Research article

Asymptotic symmetry of solutions for reaction-diffusion equations via elliptic geometry

  • Published: 09 April 2025
  • 35R11, 35B07

  • In this paper, we investigated the asymptotic symmetry and monotonicity of positive solutions to a reaction-diffusion equation in the unit ball, utilizing techniques from elliptic geometry. First, we discussed the properties of solutions in the elliptic space. Then, we established crucial principles, including the asymptotic narrow region principle. Finally, we employed the method of moving planes to demonstrate the asymptotic symmetry of the solutions.

    Citation: Baiyu Liu, Wenlong Yang. Asymptotic symmetry of solutions for reaction-diffusion equations via elliptic geometry[J]. Communications in Analysis and Mechanics, 2025, 17(2): 341-364. doi: 10.3934/cam.2025014

    Related Papers:

  • In this paper, we investigated the asymptotic symmetry and monotonicity of positive solutions to a reaction-diffusion equation in the unit ball, utilizing techniques from elliptic geometry. First, we discussed the properties of solutions in the elliptic space. Then, we established crucial principles, including the asymptotic narrow region principle. Finally, we employed the method of moving planes to demonstrate the asymptotic symmetry of the solutions.



    加载中


    [1] Y. Zhang, T. Yi, J. Wu, Global population propagation dynamics of reaction-diffusion models with shifting environment for non-monotone kinetics and birth pulse, J. Differ. Equ., 402 (2024), 290–314. https://doi.org/10.1016/j.jde.2024.04.031 doi: 10.1016/j.jde.2024.04.031
    [2] F. Jia, Z. Wang, The stability of diverging traveling fronts and threshold phenomenon for the buffered bistable system, J. Differ. Equ., 356 (2023), 59–110. https://doi.org/10.1016/j.jde.2023.01.032 doi: 10.1016/j.jde.2023.01.032
    [3] X. Chen, P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. Reine Angew. Math., 472 (1996), 17–51. https://doi.org/10.1515/crll.1996.472.17 doi: 10.1515/crll.1996.472.17
    [4] A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura. Appl., 58 (1962), 303–315. https://doi.org/10.1007/BF02413056 doi: 10.1007/BF02413056
    [5] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. https://doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468
    [6] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat., 22 (1991), 1–37. https://doi.org/10.1007/BF01244896 doi: 10.1007/BF01244896
    [7] B. Gidas, W. Ni, L. Nirenberg, Symmetry and related properties by the maximum principle, Comm. Math. Phys., 68 (1979), 209–243. https://doi.org/10.1007/BF01221125 doi: 10.1007/BF01221125
    [8] W. Chen, C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145 (1997), 547–564. https://doi.org/10.2307/2951844 doi: 10.2307/2951844
    [9] L. Chen, Z. Liu, G. Lu, Symmetry and regularity of solutions to the weighted Hardy-Sobolev type system, Adv. Nonlinear Stud., 16 (2016), 1–13. https://doi.org/10.1515/ans-2015-5005 doi: 10.1515/ans-2015-5005
    [10] J. Dou, M. Zhu, Nonlinear integral equations on bounded domains, J. Funct. Anal., 277 (2019), 111–134. https://doi.org/10.1016/j.jfa.2018.05.020 doi: 10.1016/j.jfa.2018.05.020
    [11] Q. Guo, Blowup analysis for integral equations on bounded domains, J. Differ. Equ., 266 (2019), 8258–8280. https://doi.org/10.1016/j.jde.2018.12.028 doi: 10.1016/j.jde.2018.12.028
    [12] Y. Guo, J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbb{R}^N$, Comm. Partial Differential Equations, 3 (2008), 263–284. https://doi.org/10.1080/03605300701257476 doi: 10.1080/03605300701257476
    [13] Y. Li, W. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Comm. Partial Differential Equations, 18 (1993), 1043–1054. https://doi.org/10.1080/03605309308820960 doi: 10.1080/03605309308820960
    [14] H. Berestycki, L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237–275. https://doi.org/10.1016/0393-0440(88)90006-X doi: 10.1016/0393-0440(88)90006-X
    [15] J. Busca, B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differ. Equ., 163 (2000), 41–56. https://doi.org/10.1006/jdeq.1999.3701 doi: 10.1006/jdeq.1999.3701
    [16] W. Chen, C. Li, Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404–437. https://doi.org/10.1016/j.aim.2016.11.038 doi: 10.1016/j.aim.2016.11.038
    [17] B. Liu, S. Xu, Liouville-Type Theorem for an Indefinite Logarithmic Laplacian Equation, Int. J. Math., 36 (2025), 2450067. https://doi.org/10.1142/S0129167X24500678 doi: 10.1142/S0129167X24500678
    [18] B. Liu, Direct method of moving planes for logarithmic Laplacian system in bounded domains, Disc. Contin. Dyn. Syst., 38 (2018), 5339–5349. https://doi.org/10.3934/dcds.2018235 doi: 10.3934/dcds.2018235
    [19] J. Wei, X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207–228. https://doi.org/10.1007/s002080050258 doi: 10.1007/s002080050258
    [20] W. Chen, Y. Li, R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131–4157. https://doi.org/10.1016/j.jfa.2017.02.022 doi: 10.1016/j.jfa.2017.02.022
    [21] J. Dou, Q. Guo, M. Zhu, Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space, Adv. Math., 312 (2017), 1–45. https://doi.org/10.1016/j.aim.2017.03.007 doi: 10.1016/j.aim.2017.03.007
    [22] T. L. Jin, Symmetry and nonexistence of positive solutions of elliptic equations and systems with Hardy terms, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 28 (2011), 965–981. https://doi.org/10.1016/j.anihpc.2011.07.003 doi: 10.1016/j.anihpc.2011.07.003
    [23] Y. Li, M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383–417. https://doi.org/10.1215/S0012-7094-95-08016-8 doi: 10.1215/S0012-7094-95-08016-8
    [24] Z. Liu, Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, J. Differ. Equ., 270 (2021), 1043–1078. https://doi.org/10.1016/j.jde.2020.09.001 doi: 10.1016/j.jde.2020.09.001
    [25] L. Wu, W. Chen, The sliding methods for the fractional p-Laplacian, Adv. Math., 361 (2020), 106933. https://doi.org/10.1016/j.aim.2019.106933 doi: 10.1016/j.aim.2019.106933
    [26] D. Cao, W. Dai, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh-A: Math., 149 (2018), 979–994. https://doi.org/10.1017/prm.2018.67 doi: 10.1017/prm.2018.67
    [27] W. Chen, Y. Fang, R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167–198. https://doi.org/10.1016/j.aim.2014.12.013 doi: 10.1016/j.aim.2014.12.013
    [28] W. Chen, C. Li, Methods on Nonlinear Elliptic Equations, volume 4 of Diff. Equa. Dyn. Sys. in AIMS Book Series, 2010.
    [29] W. Chen, Y. Li, P. Ma, The Fractional Laplacian, World Scientific, 2020.
    [30] Y. Naito, T. Nishimoto, T. Suzuki, Radial symmetry of positive solutions for semilinear elliptic equations in a disc, Hiroshima Math. J., 26 (1996), 531–545. https://doi.org/10.32917/hmj/1206127257 doi: 10.32917/hmj/1206127257
    [31] Y. Naito, T. Suzuki, Radial symmetry of positive solutions for semilinear elliptic equations on the unit ball in $\mathbb{R}^N$, Funkcial. Ekvac., 41 (1998), 215–234.
    [32] N. Shioji, K. Watanabe, Radial symmetry of positive solutions for semilinear elliptic equations in the unit ball via elliptic and hyperbolic geometry, J. Differ. Equ., 252 (2012), 1392–1402. https://doi.org/10.1016/j.jde.2011.10.001 doi: 10.1016/j.jde.2011.10.001
    [33] A. V. Babin, G. R. Sell, Attractors of non-autonomous parabolic equations and their symmetry properties, J. Differ. Equ., 160 (2000), 1–50. https://doi.org/10.1006/jdeq.1999.3654 doi: 10.1006/jdeq.1999.3654
    [34] E. N. Dancer, P. Hess, The symmetry of positive solutions of periodic parabolic problems, J. Comput. Appl. Math., 52 (1994), 81–89. https://doi.org/10.1016/0377-0427(94)90350-6 doi: 10.1016/0377-0427(94)90350-6
    [35] J. Földes, On symmetry properties of parabolic equations in bounded domains, J. Differ. Equ., 250 (2011), 4236–4261. https://doi.org/10.1016/j.jde.2011.03.018 doi: 10.1016/j.jde.2011.03.018
    [36] A. V. Babin, Symmetrization properties of parabolic equations in symmetric domains, J. Dynam. Differ. Equ., 6 (1994), 639–658. https://doi.org/10.1007/BF02218852 doi: 10.1007/BF02218852
    [37] P. Poláčik, Symmetry properties of positive solutions of parabolic equations on $\mathbb{R}^N$: II. Entire solutions, Comm. Partial Differ. Equ., 31 (2006), 1615–1638. https://doi.org/10.1080/03605300600635020 doi: 10.1080/03605300600635020
    [38] C. Li, Some qualitative properties of fully nonlinear elliptic and parabolic equations, Ph.D thesis, New York University, 1989.
    [39] P. Hess, P. Poláčik, Symmetry and convergence properties for nonnegative solutions of nonautonomous reaction-diffusion problems, Proc. Roy. Soc. Edinburgh, 124 (1994), 573–587. https://doi.org/10.1017/S030821050002878X doi: 10.1017/S030821050002878X
    [40] P. Poláčik, Estimates of solutions and asymptotic symmetry for parabolic equations on bounded domains, Arch. Rational Mech. Anal., 183 (2007), 59–91. https://doi.org/10.1007/s00205-006-0004-x doi: 10.1007/s00205-006-0004-x
    [41] P. Poláčik, Symmetry properties of positive solutions of parabolic equations on $\mathbb{R}^N$: I. Asymptotic symmetry for the Cauchy problem, Comm. Partial Differ. Equ., 30 (2005), 1567–1593. https://doi.org/10.1080/03605300500299919 doi: 10.1080/03605300500299919
    [42] A. V. Babin, G. R. Sell, Symmetry of instabilities for scalar equations in symmetric domains, J. Differ. Equ., 123 (1995), 122–152. https://doi.org/10.1006/jdeq.1995.1159 doi: 10.1006/jdeq.1995.1159
    [43] P. Poláčik, Symmetry properties of positive solutions of parabolic equations: a survey, in: Recent progress on reaction-diffusion systems and viscosity solutions, World Scientific, (2009), 170–208. https://doi.org/10.1142/7016
    [44] A. Saldaña, T. Weth, Asymptotic axial symmetry of solutions of parabolic equations in bounded radial domains, J. Evol. Equ., 12 (2012), 697–712. https://doi.org/10.1007/s00028-012-0150-6 doi: 10.1007/s00028-012-0150-6
    [45] W. Chen, P. Wang, Y. Niu, Y. Hu, Asymptotic method of moving planes for fractional parabolic equations, Adv. Math., 337 (2021), 107463. https://doi.org/10.1016/j.aim.2020.107463 doi: 10.1016/j.aim.2020.107463
    [46] L. C. Evans, Partial Differential Equations, 2$^nd$ edition, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2022.
    [47] A. Friedman, Remarks on the maximum principle for parabolic equations and its applications, Pacific J. Math., 8 (1958), 201–211. https://doi.org/10.2140/pjm.1958.8.201 doi: 10.2140/pjm.1958.8.201
    [48] A. Friedman, Partial Differential Equations of Parabolic Type, Courier Dover Publications, 2008.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1198) PDF downloads(64) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog