Hyperphosphatemia in patients with renal failure is associated with increased vascular calcification and mortality. Hemodialysis is a conventional treatment for patients with hyperphosphatemia. Phosphate kinetics during hemodialysis may be described by a diffusion process and modeled by ordinary differential equations. We propose a Bayesian model approach for estimating patient-specific parameters for phosphate kinetics during hemodialysis. The Bayesian approach allows us to both analyze the full parameter space using uncertainty quantification and to compare two types of hemodialysis treatments, the conventional single-pass and the novel multiple-pass treatment. We validate and test our models on synthetic and real data. The results show limited identifiability of the model parameters when only single-pass data are available, and that the Bayesian model greatly reduces the relative standard deviation compared to existing estimates. Moreover, the analysis of the Bayesian models reveal improved estimates with reduced uncertainty when considering consecutive sessions and multiple-pass treatment compared to single-pass treatment.
Citation: Katrine O. Bangsgaard, Morten Andersen, James G. Heaf, Johnny T. Ottesen. Bayesian parameter estimation for phosphate dynamics during hemodialysis[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4455-4492. doi: 10.3934/mbe.2023207
Hyperphosphatemia in patients with renal failure is associated with increased vascular calcification and mortality. Hemodialysis is a conventional treatment for patients with hyperphosphatemia. Phosphate kinetics during hemodialysis may be described by a diffusion process and modeled by ordinary differential equations. We propose a Bayesian model approach for estimating patient-specific parameters for phosphate kinetics during hemodialysis. The Bayesian approach allows us to both analyze the full parameter space using uncertainty quantification and to compare two types of hemodialysis treatments, the conventional single-pass and the novel multiple-pass treatment. We validate and test our models on synthetic and real data. The results show limited identifiability of the model parameters when only single-pass data are available, and that the Bayesian model greatly reduces the relative standard deviation compared to existing estimates. Moreover, the analysis of the Bayesian models reveal improved estimates with reduced uncertainty when considering consecutive sessions and multiple-pass treatment compared to single-pass treatment.
[1] | C. Basile, D. Schneditz, Haemodialysis adequacy monitoring for phosphate: An old problem with new solutions?, Nephrol. Dial. Transpl., 30 (2014), 9–11. https://doi.org/10.1093/ndt/gfu351 doi: 10.1093/ndt/gfu351 |
[2] | J. Poleszczuk, M. Debowska, A. Wojcik-Zaluska, A. Ksiazek, W. Zaluska, Phosphate kinetics in hemodialysis: Application of delayed pseudo one-compartment model, Blood Purificat., 42 (2016), 177–185. https://doi.org/10.1159/000445934 doi: 10.1159/000445934 |
[3] | M. Debowska, J. Poleszczuk, A. Wojcik-Zaluska, A. Ksiazek, W. Zaluska, Phosphate kinetics during weekly cycle of hemodialysis sessions: Application of mathematical modeling, Artif. Organs, 39 (2015), 1005–1014. https://doi.org/10.1111/aor.12489 doi: 10.1111/aor.12489 |
[4] | B. Kestenbaum, J. N. Sampson, K. D. Rudser, D. J. Patterson, S. L. Seliger, B. Young, et al., Serum phosphate levels and mortality risk among people with chronic kidney disease, J. Am. Soc. Nephrol., 16 (2004), 520–528. https://doi.org/10.1681/asn.2004070602 doi: 10.1681/asn.2004070602 |
[5] | J. P. Gutzwiller, Estimating phosphate removal in haemodialysis: An additional tool to quantify dialysis dose, Nephrol. Dial. Transpl., 17 (2002), 1037–1044. https://doi.org/10.1093/ndt/17.6.1037 doi: 10.1093/ndt/17.6.1037 |
[6] | R. Subramanian, R. Khardori, Severe hypophosphatemia: Pathophysiologic implications, clinical presentations and treatment, Medicine, 79 (2000), 1–8. https://doi.org/10.1097/00005792-200001000-00001 doi: 10.1097/00005792-200001000-00001 |
[7] | B. U. Agar, A. Akonur, A. K. Cheung, J. K. Leypoldt, A simple method to estimate phosphorus mobilization in hemodialysis using only predialytic and postdialytic blood samples, Hemodial. Int., 15 (2011), S9–S14. https://doi.org/10.1111/j.1542-4758.2011.00596.x doi: 10.1111/j.1542-4758.2011.00596.x |
[8] | M. Andersen, K. O. Bangsgaard, J. T. Ottesen, Analytical solution of phosphate kinetics during and after single pass or multi pass dialysis, submitted for publication. |
[9] | S. H. Laursen, A. Buus, M. H. Jensen, P. Vestergaard, O. K. Hejlesen, Distribution volume assessment compartment modelling: Theoretic phosphate kinetics in steady state hemodialys patients, Int. J. Artif. Organs, 38 (2015), 580–587. https://doi.org/10.5301/ijao.5000449 doi: 10.5301/ijao.5000449 |
[10] | S. H. Laursen, P. Vestergaard, O. K. Hejlesen, Phosphate kinetic models in hemodialysis: A systematic review, Am. J. Kidney Diseases, 71 (2018), 75–90. https://doi.org/10.1053/j.ajkd.2017.07.016 doi: 10.1053/j.ajkd.2017.07.016 |
[11] | E. M. Spalding, P. W. Chamney, K. Farrington, Phosphate kinetics during hemodialysis: Evidence for biphasic regulation, Kidney Int., 61 (2002), 655–667. https://doi.org/10.1046/j.1523-1755.2002.00146.x doi: 10.1046/j.1523-1755.2002.00146.x |
[12] | S. Eloot, R. Vanholder, W. Van Biesen, Less water for haemodialysis: Is multiple pass the future pace to go?, Nephrol. Dial. Transpl., 27 (2012), 3975–3978. https://doi.org/10.1093/ndt/gfs435 doi: 10.1093/ndt/gfs435 |
[13] | S. Eloot, W. V. Biesen, M. Axelsen, G. Glorieux, R. S. Pedersen, J. G. Heaf, Protein-bound solute removal during extended multipass versus standard hemodialysis, BMC Nephrol., 16 (2015). https://doi.org/10.1186/s12882-015-0056-y doi: 10.1186/s12882-015-0056-y |
[14] | J. G. Heaf, M. Axelsen, R. S. Pedersen, Multipass haemodialysis: A novel dialysis modality, Nephrol. Dial. Transpl., 28 (2012), 1255–1264. https://doi.org/10.1093/ndt/gfs484 doi: 10.1093/ndt/gfs484 |
[15] | H. Huang, A. Handel, X. Song, A Bayesian approach to estimate parameters of ordinary differential equation, Comput. Stat., 35 (2020), 1481–1499. https://doi.org/10.1007/s00180-020-00962-8 doi: 10.1007/s00180-020-00962-8 |
[16] | J. Russell-Buckland, C. P. Barnes, I. Tachtsidis, A Bayesian framework for the analysis of systems biology models of the brain, PLOS Comput. Biol., 15 (2019), e1006631. https://doi.org/10.1371/journal.pcbi.1006631 doi: 10.1371/journal.pcbi.1006631 |
[17] | C. Bianchi, E. Lanzarone, G. Casagrande, M. L. Costantino, A Bayesian approach for the identification of patient-specific parameters in a dialysis kinetic model, Stat. Methods Med. Res., 28 (2018), 2069–2095. https://doi.org/10.1177/0962280217745572 doi: 10.1177/0962280217745572 |
[18] | O. S. Iheagwara, T. S. Ing, C. M. Kjellstrand, S. Q. Lew, Phosphorus, phosphorous, and phosphate, Hemod. Int., (2012). https://doi.org/10.1111/hdi.12010 doi: 10.1111/hdi.12010 |
[19] | R. C. Smith, Uncertainty quantification: Theory, implementation and applications, Society for Industrial and Applied Mathematics, USA, 2014. |
[20] | J. Vanlier, C. A. Tiemann, P. A. J. Hilbers, N. A. W. van Riel, Parameter uncertainty in biochemical models described by ordinary differential equations, Math. Biosci., 246 (2013), 305–314. https://doi.org/10.1016/j.mbs.2013.03.006 doi: 10.1016/j.mbs.2013.03.006 |
[21] | C. P. Robert, G. Casella, Monte Carlo Statistical Methods, Springer, New York, 2004. |
[22] | M. D. Hoffman, A. Gelman, The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res., 15 (2014), 1593–1623. |
[23] | R. J. LeVeque, Finite difference methods for ordinary and partial differential equations: Steady-state and time-dependent problems, Society for Industrial and Applied Mathematics, USA, 2007. |
[24] | A. Gelman, D. Lee, J. Guo, Stan: A probabilistic programming language for Bayesian inference and optimization, J. Educ. Behav. Stat., 40 (2015), 530–543. https://doi.org/10.3102/1076998615606113 doi: 10.3102/1076998615606113 |
[25] | A. Gelman, D. B. Rubin, Inference from iterative simulation using multiple sequences, Stat. Sci., 7 (1992). https://doi.org/10.1214/ss/1177011136 doi: 10.1214/ss/1177011136 |
[26] | T. W. Anderson, D. A. Darling, Asymptotic theory of certain "Goodness of Fit" criteria based on stochastic processes, Ann. Math. Stat., 23 (1952), 193–212. https://doi.org/10.1214/aoms/1177729437 doi: 10.1214/aoms/1177729437 |
[27] | R. B. D'Augostino, M. A. Stephens, Goodness-of-Fit Techniques, Marcel Dekker, Statistics: textbooks and monographs, 68 (1986). |