Research article Special Issues

A deep learning framework for predicting the spread of diffusion diseases

  • Published: 25 April 2025
  • In this paper, we considered a partitioned epidemic model with reaction-diffusion behavior, analyzed the dynamics of populations in various compartments, and explored the significance of spreading parameters. Unlike traditional approaches, we proposed a novel paradigm for addressing the dynamics of epidemic models: Inferring model dynamics and, more importantly, parameter inversion to analyze disease spread using Reaction-Diffusion Disease Information Neural Networks (RD-DINN). This method leverages the principles of hidden disease spread to overcome the black-box mechanism of neural networks relying on large datasets. Through an embedded deep neural network incorporating disease information, the RD-DINN approximates the dynamics of the model while predicting unknown parameters. To demonstrate the robustness of the RD-DINN method, we conducted an analysis based on two disease models with reaction-diffusion terms. Additionally, we systematically investigated the impact of the number of training points and noise data on the performance of the RD-DINN method. Our results indicated that the RD-DINN method exhibits relative errors less than $ 1\% $ in parameter inversion with $ 10\% $ noise data. In terms of dynamic predictions, the absolute error at any spatiotemporal point does not exceed $ 5\% $. In summary, we present a novel deep learning framework RD-DINN, which has been shown to be effective for reaction-diffusion disease modeling, providing an advanced computational tool for dynamic and parametric prediction of epidemic spread. The data and code used can be found at https://github.com/yuanfanglila/RD-DINN.

    Citation: Xiao Chen, Fuxiang Li, Hairong Lian, Peiguang Wang. A deep learning framework for predicting the spread of diffusion diseases[J]. Electronic Research Archive, 2025, 33(4): 2475-2502. doi: 10.3934/era.2025110

    Related Papers:

  • In this paper, we considered a partitioned epidemic model with reaction-diffusion behavior, analyzed the dynamics of populations in various compartments, and explored the significance of spreading parameters. Unlike traditional approaches, we proposed a novel paradigm for addressing the dynamics of epidemic models: Inferring model dynamics and, more importantly, parameter inversion to analyze disease spread using Reaction-Diffusion Disease Information Neural Networks (RD-DINN). This method leverages the principles of hidden disease spread to overcome the black-box mechanism of neural networks relying on large datasets. Through an embedded deep neural network incorporating disease information, the RD-DINN approximates the dynamics of the model while predicting unknown parameters. To demonstrate the robustness of the RD-DINN method, we conducted an analysis based on two disease models with reaction-diffusion terms. Additionally, we systematically investigated the impact of the number of training points and noise data on the performance of the RD-DINN method. Our results indicated that the RD-DINN method exhibits relative errors less than $ 1\% $ in parameter inversion with $ 10\% $ noise data. In terms of dynamic predictions, the absolute error at any spatiotemporal point does not exceed $ 5\% $. In summary, we present a novel deep learning framework RD-DINN, which has been shown to be effective for reaction-diffusion disease modeling, providing an advanced computational tool for dynamic and parametric prediction of epidemic spread. The data and code used can be found at https://github.com/yuanfanglila/RD-DINN.



    加载中


    [1] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. http://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [2] T. Sigler, S. Mahmuda, A. Kimpton, J. Loginova, P. Wohland, E. Charles-Edwards, et al., The socio-spatial determinants of COVID-19 diffusion: The impact of globalisation, settlement characteristics and population, Global. Health, 17 (2021), 56. https://doi.org/10.1186/s12992-021-00707-2 doi: 10.1186/s12992-021-00707-2
    [3] N. Sene, SIR epidemic model with Mittag–Leffler fractional derivative, Chaos, Solitons Fractals, 137 (2020), 109833. https://doi.org/10.1016/j.chaos.2020.109833 doi: 10.1016/j.chaos.2020.109833
    [4] J. A. Backer, A. Berto, C. McCreary, F. Martelli, W. H. M. van der Poel, Transmission dynamics of hepatitis E virus in pigs: Estimation from field data and effect of vaccination, Epidemics, 4 (2012), 86–92. https://doi.org/10.1016/j.epidem.2012.02.002 doi: 10.1016/j.epidem.2012.02.002
    [5] R. Anderson, R. May, Infectious Diseases of Humans: Dynamics and Control, Oxford Academic, 1991. https://doi.org/10.1093/oso/9780198545996.001.0001
    [6] A. Nauman, M. Rafiq, M. A. Rehman, M. Ali, M. O. Ahmad, Numerical modeling of SEIR measles dynamics with diffusion, Commun. Math. Appl., 9 (2018), 315–326.
    [7] T. N. Sindhu, A. Shafiq, Z. Huassian, Generalized exponentiated unit Gompertz distribution for modeling arthritic pain relief times data: Classical approach to statistical inference, J. Biopharm. Stat., 34 (2024), 323–348. https://doi.org/10.1080/10543406.2023.2210681 doi: 10.1080/10543406.2023.2210681
    [8] T. N. Sindhu, A. Shafiq, M. B. Riaz, T. A. Abushal, H. Ahmad, E. M. Almetwally, et al., Introducing the new arcsine-generator distribution family: An in-depth exploration with an illustrative example of the inverse weibull distribution for analyzing healthcare industry data, J. Radiat. Res. Appl. Sci., 17 (2024), 100879. https://doi.org/10.1016/j.jrras.2024.100879 doi: 10.1016/j.jrras.2024.100879
    [9] T. N. Sindhu, A. Shafiq, Q. M. Al-Mdallal, Exponentiated transformation of Gumbel Type-Ⅱ distribution for modeling COVID-19 data, Alexandria Eng. J., 60 (2021), 671–689. https://doi.org/10.1016/j.aej.2020.09.060 doi: 10.1016/j.aej.2020.09.060
    [10] A. Shafiq, A. B. Çolak, T. N. Sindhu, S. A. Lone, A. Alsubie, F. Jarad, Comparative study of artificial neural network versus parametric method in COVID-19 data analysis, Results Phys., 38 (2022), 105613. https://doi.org/10.1016/j.rinp.2022.105613 doi: 10.1016/j.rinp.2022.105613
    [11] A. Shafiq, A. B. Çolak, T. N. Sindhu, S. A. Lone, T. A. Abushal, Modeling and survival exploration of breast carcinoma: A statistical, maximum likelihood estimation, and artificial neural network perspective, Artif. Intell. Life Sci., 4 (2023), 100082. https://doi.org/10.1016/j.ailsci.2023.100082 doi: 10.1016/j.ailsci.2023.100082
    [12] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys., 3 (2021), 422–440. https://doi.org/10.1038/s42254-021-00314-5 doi: 10.1038/s42254-021-00314-5
    [13] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
    [14] S. Cai, Z. Mao, Z. Wang, M. Yin, G. E. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: A review, Acta Mech. Sin., 37 (2021), 1727–1738. https://doi.org/10.1007/s10409-021-01148-1 doi: 10.1007/s10409-021-01148-1
    [15] A. Yazdani, L. Lu, M. Raissi, G. E. Karniadakis, Systems biology informed deep learning for inferring parameters and hidden dynamics, PLOS Comput. Biol., 16 (2020), e1007575. https://doi.org/10.1371/journal.pcbi.1007575 doi: 10.1371/journal.pcbi.1007575
    [16] M. Raissi, N. Ramezani, P. N. Seshaiyer, On parameter estimation approaches for predicting disease transmission through optimization, deep learning and statistical inference methods, Lett. Biomath., 6 (2019), 1–26.
    [17] S. Shaier, M. Raissi, P. Seshaiyer, Data-driven approaches for predicting spread of infectious diseases through DINNs: Disease informed neural networks, Lett. Biomath., 9 (2022), 71–105.
    [18] S. Yin, J. Wu, P. Song, Optimal control by deep learning techniques and its applications on epidemic models, J. Math. Biol., 86 (2023), 36. https://doi.org/10.1007/s00285-023-01873-0 doi: 10.1007/s00285-023-01873-0
    [19] F. V. Difonzo, L. Lopez, S. F. Pellegrino, Physics informed neural networks for learning the horizon size in bond-based peridynamic models, Comput. Methods Appl. Mech. Eng., 436 (2025), 117727. https://doi.org/10.1016/j.cma.2024.117727 doi: 10.1016/j.cma.2024.117727
    [20] F. V. Difonzo, L. Lopez, S. F. Pellegrino, Physics informed neural networks for an inverse problem in peridynamic models, Eng. Comput., 2024 (2024). https://doi.org/10.1007/s00366-024-01957-5
    [21] D. Ouedraogo, I. Ibrango, A. Guiro, Global stability for reaction-diffusion SIR model with general incidence function, Malaya J. Mat., 10 (2022), 139–150. https://doi.org/10.26637/mjm1002/004 doi: 10.26637/mjm1002/004
    [22] J. P. C. Santos, E. Monteiro, J. C. Ferreira, N. H. T. Lemes, D. S. Rodrigues, Well-posedness and qualitative analysis of a SEIR model with spatial diffusion for COVID-19 spreading, Biomath, 12 (2023), 2307207. https://doi.org/10.55630/j.biomath.2023.07.207 doi: 10.55630/j.biomath.2023.07.207
    [23] S. Chinviriyasit, W. Chinviriyasit, Numerical modelling of an SIR epidemic model with diffusion, Appl. Math. Comput., 216 (2010), 395–409. https://doi.org/10.1016/j.amc.2010.01.028 doi: 10.1016/j.amc.2010.01.028
    [24] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [25] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1038/nature14539
    [26] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res., 18 (2018), 1–43.
    [27] M. Raissi, G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations, J. Comput. Phys., 357 (2018), 125–141. https://doi.org/10.1016/j.jcp.2017.11.039 doi: 10.1016/j.jcp.2017.11.039
    [28] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90
    [29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, preprint, arXiv: 1706.03762.
    [30] M. D. McKay, R. J. Beckman, W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239–245. https://doi.org/10.2307/1268522 doi: 10.2307/1268522
    [31] E. Massad, M. N. Burattini, F. B. A. Coutinho, L. F. Lopez, The 1918 influenza A epidemic in the city of São Paulo Brazil, Med. Hypotheses, 68 (2007), 442–445. https://doi.org/10.1016/j.mehy.2006.07.041 doi: 10.1016/j.mehy.2006.07.041
    [32] N. Sene, 2-Numerical methods applied to a class of SEIR epidemic models described by the Caputo derivative, Methods Math. Model., 2022 (2022), 23–40. https://doi.org/10.1016/B978-0-323-99888-8.00003-6 doi: 10.1016/B978-0-323-99888-8.00003-6
    [33] S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. U.S.A., 113 (2016), 3932–3937. https://doi.org/10.1073/pnas.1517384113 doi: 10.1073/pnas.1517384113
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1540) PDF downloads(104) Cited by(1)

Article outline

Figures and Tables

Figures(15)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog