Research article

On the time-optimal control problem for a fourth order parabolic equation in the three-dimensional space

  • Published: 27 April 2025
  • Primary: 35K15, 35K35; Secondary: 58J35

  • In this paper, we consider the problem of optimal time control for a fourth-order parabolic-type equation describing the growth process of a thin film in a bounded three-dimensional space. The control function is defined on a certain part of a boundary. It is proved that the optimal time depends on the parameters of the growth process when the average value of the growth interface height of the thin film in the domain is close to the critical value.

    Citation: Farrukh Dekhkonov, Wenke Li, Weipeng Wu. On the time-optimal control problem for a fourth order parabolic equation in the three-dimensional space[J]. Communications in Analysis and Mechanics, 2025, 17(2): 413-428. doi: 10.3934/cam.2025017

    Related Papers:

  • In this paper, we consider the problem of optimal time control for a fourth-order parabolic-type equation describing the growth process of a thin film in a bounded three-dimensional space. The control function is defined on a certain part of a boundary. It is proved that the optimal time depends on the parameters of the growth process when the average value of the growth interface height of the thin film in the domain is close to the critical value.



    加载中


    [1] B. B. King, O. Stein, M. Winkler, A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286 (2003), 459–490. https://doi.org/10.1016/S0022-247X(03)00474-8 doi: 10.1016/S0022-247X(03)00474-8
    [2] A. Friedman, Optimal control for parabolic equations, J. Math. Anal. Appl., 18 (1967), 479–491. https://doi.org/10.1016/0022-247X(67)90040-6 doi: 10.1016/0022-247X(67)90040-6
    [3] H. O. Fattorini, D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272–292. https://doi.org/10.1007/BF00250466 doi: 10.1007/BF00250466
    [4] Y. V. Egorov, The optimal control in Banach space, Uspekhi Mat. Nauk, 18 (1963), 211–213.
    [5] J. L. Lions, Contróle optimal de systèmes gouvernés par deséquations aux dérivées partielles, Paris: Dunod Gauthier-Villars, 1968.
    [6] A. V. Fursikov, Optimal Control of Distributed Systems, Theory and Applications, American Mathematical Society, Providence, RI, 2000.
    [7] F. N. Dekhkonov, On the control problem associated with the heating process, Mathematical notes of NEFU, 29 (2022), 62–71. https://doi.org/10.25587/SVFU.2023.82.41.005 doi: 10.25587/SVFU.2023.82.41.005
    [8] S. Albeverio, Sh. A. Alimov, On one time-optimal control problem associated with the heat exchange process, Appl. Math. Opt., 57 (2008), 58–68. https://doi.org/10.1007/s00245-007-9008-7 doi: 10.1007/s00245-007-9008-7
    [9] Sh. A. Alimov, G. Ibragimov, Time optimal control problem with integral constraint for the heat transfer process, Eurasian Mathematical Journal, 15 (2024), 8–22. https://doi.org/10.32523/2077-9879-2024-15-1-08-22 doi: 10.32523/2077-9879-2024-15-1-08-22
    [10] G. Wang, L. Wang, The Bang-Bang principle of time optimal controls for the heat equation with internal controls, Systems Control Lett., 56 (2007), 709–713. https://doi.org/10.1016/j.sysconle.2007.06.001 doi: 10.1016/j.sysconle.2007.06.001
    [11] B. Laroche, P. Martin, P. Rouchon, Motion planning for the heat equation, Int. J. Robust Nonlinear Control, 10 (2000), 629–643.
    [12] W. Lian, J. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equations, 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047
    [13] X. Wang, R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261–288. https://doi.org/10.1515/anona-2020-0141 doi: 10.1515/anona-2020-0141
    [14] F. Dekhkonov, On a boundary control problem for a pseudo-parabolic equation, Commun. Anal. Mech., 15 (2023), 289–299. http://doi.org/10.3934/cam.2023015 doi: 10.3934/cam.2023015
    [15] F. N. Dekhkonov, On the control problem associated with a pseudo-parabolic type equation in an one-dimensional domain, Int. J. Appl. Math., 37 (2024), 109–118. http://doi.org/10.12732/ijam.v37i1.9 doi: 10.12732/ijam.v37i1.9
    [16] R. Xu, T. Chen, C. Liu, Y. Ding, Global well-posedness and global attractor of fourth order semilinear parabolic equation, Math. Methods Appl. Sci., 38 (2015), 1515–1529. https://doi.org/10.1002/mma.3165 doi: 10.1002/mma.3165
    [17] Y. Chen, Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity, Commun. Anal. Mech., 15 (2023), 658–694. https://doi.org/10.3934/cam.2023033 doi: 10.3934/cam.2023033
    [18] F. Dekhkonov, W. Li, On the boundary control problem associated with a fourth order parabolic equation in a two-dimensional domain, Discrete Contin. Dyn. Syst. Ser. S, 17 (2024), 2478–2488. https://doi.org/10.3934/dcdss.2024004 doi: 10.3934/dcdss.2024004
    [19] F. N. Dekhkonov, On the time-optimal control problem for a fourth order parabolic equation in a two-dimensional domain, Bulletin of the Karaganda University-Mathematics,, 114 (2024), 57–70. https://doi.org/10.31489/2024m2/57-70
    [20] M. Winkler, Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth, Z. Angew. Math. Phys., 62 (2011), 575–608. https://doi.org/10.1007/s00033-011-0128-1 doi: 10.1007/s00033-011-0128-1
    [21] N. Carreño, P. Guzmán, On the cost of null controllability of a fourth-order parabolic equation, J. Differ. Equations, 261 (2016), 6485–6520. https://doi.org/10.1016/j.jde.2016.08.042 doi: 10.1016/j.jde.2016.08.042
    [22] Y. J. L. Guo, Null boundary controllability for a fourth order parabolic equation, Taiwan. J. Math., 6 (2002), 421–431. https://doi.org/10.11650/twjm/1500558308 doi: 10.11650/twjm/1500558308
    [23] Y. Liu, W. Li, A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 4367–4381. https://doi.org/10.3934/dcdss.2021112 doi: 10.3934/dcdss.2021112
    [24] A. N. Sandjoa, S. Moutarib, Y. Gningue, Solutions of fourth-order parabolic equation modeling thin film growth, J. Differential Equations, 259 (2015), 7260–7283. https://doi.org/10.1016/j.jde.2015.08.022 doi: 10.1016/j.jde.2015.08.022
    [25] R. Xu, Y. Niu, Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J. Func. Anal. 264 (2013) 2732–2763], J. Func. Anal., 270 (2016), 4039–4041. https://doi.org/10.1016/j.jfa.2016.02.026 doi: 10.1016/j.jfa.2016.02.026
    [26] R. Xu, Y. Chen, Y. Yang, Sh. Chen, J. Shen, T. Yu, et al., Global well-posedness of semilinear hyperbolic equations, parabolic equations and Schrodinger equations, Electron. J. Differential Equations, 55 (2018), 1–52.
    [27] R. Xu, X. Wang, Y. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Mathe. Lett., 83 (2018), 176–181. https://doi.org/10.1016/j.aml.2018.03.033 doi: 10.1016/j.aml.2018.03.033
    [28] R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x
    [29] Y. Chen, V. Radulescu, R. Xu, High energy blowup and blowup time for a class of semilinear parabolic equations with singular potential on manifolds with conical singularities, Commun. Math. Sci., 21 (2023), 25–63. https://dx.doi.org/10.4310/CMS.2023.v21.n1.a2 doi: 10.4310/CMS.2023.v21.n1.a2
    [30] J. Hadamard, Sur certains cas int´eressants du probl`eme biharmonique. In: Œuvres de Jaques Hadamard, Tome III, 1297–1299, Centre National de la Recherche Scientifique: Paris, 1968, reprint of: Atti IVe Congr. Intern. Mat. Rome (1908), 12–14.
    [31] R. J. Duffin, On a question of Hadamard concerning super-biharmonic functions, J. Math. Phys., 27 (1949), 253–258. https://doi.org/10.1002/sapm1948271253 doi: 10.1002/sapm1948271253
    [32] P. R. Garabedian, A partial differential equation arising in conformal mapping, Pacific J. Math., 1 (1951), 485–524. https://doi.org/10.2140/pjm.1951.1.485 doi: 10.2140/pjm.1951.1.485
    [33] P. Jentzsch, Uber Integralgleichungen mit positivem Kern, J. Reine Angew. Math., 141 (1912), 235–244. https://doi.org/10.1515/crll.1912.141.235 doi: 10.1515/crll.1912.141.235
    [34] M. G. Kreın, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Mat. Nauk N. S., 3 (1948), 3–95. (Translation in: Amer. Math. Soc. Transl. (1950)).
    [35] H. C. Grunau, G. Sweers, Sign change for the Green function and the first eigenfunction of equations of clamped-plate type, Arch. Ration. Mech. Anal., 150 (1999), 179–190. https://doi.org/10.1007/s002050050185 doi: 10.1007/s002050050185
    [36] A. N. Tikhonov, A. A. Samarsky, Equations of Mathematical Physics, Nauka, Moscow, 1966.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(863) PDF downloads(68) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog