In the present paper, we investigated the existence of normalized solutions for the following Kirchhoff equation with Choquard nonlinearity
$ \begin{equation*} -\Big(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\Big)\Delta u-\lambda u = \mu|u|^{q-2}u+(I_{\alpha}\ast|u|^{p})|u|^{p-2}u, \; \; \; \; x\in \mathbb{R}^{3} \end{equation*} $
with prescribed mass $ \int_{\mathbb{R}^{3}}|u|^{2}dx = c^{2} $, where $ a, b, c > 0 $, $ \mu\in\mathbb{R} $, $ \alpha\in(0, 3) $, $ \frac{10}{3}\leq q < 6 $, $ 3+\frac{\alpha}{3}\leq p < 3+\alpha $ and $ \lambda\in\mathbb{R} $ is a Lagrange multiplier. We first considered the case of $ \mu > 0 $ and obtained mountain pass type solutions. For the defocusing situation $ \mu < 0 $, we proved the existence result by constructing a minimax characterization for the energy functional. Finally, we discussed the asymptotic behavior of normalized solutions obtained above as $ b\to0^{+} $ when $ \mu > 0 $.
Citation: Zhi-Jie Wang, Hong-Rui Sun. Normalized solutions for Kirchhoff equations with Choquard nonlinearity: mass Super-Critical Case[J]. Communications in Analysis and Mechanics, 2025, 17(2): 317-340. doi: 10.3934/cam.2025013
In the present paper, we investigated the existence of normalized solutions for the following Kirchhoff equation with Choquard nonlinearity
$ \begin{equation*} -\Big(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\Big)\Delta u-\lambda u = \mu|u|^{q-2}u+(I_{\alpha}\ast|u|^{p})|u|^{p-2}u, \; \; \; \; x\in \mathbb{R}^{3} \end{equation*} $
with prescribed mass $ \int_{\mathbb{R}^{3}}|u|^{2}dx = c^{2} $, where $ a, b, c > 0 $, $ \mu\in\mathbb{R} $, $ \alpha\in(0, 3) $, $ \frac{10}{3}\leq q < 6 $, $ 3+\frac{\alpha}{3}\leq p < 3+\alpha $ and $ \lambda\in\mathbb{R} $ is a Lagrange multiplier. We first considered the case of $ \mu > 0 $ and obtained mountain pass type solutions. For the defocusing situation $ \mu < 0 $, we proved the existence result by constructing a minimax characterization for the energy functional. Finally, we discussed the asymptotic behavior of normalized solutions obtained above as $ b\to0^{+} $ when $ \mu > 0 $.
| [1] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
| [2] |
J. L. Lions, On Some Questions in Boundary Value Problems of Mathematical Physics, North-Holland Mathematics Studies, 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3
|
| [3] |
X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal., 70 (2009), 1407–1414. https://doi.org/10.1016/j.na.2008.02.021 doi: 10.1016/j.na.2008.02.021
|
| [4] |
X. He, W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3}$, J. Differential Equations, 252 (2012), 1813–1834. https://doi.org/10.1016/j.jde.2011.08.035 doi: 10.1016/j.jde.2011.08.035
|
| [5] |
C. Lei, J. Liao, C. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 421 (2015), 521–538. https://doi.org/10.1016/j.jmaa.2014.07.031 doi: 10.1016/j.jmaa.2014.07.031
|
| [6] |
C. O. Alves, F. Corrêa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2025), 85–93. https://doi.org/10.1016/j.camwa.2005.01.008 doi: 10.1016/j.camwa.2005.01.008
|
| [7] |
Y. Gao, X. Luo, M. Zhen, Existence and classification of positive solutions for coupled purely critical Kirchhoff system, Bull. Math. Sci., 14 (2024), 2450002. https://doi.org/10.1142/S1664360724500024 doi: 10.1142/S1664360724500024
|
| [8] |
X. Sun, Y. Song, S. Liang, B. Zhang, Critical Kirchhoff equations involving the $p$-sub-Laplacians operators on the Heisenberg group, Bull. Math. Sci., 13 (2023), 2250006. https://doi.org/10.1142/S1664360722500060 doi: 10.1142/S1664360722500060
|
| [9] |
E. Cabanillas Lapa, Global solutions for a nonlinear Kirchhoff type equation with viscosity, Opuscula Math, 43 (2023), 689–701. https://doi.org/10.7494/OpMath.2023.43.5.689 doi: 10.7494/OpMath.2023.43.5.689
|
| [10] |
Y. Yang, C. Tang, Positive and sign-changing solutions for Kirchhoff equations with indefinite potential, Commun. Anal. Mech., 17 (2025), 159–187. https://doi.org/10.3934/cam.2025008 doi: 10.3934/cam.2025008
|
| [11] |
Y. Deng, S. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500–3527. https://doi.org/10.1016/j.jfa.2015.09.012 doi: 10.1016/j.jfa.2015.09.012
|
| [12] |
Y. He, G. Li, Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^{3}$ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067–3106. https://doi.org/10.1007/s00526-015-0894-2 doi: 10.1007/s00526-015-0894-2
|
| [13] |
G. Li, H. Ye, On the concentration phenomenon of $L^{2}$-subcritical constrained minimizers for a class of Kirchhoff equations with potentials, J. Differential Equations, 266 (2019), 7101–7123. https://doi.org/10.1016/j.jde.2018.11.024 doi: 10.1016/j.jde.2018.11.024
|
| [14] |
K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246–255. https://doi.org/10.1016/j.jde.2005.03.006 doi: 10.1016/j.jde.2005.03.006
|
| [15] |
V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007
|
| [16] |
X. Li, Standing waves to upper critical Choquard equation with a local perturbation: multiplicity, qualitative properties and stability, Adv. Nonlinear Anal., 11 (2022), 1134–1164. https://doi.org/10.1515/anona-2022-0230 doi: 10.1515/anona-2022-0230
|
| [17] |
S. Yao, H. Chen, V.D. Rădulescu, J. Sun, Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation, SIAM J. Math. Anal., 54 (2022), 3696–3723. https://doi.org/10.1137/21M1463136 doi: 10.1137/21M1463136
|
| [18] |
S. Yu, C. Tang, Z. Zhang, Normalized ground states for the lower critical fractional Choquard equation with a focusing local perturbation, Discrete Contin. Dyn. Syst. Ser. S, 16 (2023), 3369–3393. https://doi.org/10.3934/dcdss.2023129 doi: 10.3934/dcdss.2023129
|
| [19] |
X. Zeng, Y. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 74 (2017), 52–59. https://doi.org/10.1016/j.aml.2017.05.012 doi: 10.1016/j.aml.2017.05.012
|
| [20] |
H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci., 38 (2015), 2663–2679. https://doi.org/10.1002/mma.3247 doi: 10.1002/mma.3247
|
| [21] |
Z. Liu, Multiple normalized solutions for Choquard equations involving Kirchhoff type perturbation, Topol. Methods Nonlinear Anal., 54 (2019), 297–319. https://doi.org/10.12775/TMNA.2019.046 doi: 10.12775/TMNA.2019.046
|
| [22] |
X. Qiu, Z. Ou, Y. Lv, Normalized solutions to nonautonomous Kirchhoff equation, Commun. Anal. Mech., 16 (2024), 457–486. https://doi.org/10.3934/cam.2024022 doi: 10.3934/cam.2024022
|
| [23] |
Y. Ni, J. Sun, J. Chen, Multiplicity and concentration of normalized solutions for a Kirchhoff type problem with $L^{2}$-subcritical nonlinearities, Commun. Anal. Mech., 16 (2024), 633–654. https://doi.org/10.3934/cam.2024029 doi: 10.3934/cam.2024029
|
| [24] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567–576. https://doi.org/10.1007/BF01208265 doi: 10.1007/BF01208265
|
| [25] |
H. Ye, Mass minimizers and concentration for nonlinear Choquard equations in $\mathbb{R}^{N}$, Topol. Methods Nonlinear Anal., 48 (2016), 393–417. https://doi.org/10.12775/TMNA.2016.066 doi: 10.12775/TMNA.2016.066
|
| [26] |
N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610
|
| [27] |
H. Luo, Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020), 143. https://doi.org/10.1007/s00526-020-01814-5 doi: 10.1007/s00526-020-01814-5
|
| [28] |
G. Li, X. Luo, T. Yang, Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent, Ann. Fenn. Math., 47 (2022), 895–925. https://doi.org/10.54330/afm.120247 doi: 10.54330/afm.120247
|
| [29] |
H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
|
| [30] |
X. Li, S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22 (2020), 1950023. https://doi.org/10.1142/S0219199719500238 doi: 10.1142/S0219199719500238
|
| [31] | M. Willem, Minimax Theorems: Progress in Nonlinear Differential Equations and theie Applications, Birkhäuser Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
| [32] |
T. Bartsch, N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differential Equations, 58 (2019), 22. https://doi.org/10.1007/s00526-018-1476-x doi: 10.1007/s00526-018-1476-x
|
| [33] |
L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
|
| [34] | E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, American Mathematical Society, Providence, 2001. |
| [35] |
X. Li, Global existence and blowup for Choquard equations with an inverse-square potential, J. Differential Equations, 268 (2020), 4276–4319. https://doi.org/10.1016/j.jde.2019.10.028 doi: 10.1016/j.jde.2019.10.028
|
| [36] | N. Ghoussoub, Duality and perturbation methods in critical point theory (with appendices by David Robinson): Cambridge Tracts in Mathematics, Cambridge University, 1993. https://doi.org/10.1017/CBO9780511551703 |