we know, nonlinear differential equations (NLDEs) are widely utilized in fluid dynamics, solid state physics, plasma physics, biology, nonlinear optics, chemistry and so on. The study to exact solutions of various NLDEs is extremely important in modern mathematics with ramifications to some areas of physics, mathematics and other sciences. There are many systematic methods to seek exact solutions of NLDEs, for example, Hirota bilinear method [6,7], modified simple equation method [8], generalized (G′/G)-expansion method [9,10], modified Kudryashov method [11,12], exp function method [13,14], modified extended tanh method [15,16], sine-Gordon expansion method [17,18], extended sine-Gordon expansion method [19,20], complex method [21,22,23,24] and exp(−ψ(z))-expansion method [25,26,27,28].
Eremenko showed that all meromorphic solutions of the Kuramoto Sivashinsky equation are elliptic function and its degeneration in [29]. After that, Laurent series were applied by Kudryashov et al. [30,31] to obtain meromorphic exact solutions to certain nonlinear differential equations. On the basis of their work, Yuan et al. [32,33] established the complex method combining the theories of complex analysis and complex differential equations. It is a powerful approach to obtain exact solutions for NLDEs that admit ⟨p,q⟩ condition or are Briot-Bouquet (BB) equations [34]. Following their work, we propose the extended complex method to get meromorphic exact solutions for NLDEs which neither admit ⟨p,q⟩ condition nor BB equations. Therefore, the extended complex method is an enhancement of the complex method and should deal with more NLDEs in applied sciences.
The exp(−ψ(z))-expansion approach is an effectual technique to seek analytical solutions for NLDEs. A lot of researchers, for instance, Jafari, Khan, Roshid, etc [25,26,27,28], made good use of this method to study NLDEs. In this article, we utilize two different systematic methods mentioned above to seek meromorphic exact solutions of the KdV-Sawada-Kotera equation. Dynamic behaviors of the solutions are shown by some graphs in which the profiles of Weierstrass elliptic function solutions have never been shown in former literatures.
Consider the following nonlinear PDE:
P(u,ux,ut,uxx,utt,⋯)=0, | (2.1) |
where P is a polynomial consisted by the unknown function u(x,t) as well as its partial derivatives.
Step 1. Reduce Eq (2.1) to the ODE
F(u,u′,u″,u‴,⋯)=0, | (2.2) |
by traveling wave transform
u(x,t)=u(z),z=kx+rt. |
Step 2. Assume that Eq (2.2) has exact solutions as follows:
u(z)=m∑τ=0Bτ(exp(−ψ(z)))τ, | (2.3) |
where Bτ(0≤τ≤m) are constants to be determined latter, such that Bm≠0 and ψ=ψ(z) admits the following ODE:
ψ′(z)=γ+exp(−ψ(z))+μexp(ψ(z)). | (2.4) |
The solutions of Eq (2.4) are given in the following.
When γ2−4μ>0, μ≠0,
ψ(z)=ln(−√(γ2−4μ)tanh(√γ2−4μ2(z+c))−γ2μ), | (2.5) |
ψ(z)=ln(−√(γ2−4μ)coth(√γ2−4μ2(z+c))−γ2μ). | (2.6) |
When γ2−4μ<0, μ≠0,
ψ(z)=ln(√(4μ−γ2)tan(√(4μ−γ2)2(z+c))−γ2μ), | (2.7) |
ψ(z)=ln(√(4μ−γ2)cot(√(4μ−γ2)2(z+c))−γ2μ). | (2.8) |
When γ2−4μ>0, γ≠0, μ=0,
ψ(z)=−ln(γexp(γ(z+c))−1). | (2.9) |
When γ2−4μ=0, γ≠0, μ≠0,
ψ(z)=ln(−2(γ(z+c)+2)γ2(z+c)). | (2.10) |
When γ2−4μ=0, γ=0, μ=0,
ψ(z)=ln(z+c). | (2.11) |
In Eqs (2.5)–(2.11), Bm≠0,γ,μ,c are constants. Taking the homogeneous balance between nonlinear terms and highest order derivatives of Eq (2.2) yields the positive integer m.
Step 3. Insert Eq (2.3) into Eq (2.2) and collect the function exp(−ψ(z)) to yield the polynomial to exp(−ψ(z)). Letting all coefficients with same power of exp(−ψ(z)) be zero to obtain a system of algebraic equations. Solving these equations, we achieve the values of Bm≠0,γ,μ and substitute them into Eq (2.3) as well as Eqs (2.5)–(2.11) to accomplish the determination for analytical solutions of the original PDE.
Substituting
u(x,t)=u(z),z=kx+rt, |
into Eq (1.3) and then integrating it we obtain
ru+3kau2+k3au″+15kbu3+15k3buu″+k5bu⁗+ζ=0. | (3.1) |
where ζ is the integration constant.
Taking the homogeneous balance between u⁗ and uu″ in Eq (3.1) to yields
u(z)=B0+B1exp(−ψ(z))+B2(exp(−ψ(z)))2, | (3.2) |
where B2≠0, B1 and B0 are constants.
Substituting u⁗,uu″,u″,u3,u2,u into Eq.(3.1) and equating the coefficients about exp(−ψ(z)) to zero, we obtain
e0(−ψ(z)): |
k5bB1γ3μ+14k5bB2γ2μ2+8k5bB1γμ2+16k5bB2μ3+15k3bB0B1μγ |
+30k3bB0B2μ2+ak3B1μγ+2ak3B22μ+15kbB03+3kaB20+rB0+ζ=0, |
e1(−ψ(z)): |
B1bγ4k5+30B2bγ3k5μ+22B1bγ2k5μ+120B2bγk5μ2+30k3bB0B1μ |
+15B0B1bγ2k3+90B0B2bγk3μ+15B12bγk3μ+30B1B2bk3μ2+16B1bk5μ2 |
+B1aγ2k3+6B2aγk3μ+2ak3B1μ+45B20B1bk+6B0B1ak+B1r=0, |
e2(−ψ(z)): |
16B2bγ4k5+15B1bγ3k5+232B2bγ2k5μ+60B1bγk5μ+136B2bk5μ2 |
+60B0B2bγ2k3+15B12bγ2k3+105B1B2bγk3μ+30B22bk3μ2+45B0B1bγk3 |
+120B0B2bk3μ+30B21bk3μ+4B2aγ2k3+3B1aγk3+8B2ak3μ+45B20B2bk |
+45B0B21bk+6B0B2ak+3B21ak+B2r=0, |
e3(−ψ(z)): |
130B2bγ3k5+50B1bγ2k5+440B2bγk5μ+75B1B2bγ2k3+40B1bk5μ |
+90B22bγk3μ+150B0B2bγk3+45B21bγk3+30B0B1bk3+10B2aγk3 |
+150B1B2bk3μ+90B0B1B2bk+15B31bk+2B1ak3+6B1B2ak=0, |
e4(−ψ(z)): |
330B2bγ2k5+60B1bγk5+60B22bγ2k3+240B2bk5μ+195B1B2bγk3 |
+90B0B2bk3+30B21bk3+45B0B22bk+45B21B2bk+6B2ak3+3B22ak |
+120B22bk3μ=0, |
e5(−ψ(z)): |
336B2bγk5+24B1bk5+150B22bγk3+120B1B2bk3+45B1B22bk=0, |
e6(−ψ(z)): |
120B2bk5+90B22bk3+15B32bk=0. |
We solve the above algebraic equations and derive two different families:
Family 1:
B2=−4k2,B1=−4γk2,B0=−5k2b(γ2+8μ)+a15b,r=−k(5k4b2(γ2−4μ)2−a2)5b, | (3.3) |
where γ and μ are arbitrary constants.
Substituting Eq (3.3) into Eq (3.2) yields
u(z)=−5k2b(γ2+8μ)+a15b−4k2γexp(−ψ(z))−4k2(exp(−ψ(z)))2. | (3.4) |
Applying Eqs (2.5)–(2.11) into Eq (3.4) respectively, we get the following exact solutions of the KdV-Sawada-Kotera equation.
Family 1.1: When γ2−4μ>0, μ≠0,
u11(z)=−5k2b(γ2+8μ)+a15b+8k2γμ√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ |
−16k2μ2(√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ)2, |
u12(z)=−5k2b(γ2+8μ)+a15b+8k2γμ√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ |
−16k2μ2(√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ)2. |
Family 1.2: When γ2−4μ<0, μ≠0,
u13(z)=−5k2b(γ2+8μ)+a15b−8k2γμ√(4μ−γ2)tan(√4μ−γ22(z+c))−γ |
−16k2μ2(√(4μ−γ2)tan(√4μ−γ22(z+c))−γ)2, |
u14(z)=−5k2b(γ2+8μ)+a15b−8k2γμ√(4μ−γ2)cot(√4μ−γ22(z+c))−γ |
−16k2μ2(√(4μ−γ2)cot(√4μ−γ22(z+c))−γ)2. |
Family 1.3: When γ2−4μ>0, γ≠0, μ=0,
u15(z)=−5k2bγ2+a15b−4k2γ2exp(γ(z+c))−1−4k2γ2(exp(γ(z+c))−1)2. |
Family 1.4: When γ2−4μ=0, γ≠0, μ≠0,
u16(z)=−60k2bμ+a15b+2k2γ3(z+c)γ(z+c)+2−k2γ4(z+c)2(γ(z+c)+2)2. |
Family 1.5: When γ2−4μ=0, γ=0, μ=0,
u17(z)=−a15b−4k2(z+c)2. |
Family 2:
B2=−2k2,B1=−2γk2,B0=−2a+5k2b(γ2+8μ)30b,r=−k(4a2+5k4b2(γ2−4μ)2)20b, | (3.5) |
where γ and μ are arbitrary.
Substituting Eq (3.5) into Eq (3.2) yields
u(z)=−2a+5k2b(γ2+8μ)30b−2k2γexp(−ψ(z))−2k2(exp(−ψ(z)))2. | (3.6) |
Applying Eqs (2.5)–(2.11) into Eq (3.6) respectively, we get the following exact solutions of the KdV-Sawada-Kotera equation.
Family 2.1: When γ2−4μ>0, μ≠0,
u21(z)=−2a+5k2b(γ2+8μ)30b+4k2γμ√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ |
−8k2μ2(√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ)2, |
u22(z)=−2a+5k2b(γ2+8μ)30b+4k2γμ√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ |
−8k2μ2(√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ)2. |
Family 2.2: When γ2−4μ<0, μ≠0,
u23(z)=−2a+5k2b(γ2+8μ)30b−4k2γμ√(4μ−γ2)tan(√4μ−γ22(z+c))−γ |
−8k2μ2(√(4μ−γ2)tan(√4μ−γ22(z+c))−γ)2, |
u24(z)=−2a+5k2b(γ2+8μ)30b−4k2γμ√(4μ−γ2)cot(√4μ−γ22(z+c))−γ |
−8k2μ2(√(4μ−γ2)cot(√4μ−γ22(z+c))−γ)2. |
Family 2.3: When γ2−4μ>0, γ≠0, μ=0,
u25(z)=−2a+5k2bγ230b−2k2γ2exp(γ(z+c))−1−2k2γ2(exp(γ(z+c))−1)2. |
Family 2.4: When γ2−4μ=0, γ≠0, μ≠0,
u26(z)=−a+30k2bμ15b+k2γ3(z+c)γ(z+c)+2−k2γ4(z+c)22(γ(z+c)+2)2. |
Family 2.5: When γ2−4μ=0, γ=0, μ=0,
u27(z)=−a15b−2k2(z+c)2. |
Figures 1–6 show the properties of the solutions.
Step 1. Substitute the transformation I:u(x,t)→U(z), (x,t)→z into a nonlinear PDE to yield an ODE
G(U,U′,U″,⋯)=0. | (4.1) |
Step 2. Determination of the weak ⟨p,q⟩ condition.
Assume that the meromorphic solutions U of Eq (4.1) have at least one pole and let q,p∈N. Substitute the Laurent series
U(z)=∞∑k=−qTkzk,T−q≠0,q>0, | (4.2) |
into Eq (4.1) to determine p distinct Laurent principal parts
−1∑k=−qTkzk, |
then we say that the weak ⟨p,q⟩ condition of Eq (4.1) holds.
It is know that Weierstrass elliptic function ℘(z):=℘(z,g2,g3) has double periods and satisfies:
(℘′(z))2=4℘(z)3−g2℘(z)−g3, |
and it admit an addition formula [35] as follows:
℘(z−z0)=−℘(z)+14[℘′(z)+℘′(z0)℘(z)−℘(z0)]2−℘(z0). |
Step 3. Substituting the indeterminate forms
U(z)=h−1∑i=1q∑j=2(−1)jβ−ij(j−1)!dj−2dzj−2(14(℘′(z)+Di℘(z)−Ci)2−℘(z))+h−1∑i=1β−i12℘′(z)+Di℘(z)−Ci |
+q∑j=2(−1)jβ−hj(j−1)!dj−2dzj−2℘(z)+β0, | (4.3) |
U(z)=h∑i=1q∑j=1βij(z−zi)j+β0, | (4.4) |
U(eαz)=h∑i=1q∑j=1βij(eαz−eαzi)j+β0, | (4.5) |
into Eq (4.1) respectively yields a set of algebraic equations, and then solving these equations, we achieve elliptic function solutions, simply periodic solutions and rational function solutions with a pole at z=0, in which D2i=4C3i−g2Ci−g3, β−ij are determined by (4.2), and h∑i=1β−i1=0, and R(z), R(eαz)(α∈C) have h(≤p) distinct poles of multiplicity q.
Step 4. Derive the meromorphic solutions at arbitrary pole, and insert the inverse transform I−1 back to the meromorphic solutions to obtain exact solutions of the given PDE.
Inserting (4.2) into Eq.(3.1) yields
T−2=−4k2,T−1=0,T0=−a15b,T1=0,T2=5rb−ka2300k3b2,⋯ |
and
T−2=−2k2,T−1=0,T0=−a15b,T1=0,T2=ka2−5rb150k3b2,⋯ |
Therefore we know that p=2,q=2, then the weak ⟨2,2⟩ condition of Eq (3.1) hold.
By the weak ⟨2,2⟩ condition and (4.3), we have the form of the elliptic solutions of Eq (3.1)
U10(z)=β−2℘(z)+β20, |
with pole at z=0.
Substituting U10(z) into Eq (3.1) yields
4∑i=1c1i℘i−1(z)=0, | (5.1) |
where
c11=−12k5bβ−2g3−152k3bβ−2β20g2+15kbβ320+3kaβ220−12ak3β−2g2+rβ20+ζ, |
c12=−18k5bβ−2g2−152k3bβ2−2g2+45kbβ−2β220+6kaβ−2β20+rβ−2, |
c13=90k3bβ−2β20+6ak3β−2+45bkβ2−2β20+3akβ2−2, |
c14=120bk5β−2+90bk3β2−2+15bkβ3−2. |
Equate the coefficients of all powers of ℘(z) in Eq (5.1) to zero to achieve one set of algebraic equations:
c11=0,c12=0,c13=0,c14=0. |
Solve the above equations, then
β−2=−4k2,β20=−a15b,g2=a2k−5br60b2k5,g3=−2a3k+225ζb2−15abr10800b3k7, |
and
β−2=−2k2,β20=−a15b,g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7, |
then
U11,0(z)=−4k2℘(z)−a15b, |
and
U12,0(z)=−2k2℘(z)−a15b. |
Thus, elliptic solutions of Eq (3.1) with arbitrary pole are
U11(z)=−4k2℘(z−z0)−a15b, |
and
U12(z)=−2k2℘(z−z0)−a15b, |
where z0∈C.
Use the addition formula to U11(z) and U12(z), then
U11(z)=4k2℘(z)−k2(℘′(z)+D℘(z)−C)2+60k2bC−a15b, |
and
U12(z)=2k2℘(z)−k22(℘′(z)+D℘(z)−C)2+30k2bC−a15b, |
where C2=4D3−g2D−g3. g2=a2k−5bμ60b2k5,g3=−2a3k+225ζb2−15abμ10800b3k7 in the former case, g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7 in the latter case.
By (4.4) and the weak ⟨2,2⟩ condition, we have the indeterminate form of rational solutions
U20(z)=β12z2+β11z+β10, |
with pole at z=0.
Substituting U20(z) into Eq (3.1) yields
7∑i=1c2izi−7=0, | (5.2) |
where
c21=120bk5β12+90bk3β122+15bkβ123, |
c22=24bk5β11+120bk3β11β12+45bkβ11β122, |
c23=90bk3β10β12+30bk3β112+6ak3β12+45bkβ10β122+45bkβ112β12+3akβ122, |
c24=30bk3β10β11+2ak3β11+90bkβ10β11β12+15bkβ113+6akβ11β12, |
c25=45bkβ102β12+45bkβ10β112+6akβ10β12+3akβ112+rβ12, |
c26=45bkβ102β11+6akβ10β11+rβ11, |
c27=15kbβ103+3kaβ102+rβ10+ζ. |
Equate the coefficients of all powers of z in Eq (5.2) to zero to achieve a system of algebraic equations:
c21=0,c22=0,c23=0,c24=0,c25=0,c26=0,c27=0. |
Solving the above equations, we get
β12=−4k2,β11=0,β10=−a15b, |
and
β12=−2k2,β11=0,β10=−a15b, |
then
U21,0(z)=−4k2z2−a15b, |
and
U22,0(z)=−2k2z2−a15b, |
where r=ka25b, ζ=ka3225b2.
Insert U(z)=R(η) into Eq (3.1) to yield
k5bα4(R(4)η4+6R‴η3+7R″η2+R′η)+15k3bα2R(ηR′+η2R″) |
+15kbR3+3kaR2+ak3α2(ηR′+η2R″)+rR+ζ=0, | (5.3) |
where η=eαz (α∈C).
Substituting
U30(z)=b12(eαz−1)2+b11eαz−1+b10, |
into the Eq (5.3), we have
7∑i=1c3iα2e(7−i)αz(eαz−1)−6=0, | (5.4) |
in which
c31=15bkb310+3akb210+rb10+ζ, |
c32=α4bk5b11+15α2bk3b10b11+aα2k3b11−90bkb310+45bkb210b11−18akb210 |
+6akb10b11−6rb10+rb11−6ζ, |
c33=10α4bk5b11+16α4bk5b12−30α2bk3b10b11+60α2bk3b10b12+15α2bk3b211 |
−2aα2k3b11+4aα2k3b12+225bkb103−225bkb102b11+45bkb102b12+45bkb10b211 |
+45akb210−30akb10b11+6akb10b12+3kab211+15rb10−5rb11+rb12+15ζ, |
c34=66α4bk5b12−90α2bk3b10b12−15α2bk3b112+75α2bk3b11b12−6aα2k3b12 |
−300bkb310+450bkb210b11−180bkb210b12−180bkb10b211+90bkb10b11b12+15kbb311 |
+60akb10b11−24akb10b12−12kab211+6akb11b12−20rb10+10rb11−4rb12−20ζ |
−60akb210, |
c35=−10α4bk5b11+36α4bk5b12+30α2bk3b10b11−15α2bk3b211−30α2bk3b11b12 |
+60α2bk3b212+2aα2k3b11+225bkb310−450bkb210b11+270bkb210b12+270bkb10b211 |
−270bkb10b11b12+45bkb10b212−45kbb311+45bkb211b12+45akb210−60akb10b11 |
+36akb10b12+18kab211−18akb11b12+3kab212+15rb10−10rb11+6rb12+15ζ, |
c36=−α4bk5b11+2α4bk5b12−15α2bk3b10b11+30α2bk3b10b12+15α2bk3b211 |
−45α2bk3b11b12+30α2bk3b212−aα2k3b11+2aα2k3b12−90bkb310+18akb11b12 |
+225bkb210b11−180bkb210b12−180bkb10b211+270bkb10b11b12+45kbb311−6rb10 |
−90bkb211b12+45bkb11b212−18akb210+30akb10b11−24akb10b12−6kab212+5rb11 |
−12kab211−90bkb10b212−4rb12−6ζ, |
c37=15bkb310−45bkb210b11+45bkb210b12+45bkb10b211−90bkb10b11b12+45bkb10b212 |
−15kbb311+45bkb211b12−45bkb11b212+15kbb312+3akb102−6akb10b11+6akb10b12 |
+3kab211−6akb11b12+3kab212+rb10−rb11+rb12+ζ. |
Equate the coefficients of all powers about eαz in Eq (5.4) to zero to achieve a system of algebraic equations:
c31=0,c32=0,c33=0,c34=0,c35=0,c36=0,c37=0. |
Solving the above equations, we get
b12=−4k2α2,b11=−4k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b12=−2k2α2,b11=−2k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2. |
So simply periodic solutions of Eq (3.1) with pole at z=0 are
U31,0(z)=−4k2α2(eαz−1)2−4k2α2(eαz−1)−5k2bα2+a15b |
=−4k2α2eαz(eαz−1)2−5k2bα2+a15b |
=−k2α2coth2αz2+10k2bα2−a15b, |
and
U32,0(z)=−2k2α2(eαz−1)2−2k2α2(eαz−1)−5k2bα2+a15b |
=−2k2α2eαz(eαz−1)2−5k2bα2+a15b |
=−k2α22coth2αz2+5k2bα2−2a30b. |
Similar to U30(z), we substitute
U40(z)=b12(eαz+1)2+b11eαz+1+b10, |
into the Eq (5.3) to yield
b12=−4k2α2,b11=4k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b12=−2k2α2,b11=2k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
then
U41,0(z)=−4k2α2(eαz+1)2+4k2α2(eαz+1)−5k2bα2+a15b |
=4k2α2eαz(eαz+1)2−5k2bα2+a15b |
=−k2α2tanh2αz2−a−10k2bα215b, |
and
U42,0(z)=−2k2α2(eαz+1)2+2k2α2(eαz+1)−5k2bα2+a15b |
=2k2α2eαz(eαz+1)2−5k2bα2+a15b |
=−k2α22tanh2αz2−2a−5k2bα230b. |
Substituting
U50(z)=b14(eαz−1)2+b13(eαz+1)2+b12eαz−1+b11eαz+1+b10, |
into the Eq (5.3) to yield
b14−4k2α2,b13=−4k2α2,b12=−4k2α2,b11=4k2α2,b10=−2(5k2bα2+a)15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b14−2k2α2,b13=−2k2α2,b12=−2k2α2,b11=2k2α2,b10=−2(5k2bα2+a)15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
then
U51,0(z)=−4k2α2(eαz−1)2−4k2α2(eαz+1)2−4k2α2(eαz−1)+4k2α2(eαz+1)−2(5k2bα2+a)15b |
=−4k2α2eαz(eαz−1)2+4k2α2eαz(eαz+1)2−2(5k2bα2+a)15b, |
and
U52,0(z)=−2k2α2(eαz−1)2−2k2α2(eαz+1)2−2k2α2(eαz−1)+2k2α2(eαz+1)−2(5k2bα2+a)15b |
=−2k2α2eαz(eαz−1)2+2k2α2eαz(eαz+1)2−2(5k2bα2+a)15b. |
Collecting meromorphic solutions of Eq (3.1) in above procedures, we have the following solutions with arbitrary pole:
(1)U11(z)=4k2℘(z)−k2(℘′(z)+D℘(z)−C)2+60k2bC−a15b, |
(2)U12(z)=2k2℘(z)−k22(℘′(z)+D℘(z)−C)2+30k2bC−a15b, |
where C2=4D3−g2D−g3, g2=a2k−5bμ60b2k5,g3=−2a3k+225ζb2−15abμ10800b3k7 in the former case, g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7 in the latter case;
(3)U21(z)=−4k2(z−z0)2−a15b, |
(4)U22(z)=−2k2(z−z0)2−a15b, |
where r=ka25b, ζ=ka3225b2;
(5)U31(z)=−k2α2coth2α(z−z0)2+10k2bα2−a15b, |
(6)U32(z)=−k2α22coth2α(z−z0)2+5k2bα2−2a30b, |
(7)U41(z)=−k2α2tanh2α(z−z0)2−a−10k2bα215b, |
(8)U42(z)=−k2α22tanh2α(z−z0)2−2a−5k2bα230b, |
(9)U51(z)=−4k2α2eα(z−z0)(eα(z−z0)−1)2+4k2α2eα(z−z0)(eα(z−z0)+1)2−2(5k2bα2+a)15b, |
(10)U52(z)=−2k2α2eα(z−z0)(eα(z−z0)−1)2+2k2α2eα(z−z0)(eα(z−z0)+1)2−2(5k2bα2+a)15b, |
where r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2.
Figures 7–11 show the properties of the solutions.
In this paper, we derive meromorphic exact solutions to the KdV-Sawada-Kotera equation via two different systematic methods. Five types of solutions are constructed, including hyperbolic, trigonometric, exponential, elliptic and rational function solutions. Dynamic behaviors of these solutions are given by some graphs. Observing from the figures, we know that the obtained solutions are soliton solutions. Among of them, figures 3, 7 and 8 show multiple soliton solutions, and others show singular soliton solutions. The graphs of Weierstrass elliptic function solutions U11(z) and U12(z) are more interesting and have never been shown in other literatures. We can use the ideas of this study to other differential equations in complexity and nonlinear science.
This research is supported by the NSFC (11901111); Visiting Scholar Program of Chern Institute of Mathematics.
The authors declare no conflict of interest.
[1] |
F. Yu, S. Zhang, D. Su, Y. Wu, Y. M. Gracia, H. Yin, Dynamic analysis and implementation of FPGA for a new 4D fractional-order memristive Hopfield neural network, Fractal Fractional, 9 (2025), 115. https://doi.org/10.3390/fractalfract9020115 doi: 10.3390/fractalfract9020115
![]() |
[2] |
F. Yu, W. Zhang, X. Xiao, W. Yao, S. Cai, J. Zhang, et al., Dynamic analysis and field-programmable gate array implementation of a 5D fractional-order memristive hyperchaotic system with multiple coexisting attractors, Fractal Fractional, 8 (2024), 271. https://doi.org/10.3390/fractalfract8050271 doi: 10.3390/fractalfract8050271
![]() |
[3] |
F. Yu, X. Kong, W. Yao, J. Zhang, S. Cai, H. Lin, et al., Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor, Chaos Solitons Fractals, 179 (2024), 114440. https://doi.org/10.1016/j.chaos.2023.114440 doi: 10.1016/j.chaos.2023.114440
![]() |
[4] | Q. Lai, Y. Liu, L. Fortuna, Dynamical analysis and fixed-time synchronization for secure communication of hidden multiscroll memristive chaotic system, IEEE Trans. Circuits Syst. I, 71(10) (2024), 4665–4675. https://doi.org/10.1109/TCSI.2024.3434551 |
[5] |
Q. Lai, Z. J. Chen, Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium, Chaos Solitons Fractals, 176 (2023), 114118. https://doi.org/10.1016/j.chaos.2023.114118 doi: 10.1016/j.chaos.2023.114118
![]() |
[6] |
Q. Lai, L. Yang, G. Chen, Two-dimensional discrete memristive oscillatory hyperchaotic maps with diverse dynamics, IEEE Trans. Ind. Electron., 72 (2025), 969–979. https://doi.org/10.1109/TIE.2024.3417974 doi: 10.1109/TIE.2024.3417974
![]() |
[7] |
W. Feng, J. Yang, X. Zhao, Z. Qin, J. Zhang, Z. Zhu, et al., A novel multi-channel image encryption algorithm leveraging pixel reorganization and hyperchaotic maps, Mathematics, 12 (2024), 3917. https://doi.org/10.3390/math12243917 doi: 10.3390/math12243917
![]() |
[8] |
W. Feng, Q. W. Wang, H. Liu, Y. Ren, J. H. Zhang, S. B. Zhang, et al., Exploiting newly designed fractional-order 3D Lorenz chaotic system and 2D discrete polynomial hyper-chaotic map for high-performance multi-image encryption, Fractal Fractional, 7 (2023), 887. https://doi.org/10.3390/fractalfract7120887 doi: 10.3390/fractalfract7120887
![]() |
[9] |
W. Feng, J. Zhang, Y. Chen, Z. T. Qin, Y. S. Zhang, M. Ahmad, et al., Exploiting robust quadratic polynomial hyperchaotic map and pixel fusion strategy for efficient image encryption, Expert Syst. Appl., 246 (2024), 123190. https://doi.org/10.1016/j.eswa.2024.123190 doi: 10.1016/j.eswa.2024.123190
![]() |
[10] |
K. Qian, Y. Xiao, Y. J. Wei, D. Liu, Q. W. Wang, W. Feng, A robust memristor-enhanced polynomial hyper-chaotic map and its multi-channel image encryption application, Micromachines, 14 (2023), 2090. https://doi.org/10.3390/mi14112090 doi: 10.3390/mi14112090
![]() |
[11] |
C. H. Wang, D. W. Luo, Q. L. Deng, G. Yang, Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions, Chaos Solitons Fractals, 187 (2024), 115471. https://doi.org/10.1016/j.chaos.2024.115471 doi: 10.1016/j.chaos.2024.115471
![]() |
[12] |
H. Che, Y. L. Wang, Z. Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simul., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
![]() |
[13] |
C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
![]() |
[14] | X. H. Wang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of the fractional Hastings-Powell model with the Grünwald-Letnikov fractional derivative, Int. J. Bifurcation Chaos, Forthcoming, 2025. |
[15] |
S. Zhang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, Networks Heterog. Media, 20 (2025), 648–669. https://doi.org/10.3934/nhm.2025028 doi: 10.3934/nhm.2025028
![]() |
[16] | G. C. Fang, L. X. Tian, M. Sun, M. Fu, Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system Energy, 40 (2012), 291–299. https://doi.org/10.1016/j.energy.2012.01.072 |
[17] |
J. Wang, Y. L. Wang, Study on the stability and entropy complexity of an energy-saving and emission-reduction model with two delays, Entropy, 18 (2016), 371. https://doi.org/10.3390/e18100371 doi: 10.3390/e18100371
![]() |
[18] |
G. Fang, L. Lu, L. Tian, Y. He, H. Yin, Research on the influence mechanism of carbon trading on new energy-a case study of ESER system for China, Phys. A, 545 (2020), 123572. https://doi.org/10.1016/j.physa.2019.123572 doi: 10.1016/j.physa.2019.123572
![]() |
[19] |
G. Fang, L. Tian, M. Fu, M. Sun, R. Du, M. Liu, Investigating carbon tax pilot in YRD urban agglomerations-analysis of a novel ESER system with carbon tax constraints and its application, Appl. Energy, 194 (2017), 635–647. https://doi.org/10.1016/j.apenergy.2016.09.022 doi: 10.1016/j.apenergy.2016.09.022
![]() |
[20] |
Z. J. Chen, W. J. Liu, Dynamical behavior of fractional-order energy-saving and emission-reduction system and its discretization, Nat. Resour. Model., 32 (2019), e12203. https://doi.org/10.1111/nrm.12203 doi: 10.1111/nrm.12203
![]() |
[21] |
Z. Y. Li, M. C. Wang, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fractional, 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207
![]() |
[22] |
H. Che, Y. L. Wang, Z. Y. Li, Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method, Fractals, 29 (2021), 2150246. https://doi.org/10.1142/S0218348X21502467 doi: 10.1142/S0218348X21502467
![]() |
[23] |
Z. Y. Li, M. C. Wang, Y. L. Wang, Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function, AIMS Math., 7 (2022), 12935–12951. https://doi.org/10.3934/math.2022716 doi: 10.3934/math.2022716
![]() |
[24] |
Y. L. Wang, L. Jia, H. L. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 2100–2111. https://doi.org/10.1080/00207160.2018.1544367 doi: 10.1080/00207160.2018.1544367
![]() |
[25] |
J. Ning, Y. L. Wang, Fourier spectral method for solving fractional-in-space variable coefficient KdV-Burgers equation, Indian J. Phys., 98 (2024), 1727–1744. https://doi.org/10.1007/s12648-023-02934-2 doi: 10.1007/s12648-023-02934-2
![]() |
[26] |
X. L. Gao, H. L. Zhang, X. Y. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506–18527. https://doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
![]() |
[27] |
X. L. Gao, H. L. Zhang, Y. L. Wang, Z. Y. Li, Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment, Fractal Fractional, 8 (2024), 264. https://doi.org/10.3390/fractalfract8050264 doi: 10.3390/fractalfract8050264
![]() |
[28] |
X. L. Gao, Z. Y. Li, Y. L. Wang, Chaotic dynamic behavior of a fractional-order financial system with constant inelastic demand, Int. J. Bifurcation Chaos, 34 (2024), 2450111. https://doi.org/10.1142/S0218127424501116 doi: 10.1142/S0218127424501116
![]() |
[29] |
C. P. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis, Appl. Numer. Math., 140 (2019), 1–22. https://doi.org/10.1016/j.apnum.2019.01.007 doi: 10.1016/j.apnum.2019.01.007
![]() |
[30] |
C. P. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Mathematical analysis, Appl. Numer. Math., 150 (2020), 587–606. https://doi.org/10.1016/j.apnum.2019.11.007 doi: 10.1016/j.apnum.2019.11.007
![]() |
[31] |
C. P. Li, Z. Wang, Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution, Math. Comput. Simul., 182 (2021), 838–857. https://doi.org/10.1016/j.matcom.2020.12.007 doi: 10.1016/j.matcom.2020.12.007
![]() |
[32] |
C. P. Li, Z. Wang, Numerical methods for the time fractional convection-diffusion-reaction equation, Numer. Funct. Anal. Optim., 42 (2021), 1115–1153. https://doi.org/10.1080/01630563.2021.1936019 doi: 10.1080/01630563.2021.1936019
![]() |
[33] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. https://doi.org/10.1016/B978-0-12-558840-9.X5000-4 |
[34] | V. Daftardar-Gejji, Fractional Calculus and Fractional Differential Equations, Springer Singapore, 2019. https://doi.org/10.1007/978-981-13-9227-6 |
[35] | I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18101-6 |
[36] | D. Y. Xue, Fractional Calculus and Fractional-Order Control, Science Press, 2018. https://doi.org/10.1007/978-981-10-6064-2 |
[37] |
D. Y. Xue, L. Bai, Numerical algorithms for Caputo fractional-order differential equations, Int. J. Control, 90 (2016), 1201–1211. https://doi.org/10.1080/00207179.2016.1158419 doi: 10.1080/00207179.2016.1158419
![]() |