Research article

Gypsum supplies calcium to Ultisol soil and its effect on Phytophthora nicotianae, pineapple (Ananas comosus) growth, yield and fruit quality in lower single row bed under climate change issue

  • Received: 22 March 2022 Revised: 06 July 2022 Accepted: 15 July 2022 Published: 06 September 2022
  • Lower bed single-row pineapple cultivation could protect pineapple from soil erosion during the rainy season and drought period; however, disease problems could arise as a result of water logging. Two experiments were conducted in Ultisol soil using a lower bed single row to investigate the ability of gypsum to provide soil calcium (Ca) to the pineapple plant, plant resistance to heart rot disease, and provide a better effect on crop growth and fruit quality. In the first trial, four levels of gypsum (0, 1.0, 1.5 and 2.0 Mg·ha−1) and dolomite (2 Mg·ha−1) were spread and incorporated into soil that had been saturated with Phytophthora nicotianae inoculums. In the second trial, gypsum treatments (0, 1.0, 1.5, 2.0 and 2.5 Mg·ha−1) were used as a basic fertiliser in the row between the single beds. P. nicotianae attacked all treatments at 6 weeks after planting (WAP), and at 10 WAP, the mortality of the dolomite treatment reached 63.8%, significantly higher than that of the gypsum treatments (3.3%–14.3%). In the second experiment, gypsum significantly increased plant weight from 3 to 9 months after planting (MAP), especially when applied at 1.5–2.5 Mg·ha−1. Fruit texture, total soluble solids (TSS), and titratable acidity (TA) were not significantly different between treatments, but they all met the standards for canned pineapple grades. The results showed that soil-applied gypsum before planting provides soil calcium, meets the plant Ca requirement during an early and fast growth stage, and is free of heart rot disease.

    Citation: Supriyono Loekito, Afandi, Auliana Afandi, Naomasa Nishimura, Hiroyuki Koyama, Masateru Senge. Gypsum supplies calcium to Ultisol soil and its effect on Phytophthora nicotianae, pineapple (Ananas comosus) growth, yield and fruit quality in lower single row bed under climate change issue[J]. AIMS Agriculture and Food, 2022, 7(3): 721-736. doi: 10.3934/agrfood.2022044

    Related Papers:

    [1] Satoshi Kumabe, Tianyu Song, Tôn Việt Tạ . Stochastic forest transition model dynamics and parameter estimation via deep learning. Mathematical Biosciences and Engineering, 2025, 22(5): 1243-1262. doi: 10.3934/mbe.2025046
    [2] Sebastien Motsch, Mehdi Moussaïd, Elsa G. Guillot, Mathieu Moreau, Julien Pettré, Guy Theraulaz, Cécile Appert-Rolland, Pierre Degond . Modeling crowd dynamics through coarse-grained data analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1271-1290. doi: 10.3934/mbe.2018059
    [3] Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076
    [4] Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148
    [5] Katrine O. Bangsgaard, Morten Andersen, James G. Heaf, Johnny T. Ottesen . Bayesian parameter estimation for phosphate dynamics during hemodialysis. Mathematical Biosciences and Engineering, 2023, 20(3): 4455-4492. doi: 10.3934/mbe.2023207
    [6] Miguel Ángel Rodríguez-Parra, Cruz Vargas-De-León, Flaviano Godinez-Jaimes, Celia Martinez-Lázaro . Bayesian estimation of parameters in viral dynamics models with antiviral effect of interferons in a cell culture. Mathematical Biosciences and Engineering, 2023, 20(6): 11033-11062. doi: 10.3934/mbe.2023488
    [7] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri . Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences and Engineering, 2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75
    [8] Azmy S. Ackleh, Jeremy J. Thibodeaux . Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences and Engineering, 2008, 5(4): 601-616. doi: 10.3934/mbe.2008.5.601
    [9] Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd . Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences and Engineering, 2012, 9(3): 553-576. doi: 10.3934/mbe.2012.9.553
    [10] Blaise Faugeras, Olivier Maury . An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences and Engineering, 2005, 2(4): 719-741. doi: 10.3934/mbe.2005.2.719
  • Lower bed single-row pineapple cultivation could protect pineapple from soil erosion during the rainy season and drought period; however, disease problems could arise as a result of water logging. Two experiments were conducted in Ultisol soil using a lower bed single row to investigate the ability of gypsum to provide soil calcium (Ca) to the pineapple plant, plant resistance to heart rot disease, and provide a better effect on crop growth and fruit quality. In the first trial, four levels of gypsum (0, 1.0, 1.5 and 2.0 Mg·ha−1) and dolomite (2 Mg·ha−1) were spread and incorporated into soil that had been saturated with Phytophthora nicotianae inoculums. In the second trial, gypsum treatments (0, 1.0, 1.5, 2.0 and 2.5 Mg·ha−1) were used as a basic fertiliser in the row between the single beds. P. nicotianae attacked all treatments at 6 weeks after planting (WAP), and at 10 WAP, the mortality of the dolomite treatment reached 63.8%, significantly higher than that of the gypsum treatments (3.3%–14.3%). In the second experiment, gypsum significantly increased plant weight from 3 to 9 months after planting (MAP), especially when applied at 1.5–2.5 Mg·ha−1. Fruit texture, total soluble solids (TSS), and titratable acidity (TA) were not significantly different between treatments, but they all met the standards for canned pineapple grades. The results showed that soil-applied gypsum before planting provides soil calcium, meets the plant Ca requirement during an early and fast growth stage, and is free of heart rot disease.





    [1] Von Uexkull HR, Bossart RP (1989) Management of acid upland soils in Asia, In: Craswell ET, Pushparajah E (Eds.), Management of acid soils in the humid tropics of Asia, NSW: RodenPrint, 2–19.
    [2] Prasetyo BH, Suriadikarta DA (2006) Karakteristik, potensi, dan teknologi pengelolaan tanah ultisol untuk pengembangan pertanian lahan kering di Indonesia. J Litbang Pertanian 25: 39–46.
    [3] Malezieux E, Bartholomew DP (2003) Plant nutrition, In: Bartholomew DP, Paul RE, Rohrbach KG (Eds.), The pineapple: Botany, production and uses, Wallingford: CABI Publishing, 143–165. https://doi.org/10.1079/9780851995038.0143.
    [4] Uchida R, Hue NV (2000) Soil acidity and liming, In: Silva JA, Uchida R (Eds.), Plant nutrient management in Hawaii's soils, approaches for tropical and subtropical agriculture, Hawaii: University of Hawaii, 101–106.
    [5] Taiz L, Zeiger E, Moller IM, et al. (2015) Plant physiology and development, 6 Eds., Sunderland, Massachusetts: Sinaur Associates, 16–23.
    [6] Tailep WMAK, El-Saady AM, El-Dahshouri MF, et al. (2019) Influence of foliar spray of different calcium sources on nutritional status, seed yield and quality for some peanut genotypes. Biosci Res 16: 309–319.
    [7] Olle M, Bender I (2009) Causes and control of calcium deficiency disorders in vegetables: A review. J Hortic Sci Bitech 84: 577–584. https://doi.org/10.1080/14620316.2009.11512568 doi: 10.1080/14620316.2009.11512568
    [8] Von Uexkull HR (1986) Efficient fertilizer use in acid upland soils of the humid tropics, Rome: FAO, 1–59.
    [9] Rohrbach KG, Johnson MW (2003) Pests, diseases and weeds, In: Bartholomew DP, Paul RE, Rohrbach KG (Eds.), The pineapple: Botany, production and uses, Wallingford: CABI Publishing, 203–252.
    [10] Pegg KG (1993) Diseases, In: Broadly RH, Wassman RC, Sinclair E (Eds.), Pineapple pest and disorder, Queensland: Department of Primary Industries, 11–32.
    [11] Mite F, Espinosa J, Medina L (2010) Liming effect on pineapple yield and soil properties in volcanic soils. Better Crops 94: 7–9.
    [12] Vasquez-Jimenez J, Bartholomew DP (2018) Plant nutrition, In: Sanewski GM, Bartholomew DP, Paull RE (Eds.), The pineapple: Botany, production and uses, 2 Eds., Wallingford: CABI Publishing, 175–202.
    [13] Silva JA, Hamasaki R, Ogoshi R, et al. (2006) Lime, gypsum, and basaltic dust effects on the calcium nutrition and fruit quality of pineapple. Acta Hortic 702: 123–131. https://doi.org/10.17660/ActaHortic.2006.702.15 doi: 10.17660/ActaHortic.2006.702.15
    [14] Pegg K, Giblin F (2008) Principle of Phytophthora root rot management in establish orchards Queensland. Talking Avocados 19: 36–38.
    [15] Messenger BJ, Menge JA, Pond E (2000) Effect of gypsum on zoospores and sporangia of Phytophthora cinnamomi in field soil. Plant Dis 84: 617–621. https://doi.org/10.1094/PDIS.2000.84.6.617 doi: 10.1094/PDIS.2000.84.6.617
    [16] Correia AF, Neves LG, Serafim ME, et al. (2017) Chemical attributes of soil with use of a cover crop and agricultural gypsum in pineapple. Rev Cienc Agrar 60: 25–32.
    [17] Afandi A, Subandiyah S, Wibowo A, et al. (2021) Population genetic analysis of Phytophthora nicotianae associated with heart rot in pineapple revealed gen flow between population. Biodiversitas 22: 3342–3348. https://doi.org/10.13057/biodiv/d220830 doi: 10.13057/biodiv/d220830
    [18] Loekito S, Afandi, Afandi A, et al. (2022) Study on soil properties and species conformity of Phytophthora species in a pineapple field. Int J Agric Biol 27: 361–370. https://doi.org/10.17957/IJAB/15.1936 doi: 10.17957/IJAB/15.1936
    [19] Tsao PH, Draft GC, Sztejnberg A, et al., Potting Mixes for Control Phytophthora Root Rot, 1986. Available from: https://slosson.ucdavis.edu/newsletters/Tsao_198629144.pdf.
    [20] Zook MN, Rush JS, Kuc JC (1987) A role for Ca2+ in the elicitation of rishitin and lubimin accumulation in potato tuber tissue. Plant Physiol 84: 520–525. https://doi.org/10.1104/pp.84.2.520 doi: 10.1104/pp.84.2.520
    [21] Liming C, Warren AD, Gypsum as an Agricultural Amendment, General Use Guidelines, 2011. Available from: https://www.academia.edu/35029694/Bulletin_945.
    [22] Kelly DS (1993) Nutritional disorder, In: Roger HB, Rudolf CW, Eric S (Eds.), Pineapple pest and disorders, Queensland: Department of Primary Industries, 33–42.
    [23] Nome C, Magalhaes PC, Oliveira E, et al. (2009) Differences in intracellular localization of corn stunt spiroplasmas in magnesium treated maize. Biocell 33: 133–136. https://doi.org/10.32604/biocell.2009.33.133 doi: 10.32604/biocell.2009.33.133
    [24] Huber DM, Jones J (2013) The role of magnesium in plant disease. Plant Soil 368: 73–85. https://doi.org/10.1007/s11104-012-1476-0 doi: 10.1007/s11104-012-1476-0
    [25] Taiz L, Zeiger E (2002) Plant physiology, 3 Eds. Sunderland, Massachusetts: Sinaur Associates.
    [26] Souza LFS, Reinhardt DH (2007) Pineapple, In: Johnson AE (Ed.), Tropical fruits of Brazil, Horgen, Switzerland: International Potash Institute, 179–201.
    [27] Marschner H (2012) Mineral nutrition and yield response, In: Marschner's mineral nutrition of higher plants, 2 Eds, London, San Diego: Academic Press, 184–200. https://doi.org/10.1016/B978-0-08-057187-4.50012-6
    [28] Favaretto N, Norton LD, Joern BC, et al. (2006) Gypsum amendment and exchangeable calcium and magnesium affecting phosphorus and nitrogen in runoff. Soil Sci Soc Am J 70: 1788–1796. https://doi.org/10.2136/sssaj2005.0228 doi: 10.2136/sssaj2005.0228
    [29] Cano-Reinoso DM, Soesanto L, Kharisun, et al. (2021) Effect of pre-harvest fruit covers and calcium fertilization on pineapple thermotolerance and flesh translucency. Emir J Food Agr 33: 834–845. https://doi.org/10.9755/ejfa.2021.v33.i10.2766 doi: 10.9755/ejfa.2021.v33.i10.2766
    [30] JB Jones Jr (2012) Soil fertility and principals, In: Plant nutrition and soil fertility manual, 2 Eds., Boca Raton: CRC press, 5–11. https://doi.org/10.1201/b11577-5
    [31] De Freitas ST, Mitcham EJ (2012) Factors involved in fruit calcium deficiency disorders. Hortic Rev 40: 107–146.
    [32] Saure M (2014) Why calcium deficiency is not the cause of blossom-end rot in tomato and pepper fruit—a reappraisal. Sci Hortic 174: 151–154. https://doi.org/10.1016/j.scienta.2014.05.020 doi: 10.1016/j.scienta.2014.05.020
    [33] Gerendás J, Führs H (2013) The significance of magnesium for crop quality. Plant Soil 368: 101–128. https://doi.org/10.1007/s11104-012-1555-2 doi: 10.1007/s11104-012-1555-2
    [34] Villanueva MJ, Tenorio MD, Esteban MA, et al. (2004) Compositional changes during ripening of two cultivars of maskmelon fruits. Food Chem 87: 179–183. https:/doi.org/10.1016/j.foodchem.2003.11.009 doi: 10.1016/j.foodchem.2003.11.009
    [35] Lobo MG, Yahia E (2017) Biology and postharvest physiology of pineapple, In: Lobo MG, Paull RE (Eds.), Handbook of pineapple technology: Production, postharvest science, processing and nutrition. Chichester, Hoboken: John Wiley & Sons, 39–61. https://doi.org/10.1002/9781118967355.ch3
    [36] United States Department of Agriculture, United States Standards for Grades of Canned Pineapple, 1990. Available from: https://ams.usda.gov/sites/default/files/media/canned_pineapple_standard.pdf.
  • This article has been cited by:

    1. Mohamad Baydoun, Damian Campo, Divya Kanapram, Lucio Marcenaro, Carlo S. Regazzoni, 2019, Prediction of Multi-target Dynamics Using Discrete Descriptors: an Interactive Approach, 978-1-4799-8131-1, 3342, 10.1109/ICASSP.2019.8682272
    2. N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, B.J. Vreugdenhil, Human behaviours in evacuation crowd dynamics: From modelling to “big data” toward crisis management, 2016, 18, 15710645, 1, 10.1016/j.plrev.2016.05.014
    3. Antoine Tordeux, Gregor Lämmel, Flurin S. Hänseler, Bernhard Steffen, A mesoscopic model for large-scale simulation of pedestrian dynamics, 2018, 93, 0968090X, 128, 10.1016/j.trc.2018.05.021
    4. Luca Bruno, Alessandro Corbetta, Andrea Tosin, From individual behaviour to an evaluation of the collective evolution of crowds along footbridges, 2016, 101, 0022-0833, 153, 10.1007/s10665-016-9852-z
    5. Alessandro Corbetta, Andrea Tosin, Comparing First-Order Microscopic and Macroscopic Crowd Models for an Increasing Number of Massive Agents, 2016, 2016, 1687-9120, 1, 10.1155/2016/6902086
    6. Bouchra Aylaj, Nicola Bellomo, Livio Gibelli, Damián Knopoff, Crowd Dynamics by Kinetic Theory Modeling: Complexity, Modeling,, 2020, 12, 1938-1743, 1, 10.2200/S01055ED1V01Y202009MAS036
    7. Qipin Chen, Wenrui Hao, A homotopy training algorithm for fully connected neural networks, 2019, 475, 1364-5021, 20190662, 10.1098/rspa.2019.0662
    8. G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, 2019, 29, 0218-2025, 1901, 10.1142/S0218202519500374
    9. Simone Göttlich, Stephan Knapp, 2020, Chapter 2, 978-3-030-50449-6, 11, 10.1007/978-3-030-50450-2_2
    10. Nicola Bellomo, Livio Gibelli, Damian Knopoff, 2020, Chapter 1, 978-3-030-50449-6, 1, 10.1007/978-3-030-50450-2_1
    11. Bouchra Aylaj, Nicola Bellomo, Livio Gibelli, Alessandro Reali, A unified multiscale vision of behavioral crowds, 2020, 30, 0218-2025, 1, 10.1142/S0218202520500013
    12. Francesc Valls, Ernest Redondo, David Fonseca, Pilar Garcia-Almirall, Jordi Subirós, 2016, Chapter 41, 978-3-319-39512-8, 436, 10.1007/978-3-319-39513-5_41
    13. Milad Haghani, Majid Sarvi, Simulating pedestrian flow through narrow exits, 2019, 383, 03759601, 110, 10.1016/j.physleta.2018.10.029
    14. Fiammetta Venuti, Vitomir Racic, Alessandro Corbetta, Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges, 2016, 379, 0022460X, 245, 10.1016/j.jsv.2016.05.047
    15. Alessandro Corbetta, Chung-Min Lee, Adrian Muntean, Federico Toschi, 2016, Chapter 7, 978-3-319-33481-3, 49, 10.1007/978-3-319-33482-0_7
    16. Alessandro Corbetta, Chung-min Lee, Roberto Benzi, Adrian Muntean, Federico Toschi, Fluctuations around mean walking behaviors in diluted pedestrian flows, 2017, 95, 2470-0045, 10.1103/PhysRevE.95.032316
    17. Zhiqiang Wan, Xuemin Hu, Haibo He, Yi Guo, 2017, A learning based approach for social force model parameter estimation, 978-1-5090-6182-2, 4058, 10.1109/IJCNN.2017.7966368
    18. Marion Gödel, Rainer Fischer, Gerta Köster, 2020, Chapter 12, 978-3-030-55972-4, 93, 10.1007/978-3-030-55973-1_12
    19. I.M. Sticco, G.A. Frank, C.O. Dorso, Social Force Model parameter testing and optimization using a high stress real-life situation, 2021, 561, 03784371, 125299, 10.1016/j.physa.2020.125299
    20. Simon Rahn, Marion Gödel, Rainer Fischer, Gerta Köster, Dynamics of a Simulated Demonstration March: An Efficient Sensitivity Analysis, 2021, 13, 2071-1050, 3455, 10.3390/su13063455
    21. Ahmed Elaiw, Yusuf Al-Turki, Mohamed Alghamdi, A Critical Analysis of Behavioural Crowd Dynamics—From a Modelling Strategy to Kinetic Theory Methods, 2019, 11, 2073-8994, 851, 10.3390/sym11070851
    22. Alessandro Corbetta, Jasper A. Meeusen, Chung-min Lee, Roberto Benzi, Federico Toschi, Physics-based modeling and data representation of pairwise interactions among pedestrians, 2018, 98, 2470-0045, 10.1103/PhysRevE.98.062310
    23. Nicola Bellomo, Livio Gibelli, 2018, Chapter 1, 978-3-030-05128-0, 1, 10.1007/978-3-030-05129-7_1
    24. Bouchra Aylaj, Nicola Bellomo, Livio Gibelli, Damián Knopoff, 2021, Chapter 2, 978-3-031-01300-3, 17, 10.1007/978-3-031-02428-3_2
    25. Bouchra Aylaj, Nicola Bellomo, Livio Gibelli, Damián Knopoff, 2021, Chapter 1, 978-3-031-01300-3, 1, 10.1007/978-3-031-02428-3_1
    26. Siyuan Ma, Yongqing Guo, Fulu Wei, Qingyin Li, Zhenyu Wang, An Improved Social Force Model of Pedestrian Twice–Crossing Based on Spatial–Temporal Trajectory Characteristics, 2022, 14, 2071-1050, 16615, 10.3390/su142416615
    27. Marion Gödel, Nikolai Bode, Gerta Köster, Hans-Joachim Bungartz, Bayesian inference methods to calibrate crowd dynamics models for safety applications, 2022, 147, 09257535, 105586, 10.1016/j.ssci.2021.105586
    28. Raphael Korbmacher, Antoine Tordeux, Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches, 2022, 23, 1524-9050, 24126, 10.1109/TITS.2022.3205676
    29. Nicola Bellomo, Livio Gibelli, 2021, Chapter 1, 978-3-030-91645-9, 1, 10.1007/978-3-030-91646-6_1
    30. 2021, 978-3-031-01300-3, 10.1007/978-3-031-02428-3
    31. Bouchra Aylaj, Nicola Bellomo, Livio Gibelli, Damián Knopoff, 2021, Chapter 5, 978-3-031-01300-3, 71, 10.1007/978-3-031-02428-3_5
    32. Simone Göttlich, Claudia Totzeck, Parameter calibration with stochastic gradient descent for interacting particle systems driven by neural networks, 2022, 34, 0932-4194, 185, 10.1007/s00498-021-00309-8
    33. Alexandra Würth, Mickaël Binois, Paola Goatin, Simone Göttlich, Data-driven uncertainty quantification in macroscopic traffic flow models, 2022, 48, 1019-7168, 10.1007/s10444-022-09989-5
    34. Bin Li, Muhammad Shahzad, Hafiz Mudassir Munir, Asif Nawaz, Nabeel Abdelhadi Mohamed Fahal, Muhammad Yousaf Ali Khan, Sheeraz Ahmed, Probabilistic Analysis To Analyze Uncertainty Incorporating Copula Theory, 2022, 17, 1975-0102, 61, 10.1007/s42835-021-00863-w
    35. Nicola Bellomo, Livio Gibelli, Annalisa Quaini, Alessandro Reali, Towards a mathematical theory of behavioral human crowds, 2022, 32, 0218-2025, 321, 10.1142/S0218202522500087
    36. Bouchra Aylaj, Nicola Bellomo, Livio Gibelli, Damián Knopoff, 2021, Chapter 4, 978-3-031-01300-3, 51, 10.1007/978-3-031-02428-3_4
    37. Diletta Burini, Nadia Chouhad, Nicola Bellomo, Waiting for a Mathematical Theory of Living Systems from a Critical Review to Research Perspectives, 2023, 15, 2073-8994, 351, 10.3390/sym15020351
    38. Nicola Bellomo, Jie Liao, Annalisa Quaini, Lucia Russo, Constantinos Siettos, Human behavioral crowds review, critical analysis and research perspectives, 2023, 33, 0218-2025, 1611, 10.1142/S0218202523500379
    39. Milad Haghani, Majid Sarvi, Crowd model calibration at strategic, tactical, and operational levels: Full-spectrum sensitivity analyses show bottleneck parameters are most critical, followed by exit-choice-changing parameters, 2023, 1942-7867, 1, 10.1080/19427867.2023.2195729
    40. Fabio Parisi, Claudio Feliciani, Ruggiero Lovreglio, What do we head for while exiting a room? a novel parametric distance map for pedestrian dynamic simulations, 2023, 156, 0968090X, 104335, 10.1016/j.trc.2023.104335
    41. Chen Cheng, Linjie Wen, Jinglai Li, Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler, 2023, 10, 2054-5703, 10.1098/rsos.230275
    42. F. Al Reda, S. Faure, B. Maury, E. Pinsard, Faster is Slower effect for evacuation processes: a granular standpoint, 2024, 00219991, 112861, 10.1016/j.jcp.2024.112861
    43. Nicola Bellomo, Livio Gibelli, 2023, Chapter 1, 978-3-031-46358-7, 1, 10.1007/978-3-031-46359-4_1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2514) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog