In this paper, we study the following fully parabolic chemotaxis system with nonlocal growth and indirect signal production:
$ \begin{equation*} \left\{ \begin{array}{@{}l@{\quad}l} u_{t} = \nabla\cdot( D(u)\nabla u)-\nabla\cdot(u\nabla v)+f(u),&x\in\Omega,\,\,t>0,\\ v_{t} = \Delta v+w-v,&x\in\Omega,\,\,t>0,\\ w_{t} = \Delta w+u-w,&x\in\Omega,\,\,t>0,\\ \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial w}{\partial n} = 0, &x\in\partial\Omega,\,\,t>0, \\ u(x, 0) = u_{0}(x), v(x, 0) = v_{0}(x), w(x, 0) = w_{0}(x), &x\in\Omega, \\ \end{array}\right. \end{equation*} $
in a smooth bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq3) $, where $ D(u)\geq D_{1}u^{\gamma} $, $ f(u) = u(a_{0}-a_{1}u^{\sigma}+a_{2}\int_{\Omega}u^\sigma dx) $, $ D_{1}, a_{1}, a_{2} $ are positive constants, $ a_{0}, \gamma\in \mathbb{R} $, $ \sigma\geq\max\{1, -\gamma\} $ and $ a_{1}-a_{2}|\Omega| > 0 $. It is shown that the above system admits a globally bounded classical solution if $ \frac{4}{n}+\frac{\gamma}{\sigma} > \frac{3-\sigma}{1+\sigma} $. Furthermore, by the method of Lyapunov functionals, the global stability of steady states with convergence rates is established.
Citation: Min Jiang, Dandan Liu, Rengang Huang. Boundedness and stabilization in a quasilinear chemotaxis model with nonlocal growth term and indirect signal production[J]. Communications in Analysis and Mechanics, 2025, 17(2): 387-412. doi: 10.3934/cam.2025016
In this paper, we study the following fully parabolic chemotaxis system with nonlocal growth and indirect signal production:
$ \begin{equation*} \left\{ \begin{array}{@{}l@{\quad}l} u_{t} = \nabla\cdot( D(u)\nabla u)-\nabla\cdot(u\nabla v)+f(u),&x\in\Omega,\,\,t>0,\\ v_{t} = \Delta v+w-v,&x\in\Omega,\,\,t>0,\\ w_{t} = \Delta w+u-w,&x\in\Omega,\,\,t>0,\\ \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = \frac{\partial w}{\partial n} = 0, &x\in\partial\Omega,\,\,t>0, \\ u(x, 0) = u_{0}(x), v(x, 0) = v_{0}(x), w(x, 0) = w_{0}(x), &x\in\Omega, \\ \end{array}\right. \end{equation*} $
in a smooth bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq3) $, where $ D(u)\geq D_{1}u^{\gamma} $, $ f(u) = u(a_{0}-a_{1}u^{\sigma}+a_{2}\int_{\Omega}u^\sigma dx) $, $ D_{1}, a_{1}, a_{2} $ are positive constants, $ a_{0}, \gamma\in \mathbb{R} $, $ \sigma\geq\max\{1, -\gamma\} $ and $ a_{1}-a_{2}|\Omega| > 0 $. It is shown that the above system admits a globally bounded classical solution if $ \frac{4}{n}+\frac{\gamma}{\sigma} > \frac{3-\sigma}{1+\sigma} $. Furthermore, by the method of Lyapunov functionals, the global stability of steady states with convergence rates is established.
| [1] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. |
| [2] |
K. Osaki, T. Tsujikawa, A. Yagi, M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119–144. https://doi.org/10.1016/s0362-546x(01)00815-x doi: 10.1016/s0362-546x(01)00815-x
|
| [3] |
J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Commun. Partial Differ. Equ., 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003
|
| [4] |
M. Winkler, Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708–729. https://doi.org/10.1016/j.jmaa.2008.07.071 doi: 10.1016/j.jmaa.2008.07.071
|
| [5] |
X. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412(2014), 181-188. https://doi.org/10.1016/j.jmaa.2013.10.061 doi: 10.1016/j.jmaa.2013.10.061
|
| [6] | K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441–469. |
| [7] | M. A. Herrero, J. J. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633–683. |
| [8] | T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411–433. |
| [9] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pure. Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
|
| [10] |
S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equ., 256 (2014), 2993–3010. https://doi.org/10.1016/j.jde.2014.01.028 doi: 10.1016/j.jde.2014.01.028
|
| [11] |
X. Cao, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B., 22 (2017), 3369–3378. https://doi.org/10.3934/dcdsb.2017141 doi: 10.3934/dcdsb.2017141
|
| [12] |
Q. Wang, J. Yang, F. Yu, Boundedness in logistic keller-segel models with nonlinear diffusion and sensitivity functions, Discrete Contin. Dyn. Syst., 37 (2017), 5021-5036. https://doi.org/10.3934/dcds.2017216 doi: 10.3934/dcds.2017216
|
| [13] |
J. Zheng, Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source, J. Math. Anal. Appl., 431 (2015), 867–888. https://doi.org/10.1016/j.jmaa.2015.05.071 doi: 10.1016/j.jmaa.2015.05.071
|
| [14] |
M. Zhuang, W. Wang, S. Zheng, Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production, Nonlinear Anal-Real., 47 (2019), 473–483. https://doi.org/10.1016/j.nonrwa.2018.12.001 doi: 10.1016/j.nonrwa.2018.12.001
|
| [15] |
M. Ding, W. Wang, S. Zhou, S. Zheng, Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production, J. Differ. Equ., 268 (2020), 6729–6777. https://doi.org/10.1016/j.jde.2019.11.052 doi: 10.1016/j.jde.2019.11.052
|
| [16] |
Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
|
| [17] |
D. Liu, Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ. Ser. B., 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z
|
| [18] |
M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e
|
| [19] |
M. Negreanu, J. I. Tello, On a competitive system under chemotactic effects with non-local terms, Nonlinearity, 26 (2013), 1083–1103. https://doi.org/10.1088/0951-7715/26/4/1083 doi: 10.1088/0951-7715/26/4/1083
|
| [20] |
S. Bian, L. Chen, E. A. Latos, Chemotaxis model with nonlocal nonlinear reaction in the whole space, Discrete Contin. Dyn. Syst., 38 (2018), 5067–5083. https://doi.org/10.3934/dcds.2018222 doi: 10.3934/dcds.2018222
|
| [21] | E. A. Latos, Nonlocal reaction preventing blow-up in the supercritical case of chemotaxis, arXiv preprint arXiv: 2011.10764, 2020. https://doi.org/10.48550/arXiv.2011.10764 |
| [22] |
M. Negreanu, J. I. Tello, A. M. Vargas, On a fully parabolic chemotaxis system with nonlocal growth term, Nonlinear Anal., 213 (2021), 112518. https://doi.org/10.1016/j.na.2021.112518 doi: 10.1016/j.na.2021.112518
|
| [23] |
G. Ren, Global boundedness and asymptotic behavior in an attraction-repulsion chemotaxis system with nonlocal terms, Z. Angew. Math. Phys., 73 (2022), 200. https://doi.org/10.1007/s00033-022-01832-7 doi: 10.1007/s00033-022-01832-7
|
| [24] |
T. B. Issa, R. B. Salako, Asymptotic dynamics in a two-species chemotaxis model with non-local terms, Discrete Contin. Dyn. Syst. Ser. B., 22 (2017), 3839–3874. https://doi.org/10.3934/dcdsb.2017193 doi: 10.3934/dcdsb.2017193
|
| [25] |
T. B. Issa, W. Shen, Persistence, coexistence and extinction in two species chemotaxis models on bounded heterogeneous environments, J. Dyn. Differ. Equ., 31 (2019), 1839–1871. https://doi.org/10.1007/s10884-018-9686-7 doi: 10.1007/s10884-018-9686-7
|
| [26] |
P. Zheng, On a parabolic-elliptic Keller-Segel system with nonlinear signal production and nonlocal growth term, Dynam. Part. Differ. Eq., 21 (2024), 61–76. https://doi.org/10.4310/DPDE.2024.v21.n1.a3 doi: 10.4310/DPDE.2024.v21.n1.a3
|
| [27] |
Y. Chiyo, F. G. Düzgün, S. Frassu, G. Viglialoro, Boundedness through nonlocal dampening effects in a fully parabolic chemotaxis model with sub and superquadratic growth, Appl. Math. Opt., 89 (2024), 9. https://doi.org/10.1007/s00245-023-10077-3 doi: 10.1007/s00245-023-10077-3
|
| [28] |
W. Zhang, P. Niu, S. Liu, Large time behavior in a chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal. Real Word Appl., 50 (2019), 484–497. https://doi.org/10.1016/j.nonrwa.2019.05.002 doi: 10.1016/j.nonrwa.2019.05.002
|
| [29] |
D. Li, Z. Li, Asymptotic behavior of a quasilinear parabolic-elliptic-elliptic chemotaxis system with logistic source, Z. Angew. Math. Phys., 73 (2022), 1–17. https://doi.org/10.1007/s00033-021-01655-y doi: 10.1007/s00033-021-01655-y
|
| [30] |
C. Wang, Y. Zhu, X. Zhu, Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source, Electron. J. Qual. Theo., 2023 (2023), 1–21. https://doi.org/10.14232/ejqtde.2023.1.11 doi: 10.14232/ejqtde.2023.1.11
|
| [31] |
S. Wu, Boundedness in a quasilinear chemotaxis model with logistic growth and indirect signal production, Acta. Appl. Math., 176 (2021), 1–14. https://doi.org/10.1007/s10440-021-00454-x doi: 10.1007/s10440-021-00454-x
|
| [32] |
W. Wang, A quasilinear fully parabolic chemotaxis system with indirect signal production and logistic source, J. Math. Anal. Appl., 477 (2019), 488–522. https://doi.org/10.1016/j.jmaa.2019.04.043 doi: 10.1016/j.jmaa.2019.04.043
|
| [33] |
W. Zhang, S. Liu, P. Niu, Asymptotic behavior in a quasilinear chemotaxis-growth system with indirect signal production, J. Math. Anal. Appl., 486 (2020), 123855. https://doi.org/10.1016/j.jmaa.2020.123855 doi: 10.1016/j.jmaa.2020.123855
|
| [34] |
M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., 257 (2014), 1056–1077. https://doi.org/10.1016/j.jde.2014.04.023 doi: 10.1016/j.jde.2014.04.023
|
| [35] |
Y. Tao, M. Winkler, A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685–704. https://doi.org/10.1137/100802943 doi: 10.1137/100802943
|
| [36] |
D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022
|
| [37] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
|
| [38] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola. Norm-Sci., 13 (1959), 115–162. |
| [39] |
C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM. J. Comput., 46 (2014), 1969–2007. https://doi.org/10.1137/13094058X doi: 10.1137/13094058X
|
| [40] |
C. Mu, L. Wang, P. Zheng, Q. Zhang, Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system, Nonlinear Anal-Real., 14 (2013), 1634–1642. https://doi.org/10.1016/j.nonrwa.2012.10.022 doi: 10.1016/j.nonrwa.2012.10.022
|
| [41] |
X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana. U. Math. J., 65 (2016), 553–583. https://doi.org/10.1512/iumj.2016.65.5776 doi: 10.1512/iumj.2016.65.5776
|
| [42] | O. A. Ladyzhenskaia, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, AMS, 1968. |