Research article Special Issues

$ L^2 $ diffusive expansion for neutron transport equation

  • Published: 15 April 2025
  • 35Q49, 82D75, 35Q62, 35Q20

  • One of the most classical and fundamental mathematical problems in kinetic theory is to study the diffusive limit of the neutron transport equation. As $ {\varepsilon}{\rightarrow}0 $, the phase space density $ u^{{\varepsilon}}({x}, {w}) $

    $\begin{align} {w}\cdot\nabla_x u^{{\varepsilon}}+{\varepsilon}^{-1}\left(u^{{\varepsilon}}-\overline{u^{{\varepsilon}}}\right) = 0, \quad u^{{\varepsilon}}\big|_{{x}\in{\partial}\Omega, {w}\cdot{n}<0} = g, \quad \overline{u^{{\varepsilon}}}({x}): = \frac{1}{4\pi}\int_{{{\mathbb{S}}}^2}u^{{\varepsilon}}({x}, {w}){\mathrm{d}}{{w}}, \ \ \ \ \ \ \ \ {\rm{(0.1)}}\end{align} $

    converges to the interior solution $ {U}_0({x}) $:

    $\begin{align} -{\Delta_x}{U}_0 = 0, \quad {U}_0\big|_{{\partial}\Omega} = U^B_{0, \infty}, \ \ \ \ \ \ \ \ {\rm{(0.2)}}\end{align}$

    in which $ U^B_{0, \infty} $ is obtained by solving the Milne problem for the celebrated boundary layer correction $ U^B_0 $. The function $ g $ represents the inflow data, and $ {n} $ is the unit outward normal to the smooth bounded domain $ \Omega $. Surprisingly, we found [1,2] that the expected $ L^{\infty} $ expansion

    $\begin{align} \left\Vert{u^{{\varepsilon}}-{U}_0-U^B_0}\right\Vert_{L^{\infty}}{\lesssim}{\varepsilon} \ \ \ \ \ \ \ \ {\rm{(0.3)}}\end{align} $

    is invalid due to the grazing singularity of $ U^B_0 $. As a result, the corresponding well-known mathematical theory breaks down, and the diffusive limit has remained an outstanding question. A satisfactory theory was developed for convex domains [1,2,3,4,5,6] by constructing new boundary layers with favorable $ {\varepsilon} $-geometric corrections. However, this approach is inapplicable in non-convex domains. In this paper, we settle this open question affirmatively in the $ L^2 $ sense. The convergence

    $\begin{align} \left\Vert{u^{{\varepsilon}}-{U}_0}\right\Vert_{L^2}{\lesssim}{\varepsilon}^{\frac{1}{2}}\ \ \ \ \ \ \ \ {\rm{(0.4)}} \end{align}$

    holds for general smooth domains, including non-convex ones. We achieve this by discovering a novel and optimal $ L^2 $ expansion theory that reveals a surprising $ {\varepsilon}^{\frac{1}{2}} $ gain for the average of the remainder, and by choosing a test function with a new cancellation via conservation of mass. We also introduce a cutoff boundary layer $ U^B_0 $ and investigate its delicate regularity estimates to control the source terms of the remainder equation with the help of Hardy's inequality. Notably, our new cutoff boundary layer $ U^B_0 $ determines $ {U}_0 $, despite its absence in the estimate.

    Citation: Yan Guo, Lei Wu. $ L^2 $ diffusive expansion for neutron transport equation[J]. Communications in Analysis and Mechanics, 2025, 17(2): 365-386. doi: 10.3934/cam.2025015

    Related Papers:

  • One of the most classical and fundamental mathematical problems in kinetic theory is to study the diffusive limit of the neutron transport equation. As $ {\varepsilon}{\rightarrow}0 $, the phase space density $ u^{{\varepsilon}}({x}, {w}) $

    $\begin{align} {w}\cdot\nabla_x u^{{\varepsilon}}+{\varepsilon}^{-1}\left(u^{{\varepsilon}}-\overline{u^{{\varepsilon}}}\right) = 0, \quad u^{{\varepsilon}}\big|_{{x}\in{\partial}\Omega, {w}\cdot{n}<0} = g, \quad \overline{u^{{\varepsilon}}}({x}): = \frac{1}{4\pi}\int_{{{\mathbb{S}}}^2}u^{{\varepsilon}}({x}, {w}){\mathrm{d}}{{w}}, \ \ \ \ \ \ \ \ {\rm{(0.1)}}\end{align} $

    converges to the interior solution $ {U}_0({x}) $:

    $\begin{align} -{\Delta_x}{U}_0 = 0, \quad {U}_0\big|_{{\partial}\Omega} = U^B_{0, \infty}, \ \ \ \ \ \ \ \ {\rm{(0.2)}}\end{align}$

    in which $ U^B_{0, \infty} $ is obtained by solving the Milne problem for the celebrated boundary layer correction $ U^B_0 $. The function $ g $ represents the inflow data, and $ {n} $ is the unit outward normal to the smooth bounded domain $ \Omega $. Surprisingly, we found [1,2] that the expected $ L^{\infty} $ expansion

    $\begin{align} \left\Vert{u^{{\varepsilon}}-{U}_0-U^B_0}\right\Vert_{L^{\infty}}{\lesssim}{\varepsilon} \ \ \ \ \ \ \ \ {\rm{(0.3)}}\end{align} $

    is invalid due to the grazing singularity of $ U^B_0 $. As a result, the corresponding well-known mathematical theory breaks down, and the diffusive limit has remained an outstanding question. A satisfactory theory was developed for convex domains [1,2,3,4,5,6] by constructing new boundary layers with favorable $ {\varepsilon} $-geometric corrections. However, this approach is inapplicable in non-convex domains. In this paper, we settle this open question affirmatively in the $ L^2 $ sense. The convergence

    $\begin{align} \left\Vert{u^{{\varepsilon}}-{U}_0}\right\Vert_{L^2}{\lesssim}{\varepsilon}^{\frac{1}{2}}\ \ \ \ \ \ \ \ {\rm{(0.4)}} \end{align}$

    holds for general smooth domains, including non-convex ones. We achieve this by discovering a novel and optimal $ L^2 $ expansion theory that reveals a surprising $ {\varepsilon}^{\frac{1}{2}} $ gain for the average of the remainder, and by choosing a test function with a new cancellation via conservation of mass. We also introduce a cutoff boundary layer $ U^B_0 $ and investigate its delicate regularity estimates to control the source terms of the remainder equation with the help of Hardy's inequality. Notably, our new cutoff boundary layer $ U^B_0 $ determines $ {U}_0 $, despite its absence in the estimate.



    加载中


    [1] L. Wu, Y. Guo, Geometric correction for diffusive expansion of steady neutron transport equation, Comm. Math. Phys., 336 (2015), 1473–1553. https://doi.org/10.1007/s00220-015-2315-y doi: 10.1007/s00220-015-2315-y
    [2] L. Wu, X. F. Yang, Y. Guo, Asymptotic analysis of transport equation in annulus, J. Stat. Phys., 165 (2016), 585–644. https://doi.org/10.1007/s10955-016-1623-8 doi: 10.1007/s10955-016-1623-8
    [3] Y. Guo, L. Wu, Geometric correction in diffusive limit of neutron transport equation in 2D convex domains, Arch. Rational Mech. Anal., 226 (2017), 321–403. https://doi.org/10.1007/s00205-017-1135-y doi: 10.1007/s00205-017-1135-y
    [4] Y. Guo, L. Wu, Regularity of milne problem with geometric correction in 3D, Math. Models Methods Appl. Sci., 27 (2017), 453–524. https://doi.org/10.1142/S0218202517500075 doi: 10.1142/S0218202517500075
    [5] L. Wu, Boundary layer of transport equation with in-flow boundary, Arch. Rational Mech. Anal., 235 (2020), 2085–2169. https://doi.org/10.1007/s00205-019-01461-x doi: 10.1007/s00205-019-01461-x
    [6] L. Wu, DDiffusive limit of transport equation in 3D convex domains, Peking Math. J., 4 (2021), 203–284. https://doi.org/10.1007/s42543-020-00032-4 doi: 10.1007/s42543-020-00032-4
    [7] E. W. Larse, A functional-analytic approach to the steady, one-speed neutron transport equation with anisotropic scattering, Comm. Pure Appl. Math., 27 (1974), 523–545. https://doi.org/10.1002/cpa.3160270404 doi: 10.1002/cpa.3160270404
    [8] E. W. Larse, Solutions of the steady, one-speed neutron transport equation for small mean free paths, J. Mathematical Phys., 15 (1974), 299–305. https://doi.org/10.1063/1.1666642 doi: 10.1063/1.1666642
    [9] E. W. Larse, Neutron transport and diffusion in inhomogeneous media Ⅰ, J. Mathematical Phys., 16 (1975), 1421–1427. https://doi.org/10.1063/1.522714 doi: 10.1063/1.522714
    [10] E. W. Larse, Asymptotic theory of the linear transport equation for small mean free paths Ⅱ, SIAM J. Appl. Math., 33 (1979), 427–445. https://doi.org/10.1137/0133027 doi: 10.1137/0133027
    [11] E. W. Larse, J. D'Arruda, Asymptotic theory of the linear transport equation for small mean free paths Ⅰ, Phys. Rev., 13 (1976), 1933–1939. https://doi.org/10.1103/PhysRevA.13.1933 doi: 10.1103/PhysRevA.13.1933
    [12] E. W. Larse, G. J. Habetler, A functional-analytic derivation of Case's full and half-range formulas, Comm. Pure Appl. Math., 26 (1973), 525–537. https://doi.org/10.1002/cpa.3160260406 doi: 10.1002/cpa.3160260406
    [13] E. W. Larse, J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths, J. Mathematical Phys., 15 (1974), 75–81. https://doi.org/10.1063/1.1666510 doi: 10.1063/1.1666510
    [14] E. W. Larse, P. F. Zweifel, On the spectrum of the linear transport operator, J. Mathematical Phys., 15 (1974), 1987–1997. https://doi.org/10.1063/1.1666570 doi: 10.1063/1.1666570
    [15] E. W. Larse, P. F. Zweifel, Steady, one-dimensional multigroup neutron transport with anisotropic scattering, J. Mathematical Phys., 17 (1976), 1812–1820. https://doi.org/10.1063/1.522826 doi: 10.1063/1.522826
    [16] A. Bensoussan, J. L. Lions, G. C. Papanicolaou, Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53–157. https://doi.org/10.2977/prims/1195188427 doi: 10.2977/prims/1195188427
    [17] C. Bardos, R. Santos, R. Sentis, Diffusion approximation and computation of the critical size, Trans. Amer. Math. Soc., 284 (1984), 617–649. https://doi.org/10.1090/S0002-9947-1984-0743736-0 doi: 10.1090/S0002-9947-1984-0743736-0
    [18] C. Bardos, K. D. Phung, Observation estimate for kinetic transport equations by diffusion approximation, C. R. Math. Acad. Sci. Paris, 355 (2017), 640–664. https://doi.org/10.1016/j.crma.2017.04.017 doi: 10.1016/j.crma.2017.04.017
    [19] C. Bardos, F. Golse, B. Perthame, The rosseland approximation for the radiative transfer equations, Comm. Pure Appl. Math., 40 (1987), 691–721. https://doi.org/10.1002/cpa.3160400603 doi: 10.1002/cpa.3160400603
    [20] C. Bardos, F. Golse, B. Perthame, R. Sentis, The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434–460. https://doi.org/10.1016/0022-1236(88)90096-1 doi: 10.1016/0022-1236(88)90096-1
    [21] Q. Li, J. Lu, W. Sun, Diffusion approximations and domain decomposition method of linear transport equations: asymptotics and numerics, J. Comput. Phys., 292 (2015), 141–167. https://doi.org/10.1016/j.jcp.2015.03.014 doi: 10.1016/j.jcp.2015.03.014
    [22] Q. Li, J. Lu, W. Sun, Half-space kinetic equations with general boundary conditions, Math. Comp., 86 (2017), 1269–1301. https://doi.org/10.1090/mcom/3155 doi: 10.1090/mcom/3155
    [23] Q. Li, J. Lu, W. Sun, Validity and regularization of classical half-space equations, J. Stat. Phys., 166 (2017), 398–433. https://doi.org/10.1007/s10955-016-1688-4 doi: 10.1007/s10955-016-1688-4
    [24] Y. Sone, K. Aoki, Steady gas flows past bodies at small Knudsen numbers-Boltzmann and hydrodynamic systems, Transp. Theory Stat. Phys., 16 (1987), 189–199. https://doi.org/10.1080/00411458708204658 doi: 10.1080/00411458708204658
    [25] R. Esposito, J. L. Lebowitz, R. Marra, Hydrodynamic limit of the stationary Boltzmann equation in a slab, Comm. Math. Phys., 160 (1994), 49–80. https://doi.org/10.1007/BF02099789 doi: 10.1007/BF02099789
    [26] C. Cercignani, R. Marra, R. Esposito, The milne problem with a force term, Transport Theory Statist. Phys., 27 (1998), 1–33. https://doi.org/10.1080/00411459808205139 doi: 10.1080/00411459808205139
    [27] N. Jiang, N. Masmoudi, Boundary Layers and Incompressible Navier-Stokes-Fourier Limit of the Boltzmann Equation in Bounded Domain Ⅰ, Comm. Pure Appl. Math., 70 (2016), 90–171. https://doi.org/10.1002/cpa.21631 doi: 10.1002/cpa.21631
    [28] N. Masmoudi, L. Saint-Raymond, From the Boltzmann equation to the Stokes-Fourier system in a bounded domain, Comm. Pure and Appl. Math., 56 (2006), 1263–1293. https://doi.org/10.1002/cpa.10095 doi: 10.1002/cpa.10095
    [29] R. Esposito, Y. Guo, C. Kim, R. Marra, Stationary solutions to the Boltzmann equation in the hydrodynamic limit, Ann. PDE, 4 (2018), 1–119. https://doi.org/10.1007/s40818-017-0037-5 doi: 10.1007/s40818-017-0037-5
    [30] K. Aoki, C. Bardos, S. Takata, Knudsen layer for gas mixtures, J. Statist. Phys., 112 (2003), 629–655. https://doi.org/10.1023/A:1023876025363 doi: 10.1023/A:1023876025363
    [31] Y. Sone, K. Aoki, S. Takata, H. Sugimoto, A. V. Bobylev, Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: examination by asymptotic analysis and numerical computation of the Boltzmann equation, Phys. Fluids, 8 (1996), 628–638. https://doi.org/10.1063/1.868846 doi: 10.1063/1.868846
    [32] K. Aoki, S. Takata, H. Aikawa, F. Golse, A rarefied gas flow caused by a discontinuous wall temperature, Phys. Fluids, 13 (2001), 2645-2661. https://doi.org/10.1063/1.1389283 doi: 10.1063/1.1389283
    [33] K. Aoki, S. Takata, H. Aikawa, F. Golse, The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: asymptotic analysis of the Boltzmann equation, Transport Theory Statist. Phys., 30 (2001), 205–237. https://doi.org/10.1081/TT-100105368 doi: 10.1081/TT-100105368
    [34] J. Jang, C. Kim, Incompressible Euler limit from Boltzmann equation with diffuse boundary condition for analytic data, Ann. PDE, 7 (2001), 22. https://doi.org/10.1007/s40818-021-00108-z doi: 10.1007/s40818-021-00108-z
    [35] M. Ghattassi, X. Huo, N. Masmoudi, Stability of the nonlinear Milne problem for radiative heat transfer system, Arch. Ration. Mech. Anal., 247 (2003), 102. https://doi.org/10.1007/s00205-023-01930-4 doi: 10.1007/s00205-023-01930-4
    [36] M. Ghattassi, X. Huo, N. Masmoudi, On the diffusive limits of radiative heat transfer system Ⅰ: Well-prepared initial and boundary conditions, SIAM J. Math. Anal., 54 (2022), 5335–5387. https://doi.org/10.1137/21M1455267 doi: 10.1137/21M1455267
    [37] G. H. Hardy, Note on a theorem of Hilbert, Math Z, 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
    [38] N. Masmoudi, About the Hardy Inequality, In: An Invitation to Mathematics, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-19533-4_11
    [39] N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, American Mathematical Society, Providence, RI, 2008. https://doi.org/10.1090/gsm/096
    [40] R. Esposito, Y. Guo, C. Kim, R. Marra, Non-Isothermal boundary in the Boltzmann theory and Fourier law, Comm. Math. Phys., 323 (2013), 177–239. https://doi.org/10.1007/s00220-013-1766-2 doi: 10.1007/s00220-013-1766-2
    [41] L. C. Evans, Partial differential equations. Second edition, American Mathematical Society, Providence, RI, 2010.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1242) PDF downloads(89) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog