In physics, the semiclassical limit principle asserts that as Planck's constant $ \hbar \rightarrow 0 $, quantum states reduce to classical configurations. We extend this framework to the noncommutative residue by applying the semiclassical limit to the spectral geometry. By introducing the coefficient $ \varepsilon $, we establish a proof of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on four-dimensional compact manifolds with (without) boundary. As $ \varepsilon \rightarrow 0 $, we demonstrate the emergence of a semiclassical limit, thereby providing the classical formulation of the theorem. This result elucidates the interplay between quantum corrections and classical geometric invariants in the presence of boundary conditions.
Citation: Tong Wu, Yong Wang. The semiclassical limit of the Kastler–Kalau–Walze-type theorem[J]. Electronic Research Archive, 2025, 33(4): 2452-2474. doi: 10.3934/era.2025109
In physics, the semiclassical limit principle asserts that as Planck's constant $ \hbar \rightarrow 0 $, quantum states reduce to classical configurations. We extend this framework to the noncommutative residue by applying the semiclassical limit to the spectral geometry. By introducing the coefficient $ \varepsilon $, we establish a proof of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on four-dimensional compact manifolds with (without) boundary. As $ \varepsilon \rightarrow 0 $, we demonstrate the emergence of a semiclassical limit, thereby providing the classical formulation of the theorem. This result elucidates the interplay between quantum corrections and classical geometric invariants in the presence of boundary conditions.
| [1] |
V. Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. Math., 55 (1985), 131–160. https://doi.org/10.1016/0001-8708(85)90018-0 doi: 10.1016/0001-8708(85)90018-0
|
| [2] |
M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math., 75 (1995), 143–178. https://doi.org/10.1007/BF01403095 doi: 10.1007/BF01403095
|
| [3] | A. Connes, Quantized calculus and applications, in Proceedings of the XIth International Congress of Mathematical Physics, International Press, Cambridge, MA, (1995), 15–36. |
| [4] |
A. Connes, The action functional in non-commutative geometry, Commun. Math. Phys., 117 (1998), 673–683. https://doi.org/10.1007/BF01218391 doi: 10.1007/BF01218391
|
| [5] |
D. Kastler, The dirac operator and gravitation, Commun. Math. Phys., 166 (1995), 633–643. https://doi.org/10.1007/BF02099890 doi: 10.1007/BF02099890
|
| [6] |
W. Kalau, M. Walze, Gravity, noncommutative geometry and the Wodzicki residue, J. Geom. Phys., 16 (1995), 327–344. https://doi.org/10.1016/0393-0440(94)00032-Y doi: 10.1016/0393-0440(94)00032-Y
|
| [7] |
T. Ackermann, A note on the Wodzicki residue, J. Geom. Phys., 20 (1996), 404–406. https://doi.org/10.1016/S0393-0440(95)00061-5 doi: 10.1016/S0393-0440(95)00061-5
|
| [8] |
Y. Wang, Differential forms and the Wodzicki residue for manifolds with boundary, J. Geom. Phys., 56 (2006), 731–753. https://doi.org/10.1016/j.geomphys.2005.04.015 doi: 10.1016/j.geomphys.2005.04.015
|
| [9] |
Y. Wang, Differtential forms the noncommutative residue for manifolds with boundary in the non-product case, Lett. Math. Phys., 77 (2006), 41–51. https://doi.org/10.1007/s11005-006-0078-2 doi: 10.1007/s11005-006-0078-2
|
| [10] |
Y. Wang, Gravity and the noncommutative residue for manifolds with boundary, Lett. Math. Phys., 80 (2007), 37–56. https://doi.org/10.1007/s11005-007-0147-1 doi: 10.1007/s11005-007-0147-1
|
| [11] |
Y. Wang, Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary, Commun. Theor. Phys., 54 (2010), 38–42. https://doi.org/10.1088/0253-6102/54/1/08 doi: 10.1088/0253-6102/54/1/08
|
| [12] |
J. Wang, Y. Wang, The Kastler-Kalau-Walze type theorem for six-dimensional manifolds with boundary, J. Math. Phys., 56 (2015), 052501. https://doi.org/10.1063/1.4919889 doi: 10.1063/1.4919889
|
| [13] |
H. Li, T. Wu, Y. Wang, Statistical de Rham Hodge operators and general Kastler-Kalau-Walze type theorems for manifolds with boundary, J. Pseudo-Differ. Oper. Appl., 14 (2023). https://doi.org/10.1007/s11868-023-00563-1 doi: 10.1007/s11868-023-00563-1
|
| [14] |
S. Liu, T. Wu, Y. Wang, The Kastler-Kalau-Walze type theorems for the perturbation of the de Rham Hodge operator, J. Nonlinear Math. Phys., 29 (2022), 678–730. https://doi.org/10.1007/s44198-022-00056-7 doi: 10.1007/s44198-022-00056-7
|
| [15] |
Y. Wang, A Kastler-Kalau-Walze type theorem and the spectral action for perturbations of Dirac operators on manifolds with boundary, Abstr. Appl. Anal., 2014 (2014). https://doi.org/10.1155/2014/619120 doi: 10.1155/2014/619120
|
| [16] |
J. Wang, Y. Wang, T. Wu, Dirac operators with torsion, spectral Einstein functionals and the noncommutative residue, J. Math. Phys., 64 (2023). https://doi.org/10.1063/5.0160917 doi: 10.1063/5.0160917
|
| [17] |
J. Wang, Y. Wang, C. Yang, Dirac operators with torsion and the noncommutative residue for manifolds with boundary, J. Geom. Phys., 81 (2014), 92–111. https://doi.org/10.1016/j.geomphys.2014.03.007 doi: 10.1016/j.geomphys.2014.03.007
|
| [18] |
T. Wu, J. Wang, Y. Wang, Dirac-Witten operators and the Kastler-Kalau-Walze type theorem for manifolds with boundary, J. Nonlinear Math. Phys., 29 (2022), 1–40. https://doi.org/10.1007/s44198-021-00009-6 doi: 10.1007/s44198-021-00009-6
|
| [19] |
C. B$\ddot{a}$r, F. Pf$\ddot{a}$ffle, Asymptotic heat kernel expansion in the semiclassical limit, Commun. Math. Phys., 294 (2010), 731–744. https://doi.org/10.1007/s00220-009-0973-3 doi: 10.1007/s00220-009-0973-3
|
| [20] |
M. Ludewig, A semiclassical heat kernel proof of the Poincar$\acute{e}$-Hopf theorem, Manuscr. Math., 148 (2015), 29–58. https://doi.org/10.1007/s00229-015-0741-y doi: 10.1007/s00229-015-0741-y
|
| [21] |
N. Savale, Hyperbolicity, irrationality exponents and the eta invariant, Commun. Partial Differ. Equations, 47 (2022), 989–1023. https://doi.org/10.1080/03605302.2021.2018711 doi: 10.1080/03605302.2021.2018711
|
| [22] |
N. Savale, A Gutzwiller type trace formula for the magnetic Dirac operator, Geom. Funct. Anal., 28 (2018), 1420–1486. https://doi.org/10.1007/s00039-018-0462-y doi: 10.1007/s00039-018-0462-y
|
| [23] | P. Paradan, M. Vergne, Equivariant index of twisted Dirac operators and semi-classical limits, in Lie Groups, Geometry, and Representation Theory: A Tribute to the Life and Work of Bertram Kostant, Progress in Mathematics, 326 (2018), 419–458. https://doi.org/10.1007/978-3-030-02191-7_15 |
| [24] |
T. Wu, Y. Wang, The pseudo-differential perturbations of the Dirac operator and the Kastler-Kalau-Walze type theorems, J. Pseudo-Differ. Oper. Appl., 15 (2024). https://doi.org/10.1007/s11868-024-00648-5 doi: 10.1007/s11868-024-00648-5
|
| [25] | S. Rempel, B. Schulze, Index Theory of Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982. |
| [26] |
B. Fedosov, F. Golse, E. Leichtnam, E. Schrohe, The noncommutative residue for manifolds with boundary, J. Funct. Anal., 142 (1996), 1–31. https://doi.org/10.1006/jfan.1996.0142 doi: 10.1006/jfan.1996.0142
|
| [27] |
R. Ponge, Noncommutative geometry and lower dimensional volumes in Riemannian geometry, Lett. Math. Phys., 83 (2008), 19–32. https://doi.org/10.1007/s11005-007-0199-2 doi: 10.1007/s11005-007-0199-2
|