Research article Topical Sections

Impact of low energy electron beam on black pepper (Piper nigrum L.) microbial reduction, quality parameters, and antioxidant activity

  • Received: 18 May 2022 Revised: 03 August 2022 Accepted: 29 August 2022 Published: 08 September 2022
  • Low energy electron beam (e-beam) has the ability to decontaminate or reduce bioburden and enhance the food product's safety with minimal quality loss. The current study aimed to evaluate the efficacy of e-beam on natural microbiota and quality changes in black peppercorns. The black pepper was exposed to e-beam at doses from 6–18 kGy. The microbial quality, physicochemical attributes, total phenolic compounds, and antioxidant activity were evaluated. Results demonstrated the microbial population in black pepper decreased with increasing e-beam treatment doses. Significant inactivation of Total Plate Count (TPC), yeasts, and molds were observed at dose 6 kGy by 2.3, 0.7, and 1.3 log CFU g−1, respectively, while at 18 kGy the reduction level was 6, 2.9, and 4.4 log CFU g−1, respectively. Similarly, 18 kGy of e-beam yielded a reduction of 3.3 and 3.1 log CFU g−1 of Salmonella Typhimurium and coliform bacteria, respectively. A significant difference (p < 0.05) was noted between doses 12, 15, and 18 kGy on Bacillus cereus and Clostridium perfringens in black pepper. During e-beam doses, the values L*, a* and b* of black peppercorn were not noticeably altered up to 18 kGy dose. No significant (p > 0.05) difference in moisture, volatile oil, and piperine content upon (6–18 kGy) treatments in comparison to the control. A slight difference in the bioactive compound, retaining > 90% of total phenolic compounds and antioxidant activity. Results revealed that e-beam doses ≥ 18 kGy were influential for inactivating natural microbes and foodborne pathogens without compromising the physicochemical properties and antioxidant activity of black peppercorns.

    Citation: Abdul Basit M. Gaba, Mohamed A. Hassan, Ashraf A. Abd El-Tawab, Mohamed A. Abdelmonem, Mohamed K. Morsy. Impact of low energy electron beam on black pepper (Piper nigrum L.) microbial reduction, quality parameters, and antioxidant activity[J]. AIMS Agriculture and Food, 2022, 7(3): 737-749. doi: 10.3934/agrfood.2022045

    Related Papers:

    [1] Anna V. Babii, Anna L. Arkhipova, Irina N. Andreichenko, Artyom V. Brigida, Svetlana N. Kovalchuk . A TaqMan PCR assay for detection of DGAT1 K232A polymorphism in cattle. AIMS Agriculture and Food, 2018, 3(3): 306-312. doi: 10.3934/agrfood.2018.3.306
    [2] Svyatoslav Lebedev, Elena Sheida, Irina Vershinina, Victoria Grechkina, Ilmira Gubaidullina, Sergey Miroshnikov, Oksana Shoshina . Use of chromium nanoparticles as a protector of digestive enzymes and biochemical parameters for various sources of fat in the diet of calves. AIMS Agriculture and Food, 2021, 6(1): 14-31. doi: 10.3934/agrfood.2021002
    [3] Rinat R. Gadiev, Danis D. Khaziev, Chulpan R. Galina, Albert R. Farrakhov, Kamil D. Farhutdinov, Irina Yu. Dolmatova, Marina A. Kazanina, Gulnara F. Latypova . The use of chlorella in goose breeding. AIMS Agriculture and Food, 2019, 4(2): 349-361. doi: 10.3934/agrfood.2019.2.349
    [4] Gad G. Yousef, Allan F. Brown, Ivette Guzman, James R. Ballington, Mary A. Lila . Variations in chlorogenic acid levels in an expanded gene pool of blueberries. AIMS Agriculture and Food, 2016, 1(3): 357-368. doi: 10.3934/agrfood.2016.3.357
    [5] Marcelo Augusto de Carvalho, Cíntia Sorane Good Kitzberger, Altamara Viviane de Souza Sartori, Marta de Toledo Benassi, Maria Brígida dos Santos Scholz, Clandio Medeiros da Silva . Free choice profiling sensory analysis and principal component analysis as tools to support an apple breeding program. AIMS Agriculture and Food, 2020, 5(4): 769-784. doi: 10.3934/agrfood.2020.4.769
    [6] George K. Symeon, Ioannis A. Giantsis, Melpomeni Avdi . Effects of different reproduction management protocols on the reproduction efficiency of three indigenous Greek sheep breeds. AIMS Agriculture and Food, 2024, 9(2): 472-482. doi: 10.3934/agrfood.2024027
    [7] Martha Tampaki, Georgia Koutouzidou, Katerina Melfou, Athanasios Ragkos, Ioannis A. Giantsis . The contrasting mosaic of consumers' knowledge on local plant genetic resources sustainability vis a vis the unawareness for indigenous farm animal breeds. AIMS Agriculture and Food, 2024, 9(2): 645-665. doi: 10.3934/agrfood.2024035
    [8] Site Noorzuraini Abd Rahman, Rosimah Nulit, Faridah Qamaruz Zaman, Khairun Hisam Nasir, Mohd Hafiz Ibrahim, Mohd Ramdzan Othman, Nur Idayu Abd Rahim, Nor Sufiah Sebaweh . Profile of the grain physical traits and physicochemical properties of selected Malaysian rice landraces for future use in a breeding program. AIMS Agriculture and Food, 2024, 9(4): 934-958. doi: 10.3934/agrfood.2024051
    [9] Hamida Mahroug, Adra Mouellef, Hayat Bourekoua, Fairouz Djeghim, Haroun Chenchouni, Abdelkader Benbelkacem, Mohamed Hadef El Okki, Awatif Fetouhi, Nedjla Silini, Ana María Calderón de la Barca . Breadmaking and protein characteristics of wheat (Triticum aestivum L.) genotypes tolerant against drought and heat in Algeria. AIMS Agriculture and Food, 2024, 9(2): 531-550. doi: 10.3934/agrfood.2024030
    [10] Yusuff Oladosu, Mohd Y Rafii, Fatai Arolu, Suganya Murugesu, Samuel Chibuike Chukwu, Monsuru Adekunle Salisu, Ifeoluwa Kayode Fagbohun, Taoheed Kolawole Muftaudeen, Asma Ilyani Kadar . Genetic diversity and utilization of ginger (Zingiber officinale) for varietal improvement: A review. AIMS Agriculture and Food, 2024, 9(1): 183-208. doi: 10.3934/agrfood.2024011
  • Low energy electron beam (e-beam) has the ability to decontaminate or reduce bioburden and enhance the food product's safety with minimal quality loss. The current study aimed to evaluate the efficacy of e-beam on natural microbiota and quality changes in black peppercorns. The black pepper was exposed to e-beam at doses from 6–18 kGy. The microbial quality, physicochemical attributes, total phenolic compounds, and antioxidant activity were evaluated. Results demonstrated the microbial population in black pepper decreased with increasing e-beam treatment doses. Significant inactivation of Total Plate Count (TPC), yeasts, and molds were observed at dose 6 kGy by 2.3, 0.7, and 1.3 log CFU g−1, respectively, while at 18 kGy the reduction level was 6, 2.9, and 4.4 log CFU g−1, respectively. Similarly, 18 kGy of e-beam yielded a reduction of 3.3 and 3.1 log CFU g−1 of Salmonella Typhimurium and coliform bacteria, respectively. A significant difference (p < 0.05) was noted between doses 12, 15, and 18 kGy on Bacillus cereus and Clostridium perfringens in black pepper. During e-beam doses, the values L*, a* and b* of black peppercorn were not noticeably altered up to 18 kGy dose. No significant (p > 0.05) difference in moisture, volatile oil, and piperine content upon (6–18 kGy) treatments in comparison to the control. A slight difference in the bioactive compound, retaining > 90% of total phenolic compounds and antioxidant activity. Results revealed that e-beam doses ≥ 18 kGy were influential for inactivating natural microbes and foodborne pathogens without compromising the physicochemical properties and antioxidant activity of black peppercorns.



    Providing world’s population with food is one of the most acute issues these days. Due to climate change and depletion of natural resources food security keeps worsening worldwide [1,2]. Food security of every nation must touch upon different aspects of people’s life while consumption of organic products being the key point. Providing people with basic high-value protein products is one of the priority tasks of both livestock and processing industry. Animal breeding plays an important role in production of such important products as meat and milk. Sensible and balanced feeding of people depends, among other things, on the development and efficiency of animal breeding. In many countries, as well as in Russia, there is a tendency to reduce the livestock population. At the same time, providing people with beef is still one of the most difficult and important problems [3,4]. Increasing the production of high-quality meat should be carried out on the basis of all available reserves which include the increase in the livestock and poultry population, strengthening the fodder base, improving the quality of harvested feed, the use of resource-saving technologies, reducing production and labor costs, feed and funds per product unit [5,6,7,8,9,10,11,12,13,14].

    World experience shows that a significant increase in beef production can be achieved by means of intensification of livestock breeding. And first of all it can be done by creating conditions for increasing the level of animal productivity and maximum use of the genetic potential of livestock of both domestic and foreign selection [15]. In various regions of the Russian Federation the main amount of beef is produced by breeding dairy and combined breeds of cattle [16,17].

    Young animals in dairy cattle breeding are grown for meat using the technology of “indoors-outdoor feedlot”. First, it is necessary to create comfortable living conditions for calves in order to preserve their health and obtain high productivity. Secondly, older animals are able to adapt rather quickly to environmental factors. Finally, there is commercial importance as fattening young stock can be intensively grown at high rates of labor productivity and profitability. Also expenses for the construction of outdoor feedlots are relatively low and technical solutions are rather simple. However, the analysis of the feedlots activity shows that when rearing young animals for growing and fattening the productivity reduces sharply for a long period of time. This leads to irrational use of feed, reduced growth rate and, as a consequence, the loss of meat products. Therefore, technology of growing and fattening young animals requires further study in order to improve it.

    In this regard, the aim of the research was to assess both quantitative and qualitative indicators of meat productivity, depending on the use of different options for rearing and fattening of bull calves, namely indoors and on the outdoor feedlot in the conditions of the Republic of Bashkortostan.

    Ninety calves of 8-month age were selected on the principle of analogues to carry out a research and business experiment in “Akberdinskoye” Limited Liability Company of Iglinsky district of the Republic of Bashkortostan. The animals were divided into 6 groups. The first and the fourth groups were made of calves of black-and-white breed. The calves of Bestuzhev breed were in group two and five, and the 3rd and the 6th groups were made Simmental bull calves. Animals from groups 1, 2, 3 were kept on the outdoor feedlot. Calves from groups 4, 5, 6 were kept indoors. There was yard housing indoors. There were 15 animals having free access to self-filling drinking bowls and feeders in each room.

    The experience was conducted according to the requirements of animal breeding, health and sanitation.

    Animals were fed according to the diets made taking into account chemical composition of forages and their actual nutritional value according to recommendations [18].

    To assess meat productivity, control slaughter of 18-month-old bull calves (live weight being 457.8–511.9 kg) was carried out according to the “Guidelines for the evaluation of meat productivity and meat quality” [19].

    In order to study the morphological composition of meat carcass, the right half-carcasses were stripped. Then the content of flesh, bones and tendons in carcasses were determined. The carcass variety assortment was studied according to the classification of sausage production in which beef is divided into three classes: The highest grade is pure muscle tissue with no visible residues of other tissues and entities, in which fat content isn’t more than 6%; the Ist class has no more than 20% of fat; the IInd grade is all the other muscle tissue of the carcass, where there can be small veins, tendons and films.

    Physical and chemical parameters of meat were studied using generally accepted methods [20]: Determining moisture content in the samples by drying the sample to a constant weight at a temperature of 150 ± 2 ℃; protein content by the Kjeldahl method followed by photometry of the samples; fat content by extracting the dry weighing batch using the Soxhlet apparatus; ash content by burning in the muffle furnace.

    Most of the material obtained during the research was processed with “Statistica 10.0” (“Stat Soft Inc., ” USA) software package. The reliability was determined by the Student’s t-test.

    Morphological composition is an important indicator which determines the quality of meat carcass. At the same time, animal keeping and feeding technology influence the morphological composition of carcasses.

    The flesh part of the carcass is the most valuable in terms of nutritional value. It consists of muscle and fat tissue, and the greater their content, the higher the nutritional value of meat.

    The results of the studies prove that keeping conditions and genetic characteristics influence the morphological composition of the carcasses and the number of their individual parts.

    The data of Table 1 indicate that bull calves of Ⅳ-Ⅵ groups have the highest carcass flesh content. They significantly exceeded in weight their herd-mates by 6.3–16.1 kg (P > 0.05–P < 0.01) kept on the outdoor feedlot. It should be noted that among the studied breeds the carcasses of bull calves of Simmental breed had the largest weight of muscle tissue. In this indicator the calves of this breed surpassed their herd-mates of Black-and-white and Bestuzhev breeds by 12.0 kg (P < 0.01) and 6.6 kg (P < 0.05) when keeping animals on the outdoor feedlot and by 21.8 (P < 0.01) and 14.3 kg (P < 0.01) when keeping them indoors. A comparative analysis of the concentration of adipose tissue in carcasses, namely subcutaneous and intermuscular fat, revealed some differences in the nature of fat deposition depending on animal genotype. In particular, bull calves of Simmental breed kept indoors had 0.7–1.3 (P > 0.05–P > 0.05) kg of subcutaneous fat more and 0.3–0.9 kg (P > 0.05–P > 0.05) of intermuscular fat more in comparison with bull calves of Black-and-white and Bestuzhev breeds.

    Table 1.  Morphological composition of bull calf carcasses (m ± SE).
    Indicator Group (n = 3 in each group)
    Chilled carcass weight, kg 231.3 ± 2.16 240.2 ± 1.24 247.6 ± 1.15 239.2 ± 1.08 248.6 ± 0.75 265.9 ± 1.14
    Content in a carcass:
    Muscle tissue, kg 173.6 ± 1.26 179.0 ± 0.88 185.6 ± 1.95 179.9 ± 2.46 187.4 ± 1.18 201.7 ± 2.13
    % 75.06 ± 0.28 74.52 ± 0.46 74.96 ± 0.39 75.21 ± 0.21 75.38 ± 0.36 75.85 ± 0.28
    Adipose tissue (subcutaneous fat), kg 4.4 ± 0.09 4.8 ± 0.24 4.9 ± 0.19 4.6 ± 0.33 5.2 ± 0.18 5.9 ± 0.25
    % 1.90 ± 0.16 2.00 ± 0.08 1.98 ± 0.10 1.92 ± 0.07 2.09 ± 0.09 2.22 ± 0.11
    Intermuscular fat, kg 4.0 ± 0.54 4.6 ± 0.36 4.8 ± 0.45 4.6 ± 0.31 5.2 ± 0.12 5.5 ± 0.11
    % 1.73 1.92 1.94 1.92 2.09 2.07
    Bone tissue, kg 42.9 ± 0.86 44.6 ± 0.54 44.8 ± 0.72 43.2 ± 1.12 43.4 ± 1.42 44.8 ± 1.03
    % 18.54 ± 0.14 18.56 ± 0.06 18.09 ± 0.11 18.07 ± 0.12 17.46 ± 0.09 16.85 ± 0.13
    Tendons, kg 6.4 ± 0.34 7.2 ± 0.66 7.5 ± 0.52 6.9 ± 0.42 7.4 ± 0.27 8.0 ± 0.58
    % 2.77 ± 0.24 3.00 ± 0.14 3.03 ± 0.16 2.88 ± 0.09 2.98 ± 0.13 3.01 ± 0.11
    Fleshing index 4.2 4.2 4.4 4.4 4.6 4.8
    Flesh yield per 100 kg live weight, kg 39.6 40.0 40.3 39.8 40.6 41.2
    Ratio of edible and inedible parts of carcass, kg 3.7 3.6 3.7 3.8 3.9 4.1
    Note: In the outdoor feedlot: I—Black-and-white cattle; Ⅱ—Bestuzhev bull calves; Ⅲ—Simmental animals; kept indoors: Ⅳ—Black-and-white cattle; Ⅴ—Bestuzhev bull calves; Ⅵ—Simmental animals.

     | Show Table
    DownLoad: CSV

    The differences in the overall yield of bone tissue and tendons between the experimental groups were insignificant. At the same time, due to a higher carcass weight of animals of Bestuzhev and Simmental breeds, they surpassed their herd-mates of Black-and-white breed in absolute bone mass by 0.9–1.8%.

    An important indicator characterizing the meat quality of animals is fleshing index, which is determined by the flesh to bones ratio. The study results prove that the value of fleshing index of bull calf carcasses of Bestuzhev and Simmental breeds kept indoors is the highest and makes 4.6–4.8.

    The yield of flesh per 100 kg of pre-slaughter live weight was relatively high in all experimental groups. However, bull calves genotype as well as technology of their growing and fattening affected the yield of slaughter products. Thus, the yield of flesh per 100 kg of live weight of bull calves of Black-and-white breed kept on the outdoor feedlot was 39.6 kg, the flesh yield of Bestuzhev breed calves weighed 40.0 kg, the same indicator of Simmental breed calves was 40.3 kg; as for animals kept indoors, it was respectively 39.8; 40.6 and 41.2 kg which is higher by 0.7; 1.5 or 2.2 %.

    The flesh yield indicator affected the ratio of edible part weight to inedible part weight of the carcass, which was 3.7 for the bull calves of group Ⅰ; 3.6 for group Ⅱ; 3.7 for group Ⅲ; 3.8 for group Ⅳ; 3.9 for group Ⅴ and 4.1 for group Ⅵ.

    From the above material it can be concluded that meat quality of carcasses in bull calves of all groups was quite high, but the carcasses of bull calves of Black-and-white breed were more “bony”.

    It is well known that different anatomical parts of the carcass differ in a number of morphological parameters which affects their nutritional value, functional and technological properties and taste.

    In this respect the most valuable is the hip part. In our study the hip part made 35.5–36.3% of the total mass of the carcass. It is the yield of this cut that largely determines the quality of the carcass as a whole.

    The ratios of anatomical parts of bull calves of different breeds were studied. Different technologies were used during the period of growing and fattening of these bull calves. The intergroup differences in the intensity of their weight gain were defined (Table 2).

    Table 2.  The ratio of individual anatomical parts of the semi-carcasses (m ± SE).
    The anatomical part of the semi-carcass (n = 3 in each group)
    Neck Humeroscapular Back-rib Lumbar Hip
    Weight, kg % to weight Weight, kg % to weight Weight, kg % to weight Weight, kg % to weight Weight, kg % to weight
    11.3 9.8 20.2 17.4 31.9 27.6 10.4 9.0 41.8 36.2
    12.3 10.2 20.7 17.3 33.3 27.7 10.7 8.9 43.1 35.9
    12.4 10.0 21.7 17.5 34.0 27.5 11.8 9.5 43.9 35.5
    11.5 9.6 21.0 17.6 32.7 27.3 11.1 9.3 43.3 36.2
    12.3 9.9 21.8 17.5 33.8 27.2 11.4 9.2 45.0 36.2
    12.9 9.7 23.0 17.3 36.0 27.1 12.8 9.6 48.3 36.3
    Note: In the outdoor feedlot: I—Black-and-white cattle; Ⅱ—Bestuzhev bull calves; Ⅲ—Simmental animals; indoors: Ⅳ—Black-and-white cattle; Ⅴ—Bestuzhev bull calves; Ⅵ—Simmental animals.

     | Show Table
    DownLoad: CSV

    Thus, bull calves of Simmental breed had the advantage in absolute hip weight of the semi-carcass, regardless of the technology of their growing and fattening. At the same, they surpassed their herd-mates of Bestuzhev and Black-and-white breeds in hip weight by 0.8 kg (1.9%; P > 0.05) and 2.1 kg (5.0%; P > 0.05) kg when kept on outdoor feedlot and by 3.3 kg (7.3%; P > 0.05) and 5.0 kg (11.5%; P < 0.05) when kept indoors. There is some difference in weight of the same part of the semi-carcass of experimental animals, depending on their growing technology. The weight of this part of the semi-carcass of bull calves of Black-and-White breed is greater by 1.5 kg (3.6%), of Bestuzhev breed calves by 1.9 kg (4.4%), and of Simmental breed calves by 4.4 kg (10.0%) in comparison to young animals kept indoors.

    Regardless of keeping technology used during their growing and fattening period, Bull calves of Simmental breed surpassed the analogues of Black-and-White and Bestuzhev breeds in neck part weight by 1.1 and 1.4 and 0.1–0.6 kg, in a humeroscapular part weight by 1.5–2.0 and 1.0–1.2 kg; and in a back-rib part weight by 2.1 and 3.3 and 0.7–2.2 kg.

    Thus, the bull calves of Simmental breed had superiority over their herd-mates of Black-and-white and Bestuzhev breeds in the absolute weight of all natural anatomical parts of the half-carcass. The ratio of the carcasses cuts of experimental bull calves was determined by their breed and keeping technology.

    The established pattern had a positive effect on the increase in the yield of the edible part of the carcass by 1 kg of bones (Table 3).

    Table 3.  Flesh yield per 1 kg of bones when cutting semi-carcass into anatomical parts, kg (m ± SE).
    Group The anatomical part of the semi-carcass (n = 3 in each group)
    Neck Humeroscapular Back-rib Lumbar Hip
    4.40 3.89 3.35 6.28 4.47
    4.38 4.00 3.32 6.48 4.50
    4.64 4.11 3.31 6.69 4.60
    5.10 4.21 3.47 6.74 4.84
    5.22 4.15 3.56 6.48 4.83
    5.42 4.19 3.68 6.83 5.01
    Note: In the outdoor feedlot: I—Black-and-White cattle; Ⅱ—Bestuzhev bull calves; Ⅲ—Simmental animals; indoors: Ⅳ—Black-and-white cattle; Ⅴ—Bestuzhev bull calves; Ⅵ—Simmental animals.

     | Show Table
    DownLoad: CSV

    Data analysis shows that back-rib and humeroscapular parts of the half-carcass had the lowest flesh yield. The maximum flesh yield was revealed in the lumbar part in all studied groups.

    At the same time, Simmental bull calves grown on outdoor feedlot had superiority over their herd-mates of the Black-and-White and Bestuzhev breeds in a lumbar part yield by 0.41 kg (6.5%) and 0.21 kg (3.2%), and those grown indoors had superiority by 0.1 kg (1.3%) and 0.35 kg (5.4%), respectively.

    We get a fuller picture of meat qualities of an animal thanks to qualitative evaluation of carcass flesh depending on varieties and in accordance with sausage classification. Thus, taking into consideration the fact that variety and technological value of different carcass parts are not identical and depend on morphological structure, the ratio of muscle and fat tissue, fatness, age, breed and sex of an animal, the importance of this issue can not be overestimated. Further use of meat flesh by meat processing enterprises as well as the number and range of meat products are largely determined by its variety assortment.

    The data on the variety assortment of the carcass flesh of bull calves of different genotypes are presented in Table 4.

    Table 4.  Varietal assortment of the semi-carcass flesh of experimental young stock (m ± SE).
    Indicator Group (n = 3 in each group)
    Total flesh weight, kg 90.0 ± 2.19 93.8 ± 1.91 97.0 ± 2.25 94.6 ± 2.01 98.6 ± 2.11 106.0 ± 2.40
    Including the highest grade, kg 16.8 ± 0.54 18.9 ± 0.32 20.4 ± 0.44 18.0 ± 0.36 20.3 ± 0.34 22.9 ± 0.53
    % 18.67 20.15 21.03 19.03 20.59 21.60
    The first grade, kg 41.8 ± 1.11 44.3 ± 1.06 46.5 ± 1.20 44.0 ± 0.96 46.7 ± 1.34 50.8 ± 1.36
    % 46.43 47.23 46.40 46.51 47.36 47.93
    The second grade, kg 31.4 ± 0.46 30.6 ± 0.52 30.1 ± 0.59 32.6 ± 0.63 31.6 ± 0.43 32.3 ± 0.51
    % 34.90 32.62 31.03 34.46 32.05 30.47
    Note: In the outdoor feedlot: I—Black-and-White cattle; Ⅱ—Bestuzhev bull calves; Ⅲ—Simmental animals; indoors: Ⅳ—Black-and-white cattle; Ⅴ—Bestuzhev bull calves; Ⅵ—Simmental animals.

     | Show Table
    DownLoad: CSV

    The bull calves of Black-and-White breed kept on the outdoor feedlot were inferior to herd-mates of Bestuzhev and Simmental breeds in the absolute flesh weight of the highest grade by 12.5 and 21.4% (P < 0.05 and P < 0.05) and the first grade by 6, 0 and 11.2% (P > 0.05 and P > 0.05), respectively, and when kept indoors the difference in the flesh content of the highest grade was 12.8 and 27.2% (P < 0.05 and P < 0.01) and the first grade 6.1 and 15.5% (P > 0.05 and P < 0.05).

    The quality of the flesh got depends on both the number and ratio of its components and chemical composition. It is known that chemical composition of meat depends on various factors, the main of which are animals breed, sex, age, fatness, as well as their feeding and keeping conditions.

    Therefore, it is important to study chemical composition of meat as one of the important indicators characterizing meat products quality.

    The data of Table 5 show that the meat obtained from the bull calves kept indoors during the fattening period was characterized by the highest content of dry matter and fat. Their advantage in the content of dry matter in the average sample of minced meat over herd-mates kept on the outdoor feedlot was 2.07–2.21%. These differences are probably due to varying degrees of fat deposits in the body of experimental animals.

    Table 5.  Chemical composition of minced meat, % (m ± SE).
    Indicators The group of experimental bull calves (n = 3 in each group)
    Weight fraction, %
    Moisture 70.83 ± 0.90 70.51 ± 1.75 70.45 ± 0.85 68.62 ± 1.16 68.44 ± 1.17 68.26 ± 1.08
    Dry matter 29.17 ± 0.90 29.49 ± 1.75 29.55 ± 0.85 31.38 ± 1.16 31.56 ± 1.17 31.74 ± 1.08
    Including: protein 18.48 ± 0.94 18.52 ± 0.51 18.53 ± 0.48 18.26 ± 0.56 18.32 ± 1.51 18.46 ± 1.62
    Fat 9.78 ± 0.28 10.05 ± 0.42 10.11 ± 0.35 12.11 ± 0.21 12.33 ± 0.36 12.35 ± 0.29
    Ash 0.91 ± 0.03 0.92 ± 0.0.6 0.91 ± 0.02 0.91 ± 0.5 0.91 ± 0.03 0.93 ± 0.04
    Energy value, kJ 677.32 688.17 690.60 761.49 770.79 773.88

     | Show Table
    DownLoad: CSV

    In general, beef with good nutritional values was obtained from young animals of all experimental groups.

    The ratio of protein and fat in muscle tissue of experimental bull calves in group Ⅰ was 1:0.53, in group Ⅱ it was 1:0.54, in group Ⅲ—1:0.55, in group Ⅳ—1:0.66, in group Ⅴ—1:0.67 and in group Ⅵ it was 1:0.67. Animals of Bestuzhevskoaya and Simmental breeds had the best ratio of protein and fat in muscle tissue.

    Energy value of the average minced beef sample got from bull calves of groups Ⅰ, Ⅱ and Ⅲ was inferior to their herd-mates of groups Ⅳ, Ⅴ, and Ⅵ by 84.17 kJ, 82.62 kJ and 83.28 kJ, respectively.

    During the research it was found that the technological factor and genetic characteristics of animals had a significant impact on production efficiency. Keeping animals indoors helps to realize their inherent genetic potential of meat productivity. Quantitative and qualitative indicators of meat products prove a positive impact of keeping bull calves indoors. The obtained data are consistent with the data of other researchers and make it possible to assert that regardless of the breed the animals kept indoors have better indicators of meat productivity than animals kept on the outdoor feedlot [21,22,23,24].

    It should be noted that keeping bull calves indoors during their period of growing and fattening for meat helps to obtain beef with optimal characteristics. The ratio of carcass cuts of experimental bull calves was determined by their breed and keeping technology. The bull calf carcasses of Simmental breed were characterized by maximum meat yield of the highest grades. The bull calf carcasses of Bestuzhev breed occupied an intermediate position meat yield of the highest grades. In the bull calf semi-carcasses of Black-and-White breed there was the maximum meat yield of the second grade. This advantage in the value of the studied indicator over the herd-mates of Simmental and Bestuzhev breeds was 2.3 and 3.9% when keeping experimental animals both on outdoor feedlot and indoors, which is consistent with the [25].

    According to the analysis of the average carcass flesh samples, there are certain differences in chemical composition between groups. It can be explained by the fact that the process of nutrient enrichment in the body of bull calves of different genotypes kept under different conditions, took place differently. In general, the chemical composition of the flesh parts of the bull calf carcasses of all groups indicates a high nutritional value. The bull calves grown indoors had some advantage.

    Keeping bull calves indoors can improve the post-slaughter indicators of meat productivity and improve beef quality. The study of the morphological composition of carcasses showed that muscle tissue content in the carcasses of animals fed indoors was 179.9–201.7 kg, while those in the carcasses of young animals kept on the outdoor feedlot was 173.6–185.6 kg. There is a greater content of fat tissue in carcasses of bull calves grown and fed indoors. So the total amount of raw fat of bull calves kept indoors was 23.4–26.3 kg, of bull calves kept on the outdoor feedlot it was 20.7–23.7 kg. The bull calves of Simmental breed had superiority over their herd-mates of the Black-and-white and Bestuzhev breeds in the absolute weight of most anatomical parts of the semi-carcass. It is more preferable to fatten young animals of combined breeds for meat producing. Thus, growing and fattening the bull calves of Simmental breed indoors allowed to get the carcasses with the best morphological composition and variety assortment, as well as with the optimal ratio of protein and fat.

    The authors declare no conflict of interest.



    [1] Jiang TA (2019) Health benefits of culinary herbs and spices. J AOAC Int 102: 395–411. https://doi.org/10.5740/jaoacint.18-0418 doi: 10.5740/jaoacint.18-0418
    [2] Székács A, Wilkinson MG, Mader A, et al. (2018) Environmental and food safety of spices and herbs along global food chains. Food Control 83: 1–6. https://doi.org/10.1016/j.foodcont.2017.06.033 doi: 10.1016/j.foodcont.2017.06.033
    [3] Sultan NA (2019) The consistency of export and agricultural policies in Egypt.[Master's Thesis, the American University in Cairo]. AUC Knowledge Fountain. https://fount.aucegypt.edu/etds/849
    [4] Nguyen L, Duong LT, Mentreddy RS (2019) The US import demand for spices and herbs by differentiated sources. J. Appl Res Med Aromat Plants 12: 13–20. https://doi.org/10.1016/j.jarmap.2018.12.001 doi: 10.1016/j.jarmap.2018.12.001
    [5] Man A, Mare A, Toma F, et al. (2016) Health threats from contamination of spices commercialized in romania: Risks of fungal and bacterial infections. Endocr Metab Immune Disord—Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 16: 197–204. https://doi.org/10.2174/1871530316666160823145817 doi: 10.2174/1871530316666160823145817
    [6] Nur F, Libra UK, Rowsan P, et al. (2018) Assessment of bacterial contamination of dried herbs and spices collected from street markets in Dhaka. Bangladesh J Pharmacol 21: 96–100. https://doi.org/10.3329/bpj.v21i2.37919 doi: 10.3329/bpj.v21i2.37919
    [7] Nielsen K (2016) Spicy Food as Cause of Death—Coincidence and Necessity in Metaphysics E 2–3.
    [8] Lv J, Qi L, Yu C, et al. (2015) Consumption of spicy foods and total and cause specific mortality: Population based cohort study. BMJ 351: h3942. https://doi.org/10.1136/bmj.h3942 doi: 10.1136/bmj.h3942
    [9] Stojanović-Radić Z, Pejčić M, Dimitrijević M, et al. (2019) Piperine—A major principle of black pepper: A review of its bioactivity and studies. Appl Sci 9: 4270. https://doi.org/10.3390/app9204270 doi: 10.3390/app9204270
    [10] Gülçin İ (2005) The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nutr 56: 491–499. https://doi.org/10.1080/09637480500450248 doi: 10.1080/09637480500450248
    [11] Sharma N, Sharma T, Choudhary J (2021) Antimicrobial activity of some herbal feed additives. Pharma Innov 10: 392–394.
    [12] Banerjee M, Sarkar PK (2003) Microbiological quality of some retail spices in India. Food Res Int 36: 469–474. https://doi.org/10.1016/S0963-9969(02)00194-1 doi: 10.1016/S0963-9969(02)00194-1
    [13] CDC (2010) Investigation update: Multistate outbreak of human Salmonella Montevideo infections. Centers for Disease Control and Prevention Atlanta, GA.
    [14] Van Doren JM, Neil KP, Parish M, et al. (2013) Foodborne illness outbreaks from microbial contaminants in spices, 1973–2010. Food Microbiol 36: 456–464. https://doi.org/10.1016/j.fm.2013.04.014 doi: 10.1016/j.fm.2013.04.014
    [15] Scallan E, Hoekstra RM, Angulo FJ, et al. (2011) Foodborne illness acquired in the United States—Major pathogens. Emerg Infect Dis 17: 7–15. https://doi.org/10.3201/eid1701.P11101 doi: 10.3201/eid1701.P11101
    [16] CDC (Centers for Disease Control and Prevention) (2011) Vital signs: Incidence and trends of infection with pathogens transmitted commonly through foode foodborne diseases active surveillance network. 10 U.S. sites, 1996–2010. Morb Mortal Wkly Rep 60: 749–755.
    [17] Bakobie N, Addae AS, Duwiejuah AB, et al. (2017) Microbial profile of common spices and spice blends used in tamale, Ghana. Int J Food Cont 4: 1–5. https://doi.org/10.1186/s40550-017-0055-9 doi: 10.1186/s40550-017-0055-9
    [18] Golden CE, Berrang ME, Kerr WL, et al. (2019) Slow-release chlorine dioxide gas treatment as a means to reduce Salmonella contamination on spices. Innovative Food Sci & Emerging Technol 52: 256–261. https://doi.org/10.1016/j.ifset.2019.01.003 doi: 10.1016/j.ifset.2019.01.003
    [19] Caver CB (2016) Recovery of Salmonella from Steam and Ethylene Oxide-Treated Spices Using Supplemented Agar with Overlay. Masters Theses, Virginia Tech. http://hdl.handle.net/10919/81456
    [20] Jinot J, Fritz JM, Vulimiri SV, et al. (2018) Carcinogenicity of ethylene oxide: key findings and scientific issues. Toxicol Mech Methods 28: 386–396. https://doi.org/10.1080/15376516.2017.1414343 doi: 10.1080/15376516.2017.1414343
    [21] Peter K (2006) Handbook of herbs and spices: Woodhead publishing.
    [22] Bagdatlioglu N, Orman S (2010) The effect of steam sterilization on antioxidant activities of sage, oregano and basil. Ital J Food Sci 22: 343.
    [23] Gryczka U, Kameya H, Kimura K, et al. (2020) Efficacy of low energy electron beam on microbial decontamination of spices. Radiat. Phys Chem 170: 1–5. https://doi.org/10.1016/j.radphyschem.2019.108662 doi: 10.1016/j.radphyschem.2019.108662
    [24] Ehlermann DA (2016) The early history of food irradiation. Radiat Phys Chem 129: 10–12. https://doi.org/10.1016/j.radphyschem.2016.07.024 doi: 10.1016/j.radphyschem.2016.07.024
    [25] Roberts PB (2016) Food irradiation: Standards, regulations and world-wide trade. Radiat Phys Chem 129: 30–34. https://doi.org/10.1016/j.radphyschem.2016.06.005 doi: 10.1016/j.radphyschem.2016.06.005
    [26] Wilkinson VM (1997) Food irradiation: A reference guide: CRC Press.
    [27] Molins RA (2001) Food irradiation: Principles and applications: John Wiley & Sons.
    [28] Demirci A, Ngadi MO (2012) Microbial decontamination in the food industry: Novel methods and applications: Woodhead Publishing.
    [29] Fertey J, Bayer L, Grunwald T, et al. (2016) Pathogens inactivated by low-energy-electron irradiation maintain antigenic properties and induce protective immune responses. Viruses 8: 319. https://doi.org/10.3390/v8110319 doi: 10.3390/v8110319
    [30] Zhang Y, Moeller R, Tran S, et al. (2018) Geobacillus and Bacillus spore inactivation by low energy electron beam technology: resistance and influencing factors. Front Microbiol 9: 2720. https://doi.org/10.3389/fmicb.2018.0272 doi: 10.3389/fmicb.2018.0272
    [31] Baek M-e, Ameer K, Jo Y, et al. (2019) Microbial assessment of medicinal herbs (Cnidii Rhizoma and Alismatis Rhizoma), effects of electron beam irradiation and detection characteristics. Food Sci Biotechnol 29: 705–715. https://doi.org/10.1007/s10068-019-00701-w doi: 10.1007/s10068-019-00701-w
    [32] Gryczka U, Migdał W, Bułka S (2018) The effectiveness of the microbiological radiation decontamination process of agricultural products with the use of low energy electron beam. Radiat Phys Chem 143: 59–62. https://doi.org/10.1016/j.radphyschem.2017.09.020 doi: 10.1016/j.radphyschem.2017.09.020
    [33] Zhang H, Zhang Y, Chambers Ⅳ E, et al. (2020) Electron beam irradiation on Fuzhuan brick-tea: Effects on sensory quality and chemical compositions. Radiat Phys Chem 170: 108597. https://doi.org/10.1016/j.radphyschem.2019.108597 doi: 10.1016/j.radphyschem.2019.108597
    [34] Woldemariam HW, Kießling M, Emire SA, et al. (2021) Influence of electron beam treatment on naturally contaminated red pepper (Capsicum annuum L.) powder: Kinetics of microbial inactivation and physicochemical quality changes. Innovative Food Sci & Emerging Technol 67: 102588. https://doi.org/10.1016/j.ifset.2020.102588 doi: 10.1016/j.ifset.2020.102588
    [35] Helt-Hansen J, Miller A, Sharpe P, et al. (2010) Dμ—A new concept in industrial low-energy electron dosimetry. Radiat Phys Chem 79: 66–74. https://doi.org/10.1016/j.radphyschem.2009.09.002 doi: 10.1016/j.radphyschem.2009.09.002
    [36] Yousef AE, Carlstrom C (2003) Food microbiology: A laboratory manual: John Wiley & Sons.
    [37] Liu X, Ardo S, Bunning M, et al. (2007) Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Sci Technol 40: 552–557. https://doi.org/10.1016/j.lwt.2005.09.007 doi: 10.1016/j.lwt.2005.09.007
    [38] Ebrahimzadeh MA, Nabavi SM, Nabavi SF, et al. (2010) Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak J Pharm Sci 23: 29–34.
    [39] Berns RS (2019) Billmeyer and Saltzman's principles of color technology: John Wiley & Sons.
    [40] Hajimahmoodi M, Faramarzi MA, Mohammadi N, et al. (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22: 43–50. https://doi.org/10.1007/s10811-009-9424-y doi: 10.1007/s10811-009-9424-y
    [41] AOAC (2016) Association of Official Analytical Chemists. Official Methods of Analysis. (20th Ed.) Maryland, USA. 2016.
    [42] Steel RG, Torrie JH (1986) Principles and procedures of statistics: A biometrical approach: McGraw-Hill New York, NY, USA.
    [43] Esmaeili S, Barzegar M, Sahari MA, et al. (2018) Effect of gamma irradiation under various atmospheres of packaging on the microbial and physicochemical properties of turmeric powder. Radiat Phys Chem 148: 60–67. https://doi.org/10.1016/j.radphyschem.2018.02.028 doi: 10.1016/j.radphyschem.2018.02.028
    [44] Byun K-H, Cho M-J, Park S-Y, et al. (2019) Effects of gamma ray, electron beam, and X-ray on the reduction of Aspergillus flavus on red pepper powder (Capsicum annuum L.) and gochujang (red pepper paste). Food Sci Technol Inter 25: 649–658. https://doi.org/10.1177/1082013219857019 doi: 10.1177/1082013219857019
    [45] Gryczka U, Madureira J, Verde SC, et al. (2021) Determination of pepper microbial contamination for low energy e-beam irradiation. Food Microbiol 98: 103782. https://doi.org/10.1016/j.fm.2021.103782 doi: 10.1016/j.fm.2021.103782
    [46] Rico CW, Kim G-R, Ahn J-J, et al. (2010) The comparative effect of steaming and irradiation on the physicochemical and microbiological properties of dried red pepper (Capsicum annum L.). Food Chem 119: 1012–1016. https://doi.org/10.1016/j.foodchem.2009.08.005 doi: 10.1016/j.foodchem.2009.08.005
    [47] Barkai-Golan R, Follett PA (2017) Irradiation for quality improvement, microbial safety and phytosanitation of fresh produce: Academic Press.
    [48] Pauli G, Tarantino L (1995) FDA regulatory aspects of food irradiation. J Food Prot 58: 209–212. https://doi.org/10.4315/0362-028X-58.2.209 doi: 10.4315/0362-028X-58.2.209
    [49] Lee E-J, Ameer K, Kim G-R, et al. (2018) Effects of approved dose of e-beam irradiation on microbiological and physicochemical qualities of dried laver products and detection of their irradiation status. Food Sci Biotechnol 27: 233–240. https://doi.org/10.1007/s10068-017-0194-z doi: 10.1007/s10068-017-0194-z
    [50] Kundu D, Gill A, Lui C, et al. (2014) Use of low dose e-beam irradiation to reduce E. coli O157: H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces. Meat Sci 96: 413–418. https://doi.org/10.1016/j.meatsci.2013.07.034 doi: 10.1016/j.meatsci.2013.07.034
    [51] Nieto-Sandoval JM, Almela L, Fernandez-Lopez JA, et al. (2000) Effect of electron beam irradiation on color and microbial bioburden of red paprika. J Food Prot 63: 633–637. https://doi.org/10.4315/0362-028X-63.5.633 doi: 10.4315/0362-028X-63.5.633
    [52] Duncan SE, Moberg K, Amin KN, et al. (2017) Processes to preserve spice and herb quality and sensory integrity during pathogen inactivation. J Food Sci 82: 1208–1215. https://doi.org/10.1111/1750-3841.13702 doi: 10.1111/1750-3841.13702
    [53] Kotilainen H, Meneses N, Laaksonen O, et al. (2021) Effects of low-energy electron beam (LEEB) treatment on physicochemical attributes of black pepper and coriander. Innovative Food Sci & Emerging Technol 2021: 79–100. https://doi.org/10.1016/B978-0-08-100596-5.23013-8 doi: 10.1016/B978-0-08-100596-5.23013-8
    [54] Sádecká J, Kolek E, Petka J, et al. (2005) Impact of gamma-irradiation on microbial decontamination and organoleptic quality of oregano (Origanum vulgare L.). Proceedings of Euro Food Chem XIII, Hamburg 2005: 590–594.
    [55] Rahman M, Islam M, Das KC, et al. (2021) Effect of gamma radiation on microbial load, physico-chemical and sensory characteristics of common spices for storage. J Food Sci Technol 58: 3579–3588. https://doi.org/10.1007/s13197-021-05087-4 doi: 10.1007/s13197-021-05087-4
    [56] Song W-J, Sung H-J, Kim S-Y, et al. (2014) Inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in black pepper and red pepper by gamma irradiation. Int J Food Microbiol 172: 125–129. https://doi.org/10.1016/j.ijfoodmicro.2013.11.017 doi: 10.1016/j.ijfoodmicro.2013.11.017
    [57] Bambirra MLA, Junqueira RG, Glória MBA (2002) Influence of post harvest processing conditions on yield and quality of ground turmeric (Curcuma longa L.). Braz Arch Biol Technol 45: 423–429. https://doi.org/10.1590/S1516-89132002000600004 doi: 10.1590/S1516-89132002000600004
    [58] Koseki PM, Villavicencio ALC, Brito MS, et al. (2002) Effects of irradiation in medicinal and eatable herbs. Radiat Phys Chem 63: 681–684. https://doi.org/10.1016/S0969-806X(01)00658-2 doi: 10.1016/S0969-806X(01)00658-2
    [59] Jamshidi M, Barzegar M, Sahari M (2014) Effect of gamma and microwave irradiation on antioxidant and antimicrobial activities of Cinnamomum zeylanicum and Echinacea purpurea. Inter Food Res J 21: 1289–1296.
    [60] Variyar PS (1998) Effect of gamma‐irradiation on the phenolic acids of some Indian spices. Int J Food Sci & Technol 33: 533–537. https://doi.org/10.1046/j.1365-2621.1998.00219.x doi: 10.1046/j.1365-2621.1998.00219.x
    [61] Sajilata M, Singhal R (2006) Effect of irradiation and storage on the antioxidative activity of cashew nuts. Radiat Phys Chem 75: 297–300. https://doi.org/10.1016/j.radphyschem.2005.07.004 doi: 10.1016/j.radphyschem.2005.07.004
    [62] Fernandes Â, Barreira JC, Antonio AL, et al. (2016) Extended use of gamma irradiation in wild mushrooms conservation: Validation of 2 kGy dose to preserve their chemical characteristics. LWT-Food Sci Technol 67: 99–105. https://doi.org/10.1016/j.lwt.2015.11.038 doi: 10.1016/j.lwt.2015.11.038
  • This article has been cited by:

    1. Vasily Prystupa, Olga Krotova, Diana Torosyan, Olga Sangadzhieva, Kermen Khalgaeva, 2023, Chapter 72, 978-3-031-21218-5, 646, 10.1007/978-3-031-21219-2_72
    2. Alexandra Marchenko, Elena Moskalenko, Elena Arakcheeva, Natalia Bychenko, 2022, Chapter 5, 978-3-030-91404-2, 35, 10.1007/978-3-030-91405-9_5
    3. ГОРЛОВ, И.Ф., СЛОЖЕНКИНА, М.И., НИКОЛАЕВ, Д.В., КНЯЖЕЧЕНКО, О.А., МОСОЛОВА, Д.А., ШАХБАЗОВА, О.П., РАДЖАБОВ, Р.Г., RELATIONSHIP OF MEAT PRODUCTIVITY AND PRESLAUGHTER WEIGHT OF BULLS DEPENDING ON THE INTENSITY OF GROWING, 2022, 00269034, 38, 10.33943/MMS.2022.30.13.007
    4. Anna Karamaeva, Sergey Karamaev, Nina Chupsheva, Roman Ershov, 2023, Chapter 347, 978-3-031-21431-8, 3140, 10.1007/978-3-031-21432-5_347
    5. Vasily Prystupa, Olga Krotova, Svetlana Yandyuk, Altana Ubushieva, Arslang Khakhlinov, 2023, Chapter 30, 978-3-031-21218-5, 290, 10.1007/978-3-031-21219-2_30
    6. Vasily Prystupa, Olga Krotova, Boris Ubushaev, Konstantin Savenkov, Natalia Moroz, Maria Savenkova, V.I. Pakhomov, A.N. Altybayev, M. Petković, T.A. Maltseva, Formation of meat productivity in descendants of Kalmyk breed improver bulls, 2024, 113, 2117-4458, 02022, 10.1051/bioconf/202411302022
    7. Vasily Prystupa, Olga Krotova, Konstantin Savenkov, Ruslan Azaev, Danzan Mashtykov, Nikita Boraev, M.-T. Liong, I.V. Tkacheva, Beef production in conditions of stable-pasture and industrial technologies in breeding farms, 2024, 84, 2117-4458, 01051, 10.1051/bioconf/20248401051
    8. I. P. Prokhorov, Yu. V. Shoshina, O. A. Kalmykova, V. N. Lukyanov, Conversion of protein and feed energy into food protein and meat fat in steers of Simmental breed, 2023, 20747454, 42, 10.33920/sel-03-2306-05
    9. Murat Ulimbashev, Irina Tletseruk, Oksana Krasnova, Zemfira Pskhatsieva, Nina Konik, O. Loretts, I. Donnik, Z. Abbas Rao, A. Ruchkin, V. Kukhar, The first results of the use of the gene pool of the Kalmyk breed on the brown stock of Brown Swiss cattle, 2024, 108, 2117-4458, 01012, 10.1051/bioconf/202410801012
    10. Natalia Gizatova, Albert Gizatov, Liliya Zubairova, Irina Mironova, Azat Nigmatyanov, Yuliya Chernyshenko, Alexey Pleshkov, Development of technology for the production of sausage produce using secondary collagen-containing raw materials, 2021, 10, 2182-1054, 282, 10.7455/ijfs/10.2.2021.a1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2747) PDF downloads(122) Cited by(3)

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog