Commentary

Prophylactic aspirin and public

  • The clinical use of aspirin, first synthesized over 100 years ago, entered a new phase in 1974 with the reporting of the first randomised trial showing a reduction in vascular disease deaths from low-doses. More recent evidence suggests that the medicine is effective against cancer, which makes aspirin of very considerable potential importance to public health improvement and potentially also to clinical practice. It appears that prophylactic aspirin is being increasingly used throughout the community. There is need therefore for the risks and benefits of low-dose aspirin, and its' role within healthcare and within public health, to be widely discussed not least as media reports are bringing this issue into the public domain. It also follows that policy decisions need to be taken as to whether or not its use should be actively promoted. In particular, it is important that Doctors and healthcare practitioners are well informed of the risks and benefits so that they can impart this knowledge during consultations. Furthermore, it is important that low-dose aspirin is not perceived as a substitute for a healthy lifestyle, but that it is recommended and uptake monitored alongside other protective behaviours to improve on health gain, such as smoking cessation, moderate alcohol intake, exercise and diet.

    Citation: Gareth Morgan. Prophylactic aspirin and public[J]. AIMS Public Health, 2014, 1(1): 1-8. doi: 10.3934/publichealth.2013.1.1

    Related Papers:

    [1] M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045
    [2] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
    [3] Muneerah AL Nuwairan, Ahmed Gamal Ibrahim . The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722
    [4] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
    [5] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [6] Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for $ \Psi $-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010
    [7] Mouffak Benchohra, John R. Graef, Nassim Guerraiche, Samira Hamani . Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line. AIMS Mathematics, 2021, 6(6): 6278-6292. doi: 10.3934/math.2021368
    [8] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [9] Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067
    [10] Abdulwasea Alkhazzan, Wadhah Al-Sadi, Varaporn Wattanakejorn, Hasib Khan, Thanin Sitthiwirattham, Sina Etemad, Shahram Rezapour . A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the $ p $-Laplacian operator. AIMS Mathematics, 2022, 7(8): 14187-14207. doi: 10.3934/math.2022782
  • The clinical use of aspirin, first synthesized over 100 years ago, entered a new phase in 1974 with the reporting of the first randomised trial showing a reduction in vascular disease deaths from low-doses. More recent evidence suggests that the medicine is effective against cancer, which makes aspirin of very considerable potential importance to public health improvement and potentially also to clinical practice. It appears that prophylactic aspirin is being increasingly used throughout the community. There is need therefore for the risks and benefits of low-dose aspirin, and its' role within healthcare and within public health, to be widely discussed not least as media reports are bringing this issue into the public domain. It also follows that policy decisions need to be taken as to whether or not its use should be actively promoted. In particular, it is important that Doctors and healthcare practitioners are well informed of the risks and benefits so that they can impart this knowledge during consultations. Furthermore, it is important that low-dose aspirin is not perceived as a substitute for a healthy lifestyle, but that it is recommended and uptake monitored alongside other protective behaviours to improve on health gain, such as smoking cessation, moderate alcohol intake, exercise and diet.


    We investigate a new class of boundary value problems for generalized Caputo-type fractional differential equations and inclusions supplemented with Katugampola type generalized fractional integral boundary conditions. Precisely, we study the following problems:

    $ \left\{ρcDα0+y(t)=f(t,y(t)),  tJ:=[0,T],y(T)=mi=1σiρIβ0+y(ηi)+κ,  δy(0)=0,  ηi(0,T),
    \right. $
    (1.1)

    and

    $ \left\{ρcDα0+y(t)F(t,y(t)),  tJ:=[0,T],y(T)=mi=1σiρIβ0+y(ηi)+κ,  δy(0)=0,  ηi(0,T),
    \right. $
    (1.2)

    where $^{\rho}_{c}D^{\alpha}_{0^+}$ denotes the generalized Caputo-type fractional derivative of order $1 < \alpha\leq 2, \rho>0, $ ${}^{\rho}I_{0^+}^{\beta}$ is the Katugampola type fractional integral of order $\beta>0, \rho>0, $ $f:J\times \mathbb{R}\to \mathbb{R}$ is a continuous function, $\sigma_i\in {\mathbb R}, i=1, 2, \ldots, m, \kappa \in {\mathbb R}, $ $\delta=t^{1-\rho}\frac{d}{dt}, $ and $F: J\times {\mathbb R}\to {\mathcal P}({\mathbb R})$ is a multivalued function (${\mathcal P}({\mathbb R})$ is the family of all nonempty subjects of ${\mathbb R}$).

    Here we emphasize that the problem considered in the present paper is motivated by Laskin's work [1] on the generalization of the Feynman and Wiener path integrals in the context of fractional quantum mechanics and fractional statistical mechanics. One can find more details in the articles [2, 3]. It is expected that the results obtained in this paper will provide more leverage in dealing with Feynman and Wiener path type integrals involving an index like $\rho>0$ in (1.1), instead of a fixed choice $\rho=1$ (Caputo fractional derivative case). Moreover, chaos for a fractional order differential equation involving two parameters ($\alpha$ and $\rho>0$) becomes more complicated than the one containing Caputo fractional derivative of order $\alpha$ (generalized Caputo-type fractional derivative with $\rho=1$); one can find more details in [4, 5]. It is worthwhile to notice that Katugampola fractional integral unifies the Riemann-Liouville and Hadamard integrals into a single integral [6]. Thus, our results are more general in the context of integral boundary conditions.

    The topic of fractional-order differential equations and inclusions attracted significant attention in recent years and several results on fractional differential equations involving Riemann-Liouville, Caputo, Hadamard type derivatives, supplemented with a variety of boundary conditions, can be found in the related literature [7, 8, 9]. The interest in the subject owes to its extensive applications in various disciplines of science and engineering, for instance, see the papers [10, 11, 12, 13, 14, 15, 16, 17, 18], and the references cited therein. In a recent paper [19], the authors studied fractional differential equations involving Caputo-Katugampola derivative. In a more recent work [20], the authors studied a fractional order boundary value problem involving Katugampola-type generalized fractional derivative and generalized fractional integral.

    We organize the rest of the paper as follows. Section 2 contains preliminary material related to our work. The existence and uniqueness results for the problem (1.1), obtained with the aid of the standard fixed point theorem, are presented in Section 3. The existence results for the inclusions problem (1.2) are derived in Section 4. Examples are provided to demonstrate the application of the main theorems.

    For $c\in {\mathbb R}, 1\le p\le \infty, $ let $X_c^p(a, b)$ denote the space of all complex-valued Lebesgue measurable functions $\phi$ on $(a, b)$ endowed with the norm:

    $\|\phi\|_{X_c^p}=\Big(\int_a^b|x^c\phi(x)|^p\frac{dx}{x}\Big)^{1/p} \lt \infty.$

    We denote by $L^1(a, b)$ the space of all Lebesgue measurable functions $\varphi$ on $(a, b)$ equipped with the norm:

    $\|\varphi\|_{L^1}=\int_a^b|\varphi(x)|dx \lt \infty.$

    Let $\mathcal{G}= C(J, \mathbb{R})$ denote the Banach space of all continuous functions from $[0, T]$ to $\mathbb{R}$ endowed with the norm defined by $\|y\| = \sup_{t\in[0, T]}|y(t)|$.

    Recall that

    $ AC^n(J, \mathbb{R})=\{h:J\to \mathbb{R}: h, h', \dots, h^{(n-1)}\in C(J, \mathbb{R}) ~ \text{and} ~ h^{(n-1)} \text{is absolutely continuous} \}.$

    For $0\leq \epsilon < 1$, we define $C_{\epsilon, \rho}(J, \mathbb{R})=\{ f:J\to \mathbb{R}:(t^\rho-a^\rho)^\epsilon f(t)\in C(J, \mathbb{R})\}$ equipped with the norm $ \|f\|_{C_{\epsilon, \rho}}=\|(t^\rho-a^\rho)^\epsilon f(t)\|_C$. Moreover, let us introduce $AC^n_\delta(J)$, which consists of the functions $f$ that have absolutely continuous $\delta^{n-1}$-derivative, where $\delta=t^{1-\rho}\frac{d}{dt}$. Thus we define spaces $AC^n_\delta(J, \mathbb{R})=\Big\{f:J\to \mathbb{R}:\delta^{n-1}f\in AC(J, \mathbb{R}), ~\delta=t^{1-\rho}\frac{d}{dt}\Big\}, $ and $C^n_{\delta, \epsilon}(J, \mathbb{R})=\Big\{f:J\to \mathbb{R}:\delta^{n-1}f\in C(J, \mathbb{R}), \delta^{n}f\in C_{\epsilon, \rho}(J, \mathbb{R}), \delta=t^{1-\rho}\frac{d}{dt}\Big\}$ endowed with the norms $\|f\|_{C^n_{\delta}}=\sum_{k=0}^{n-1}\|\delta^kf\|_C$ and $\|f\|_{C^n_{\delta, \epsilon}}=\sum_{k=0}^{n-1}\|\delta^kf\|_C+\|\delta^nf\|_{C_{\epsilon, \rho}}$ respectively. Here we use the convention $C^n_{\delta, 0}=C^n_{\delta}$.

    Definition 2.1. [6] The generalized fractional integral of order $\alpha>0$ and $\rho>0$ of $f \in X_c^p(a, b)$ for $-\infty < a < t < b < \infty, $ is defined by

    $ (^{\rho}I^{\alpha}_{a^+}f)(t)=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)}\int_a^{t}\frac{s^{\rho-1}}{(t^{\rho}-s^{\rho})^{1-\alpha}}f(s)ds. $ (2.1)

    Note that the integral in (2.1) is called the left-sided fractional integral. Similarly we can define right-sided fractional integral $^{\rho}I^{\alpha}_{b^-}f$ as

    $ (^{\rho}I^{\alpha}_{b^-}f)(t)=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)}\int_t^{b}\frac{s^{\rho-1}}{(s^{\rho}-t^{\rho})^{1-\alpha}}f(s)ds. $ (2.2)

    Definition 2.2. [21] The generalized fractional derivative, associated with the generalized fractional integrals (2.1) and (2.2) for $0 \le a < t < b < \infty, $ are defined by

    $ (ρDαa+f)(t)=(t1ρddt)n(ρInαa+f)(t)=ραn+1Γ(nα)(t1ρddt)ntasρ1(tρsρ)αn+1f(s)ds
    $
    (2.3)

    and

    $ (ρDαbf)(t)=(t1ρddt)n(ρInαbf)(t)=ραn+1Γ(nα)(t1ρddt)nbtsρ1(sρtρ)αn+1f(s)ds,
    $
    (2.4)

    if the integrals in (2.3) and (2.4) exist.

    Definition 2.3. [22] For $\alpha\geq0$ and $f \in AC^n_\delta[a, b]$, the generalized Caputo-type fractional derivatives ${}^{\rho}_{c}D_a^{\alpha}$ and ${}^{\rho}_{c}D_b^{\alpha}$ are defined via the above generalized fractional derivatives as follows

    $ {}^{\rho}_{c}D_{a^+}^{\alpha} f(x)={}^{\rho}D_{a^+}^{\alpha}\Bigg[f(t)-\sum\limits_{k=0}^{n-1}\frac{\delta^k f(a)}{k!}\Big(\frac{t^{\rho}-a^{\rho}}{\rho}\Big)^k\Bigg](x), ~~\delta=x^{1-\rho}\frac{d}{dx}, $ (2.5)
    $ {}^{\rho}_{c}D_{b^-}^{\alpha} f(x)={}^{\rho}D_{b^{-}}^{\alpha}\Bigg[f(t)-\sum\limits_{k=0}^{n-1}\frac{(-1)^k\delta^k f(b)}{k!}\Big(\frac{b^{\rho}-t^{\rho}}{\rho}\Big)^k\Bigg](x), ~~\delta=x^{1-\rho}\frac{d}{dx}, $ (2.6)

    where $n=[\alpha]+1.$

    Lemma 2.1. [22] Let $ \alpha\geq0, n=[\alpha]+1$ and $ f \in AC^n_\delta[a, b], $ where $0 < a < b < \infty.$ Then,

    (1) for $\alpha \notin \mathbb{N}, $

    $ {}^{\rho}_{c}D_{a^+}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\int_{a}^{t}\Big(\frac{t^\rho-s^\rho}{\rho}\Big)^{n-\alpha-1}\frac{(\delta^n f)(s) ds}{s^{1-\rho}}={}^{\rho}I_{a^+}^{n-\alpha} (\delta^n f)(t), $ (2.7)
    $ {}^{\rho}_{c}D_{b^-}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\int_{t}^{b}\Big(\frac{s^\rho-t^\rho}{\rho}\Big)^{n-\alpha-1}\frac{(-1)^n(\delta^n f)(s) ds}{s^{1-\rho}}={}^{\rho}I_{b^-}^{n-\alpha} (\delta^n f)(t); $ (2.8)

    (2) for $\alpha \in \mathbb{N}$,

    $ {}^{\rho}_{c}D_{a^+}^{\alpha} f= \delta^n f, ~~~{}^{\rho}_{c}D_{b^-}^{\alpha} f= (-1)^n\delta^n f. $ (2.9)

    Lemma 2.2. [22] Let $f \in AC_{\delta}^{n}[a, b]$ or $ C_{\delta}^{n}[a, b]$ and $\alpha\in \mathbb{R}$. Then

    $ {}^{\rho}I_{a^+}^{\alpha}{}^{\rho}_{c}D_{a^+}^{\alpha}f(x)=f(x)-\sum\limits_{k=0}^{n-1}\frac{(\delta^k f)(a)}{k!}\Big(\frac{x^{\rho}-a^{\rho}}{\rho}\Big)^k, $
    $ {}^{\rho}I_{b^-}^{\alpha}{}^{\rho}_{c}D_{b^-}^{\alpha}f(x)=f(x)-\sum\limits_{k=0}^{n-1}\frac{(-1)^k(\delta^k f)(a)}{k!}\Big(\frac{b^{\rho}-x^{\rho}}{\rho}\Big)^k.$

    In particular, for $0 < \alpha\leq 1, $ we have

    $ {}^{\rho}I_{a^+}^{\alpha}{}^{\rho}_{c}D_{a^+}^{\alpha}f(x)=f(x)-f(a), $
    ${}^{\rho}I_{b^-}^{\alpha}{}^{\rho}_{c}D_{b^-}^{\alpha}f(x)=f(x)-f(b).$

    Next we define a solution for the problem (1.1).

    Definition 2.4. A function $y\in AC_\delta^2([0, T], {\Bbb R})$ is said to be a solution of (1.1) if $y$ satisfies the equation ${}^{\rho}_cD^{\alpha}y(t)=f(t, y(t)) $ on $[0, T]$, and the conditions $ y(T)=\sum_{i=1}^{m}\sigma_i~{}^{\rho}I^{\beta}y(\eta_i)+\kappa, ~ \delta y(0)=0.$

    Relative to the problem (1.1), we consider the following lemma.

    Lemma 2.3. Let $h\in C (0, T)\cap L^1(0, T)$, $y\in AC_\delta^2(J)$ and

    $ \Omega=1-\sum\limits_{i=1}^{m}\sigma_i \frac{\eta_i^{\rho\beta}}{\rho^{\beta}\Gamma(\beta+1)}\ne 0. $ (2.10)

    Then the integral solution of the linear boundary value problem (BVP):

    $ \left\{ρcDα0+y(t)=h(t),  tJ:=[0,T],y(T)=mi=1σiρIβ0+y(ηi)+κ,  δy(0)=0,  ηi(0,T),
    \right. $
    (2.11)

    is given by

    $ y(t)={}^{\rho}I_{0^+}^{\alpha}h(t)+\frac{1}{\Omega}\Big\{- {}^{\rho}I_{0^+}^{\alpha}h(T)+\sum\limits_{i=1}^{m}\sigma_i{}^{\rho}I_{0^+}^{\alpha+\beta}h(\eta_i)+\kappa \Big\}. $ (2.12)

    Proof. Applying $^{\rho}I_{0^+}^{\alpha}$ on both sides of the fractional differential equation in (2.11) and using Lemma 2.2, we get

    $ y(t)={}^{\rho}I_{0^+}^{\alpha}h(t)+c_{1}+c_{2}\frac{t^{\rho}}{\rho}=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)}\int_{0}^{t}s^{\rho-1} (t^{\rho}-s^{\rho})^{\alpha-1}h(s)ds+c_{1}+c_{2}\frac{t^{\rho}}{\rho}, $ (2.13)

    for some $c_{1}, c_{2}\in \mathbb{R}.$ Taking $\delta$-derivative of (2.13), we get

    $ \delta y(t)={}^{\rho}I_{0^+}^{\alpha-1}h(t)+c_{2}=\frac{\rho^{2-\alpha}}{\Gamma(\alpha-1)}\int_{0}^{t}s^{\rho-1} (t^{\rho}-s^{\rho})^{\alpha-2}h(s)ds+c_{2}. $ (2.14)

    Using the boundary condition $\delta y(0)=0$ in (2.14), we get $c_2=0.$ Applying the generalized integral ${}^{\rho}I_{0^+}^{\beta}$ to (2.13) after inserting the value of $c_2$ in it, we get

    $ {}^{\rho}I_{0^+}^{\beta}y(t)={}^{\rho}I_{0^+}^{\alpha+\beta}h(t)+c_1\frac{t^{\rho\beta}}{\rho^{\beta}\Gamma(\beta+1)}. $ (2.15)

    Making use of the first boundary condition $ y(T)=\sum_{i=1}^{m}\sigma_i~{}^{\rho}I^{\beta}y(\eta_i)+\kappa$ in (2.15), we get

    ${}^{\rho}I_{0^+}^{\alpha}h(T)+c_1=\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}h(\eta_i)+\sum\limits_{i=1}^{m}\sigma_i c_1\frac{\eta_i^{\rho\beta}}{\rho^{\beta}\Gamma(\beta+1)}+\kappa, $

    which, on solving for $c_1$ together with (2.10), yields

    $c_1=\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}h(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}h(\eta_i)+\kappa\Big\}.$

    Substituting the values of $c_1$ and $c_2$ in (2.13), we obtain the solution (2.12). The converse follows by direct computation. The proof is completed.

    Using Lemma 2.3, we define an operator $\mathcal{N}:\mathcal{G}\rightarrow\mathcal{G}$ by

    $ \mathcal{N} y(t) = {}^{\rho}I_{0^+}^{\alpha}f(t, y(t))+\frac{1}{\Omega}\Big\{- {}^{\rho}I_{0^+}^{\alpha}f(T, y(T))+\sum\limits_{i=1}^{m}\sigma_i{}^{\rho}I_{0^+}^{\alpha+\beta}f(\eta_i, y(\eta_i))+\kappa \Big\}. $ (3.1)

    In the following, for brevity, we set the notation:

    $ \Lambda=\frac{T^{\rho \alpha}}{\rho^{\alpha}\Gamma(\alpha+1)}+\frac{1}{|\Omega|}\Big\{\frac{T^{\rho \alpha}}{\rho^{\alpha}\Gamma(\alpha+1)}+\sum\limits_{i=1}^{m}|\sigma_i|\frac{\eta_i^{\rho(\alpha+\beta)}}{\rho^{\alpha+\beta}\Gamma(\alpha+\beta+1)}\Big\}. $ (3.2)

    Our first existence result for the problem (1.1) relies on Leray-Schauder nonlinear alternative [23].

    Theorem 3.1. Assume that

    ${(A_{1})}$ $| f(t, y)| \leq p(t)\psi (\|y\|), \forall (t, y)\in [0, T]\times {\mathbb{R}}, $ where $p\in L^{1}([0, T], {\mathbb{ R}}^{+})$ and $\psi:{\mathbb{R}}^{+}\rightarrow {\ \mathbb{R}}^{+}$ is a nondecreasing function;

    ${(A_{2})}$ we can find a positive constant $W$ satisfying the inequality:

    $ \frac{W}{\displaystyle \psi (W)\Big({}^{\rho}I_{0^+}^{\alpha}p(T) +\frac{1}{|\Omega|}\Big\{{}^{\rho}I_{0^+}^{\alpha}p(T) +\sum\limits_{i=1}^{m}|\sigma_i|~{}^{\rho}I_{0^+}^{\alpha+\beta}p(\eta_i) +|\kappa|\Big\}\Big)} \gt 1. $

    Then there exists at least one solution for the problem (1.1) on $[0, T]$.

    Proof. Consider the operator $\mathcal{N}:\mathcal{G}\to\mathcal{G}$ defined by (3.1) and show that it is continuous and completely continuous. We establish in four steps.

    (ⅰ) $\mathcal{N}$ is continuous. Let $\{y_{n}\}$ be a sequence such that $y_{n}\to y$ in $\mathcal{G}.$ Then

    $ |N(yn)(t)N(y)(t)|ρIα0+|f(t,yn(t))f(t,y(t))|+1Ω{ρIα0+|f(T,yn(T))f(T,y(T))|+mi=1|σi| ρIα+β0+|f(ηi,yn(ηi))f(ηi,y(ηi))|}Λf(,yn)f(,y).
    $

    Since $f$ is a continuous function, therefore, we have

    $ \|\mathcal{N}(y_{n})-\mathcal{N}(y)\|\leq \Lambda\|f(\cdot, y_n)-f(\cdot, y)\| \to 0 , \, \, \mbox{as}\, \, n\to\infty.$

    (ⅱ) The operator $\mathcal{N}$ maps bounded sets into bounded sets in $\mathcal{G}.$

    For any $\bar{r}>0$, it is indeed enough to show that there exists a positive constant $\ell$ such that $\|\mathcal{N}(y)\|\leq \ell$ for $y\in B_{\bar{r}}=\{y\in \mathcal{G}: \|y\|\leq \bar{r}\}$. By the assumption $(A_{1})$, for each $t\in J, $ we have

    $ |N(y)(t)|ρIα0+|f(t,y(t))|+1|Ω|{ρIα0+|f(T,y(T))|+mi=1|σi| ρIα+β0+|f(ηi,y(ηi))|+|κ|}ρIα0+p(T)Ω(y)+1|Ω|{ρIα0+p(T)ψ(y)+mi=1|σi| ρIα+β0+p(ηi)ψ(y)+|κ|}ψ(y)(ρIα0+p(T)+1|Ω|{ρIα0+p(T)+mi=1|σi| ρIα+β0+p(ηi)+|κ|}).
    $

    Thus

    $ \|\mathcal{N}(y)\| \leq \psi (\bar{r})\Big({}^{\rho}I_{0^+}^{\alpha}p(T) +\frac{1}{|\Omega|}\Big\{{}^{\rho}I_{0^+}^{\alpha}p(T)+\sum\limits_{i=1}^{m}|\sigma_i|~{}^{\rho}I_{0^+}^{\alpha+\beta}p(\eta_i) +|\kappa|\Big\}\Big):=\ell. $

    (ⅲ) $\mathcal{N}$ maps bounded sets into equicontinuous sets of $\mathcal{G}$.

    Let $t_{1}, t_{2}\in (0, T], \, t_{1} < t_{2}, $ $B_{\bar{r}}$ be a bounded set of $\mathcal{G}$ as in $(ii)$ and let $y\in B_{\bar{r}}.$ Then

    $ |N(y)(t2)N(y)(t1)||ρIα0+f(t2,y(t2))ρIα0+f(t1,y(t1))|ρ1αψ(ˉr)Γ(α)|t10[sρ1(tρ2sρ)1αsρ1(tρ1sρ)1α]p(s)ds+t2t1sρ1(tρ2sρ)1αp(s)ds|0 as t1t2, independent ~of y.
    $

    From the steps $(i)-(iii)$, we deduce by the Arzelá-Ascoli theorem that $\mathcal{N}:\mathcal{G}\longrightarrow \mathcal{G}$ is completely continuous.

    (ⅳ) There exists an open set $V \subseteq \mathcal{G}$ with $y \ne \nu \mathcal{N}(y)$ for $\nu \in (0, 1)$ and $y\in \partial V.$

    Let $y\in \mathcal{G}$ be a solution of $y-\nu \mathcal{N} y=0$ for $\nu \in [ 0, 1]$. Then, for $t\in [0, T], $ we obtain

    $ |y(t)|=|ν(Ny)(t)|ρIα0+|f(t,y(t))|+1|Ω|{ρIα0+|f(T,y(T))|+mi=1|σi| ρIα+β0+|f(ηi,y(ηi))|+|κ|}ρIα0+p(T)ψ(y)+1|Ω|{ρIα0+p(T)ψ(y)+mi=1|σi| ρIα+β0+p(ηi)ψ(y)+|κ|}ψ(y)(ρIα0+p(T)+1|Ω|{ρIα0+p(T)+mi=1|σi| ρIα+β0+p(ηi)+|κ|}),
    $

    which, on taking the norm for $ t \in [0, T]$, implies that

    $ \displaystyle\frac{\|y\| }{\displaystyle \psi (\|y\|)\Big({}^{\rho}I_{0^+}^{\alpha}p(T) +\frac{1}{|\Omega|}\Big\{{}^{\rho}I_{0^+}^{\alpha}p(T) +\sum\limits_{i=1}^{m}|\sigma_i|~{}^{\rho}I_{0^+}^{\alpha+\beta}p(\eta_i) +|\kappa|\Big\}\Big)}\leq 1. $

    By the assumption $(A_{2})$, there exists a positive constant $W$ such that $\|y\| \ne W$. Next we define $V = \{y \in \mathcal{G} : \|y\| < W\}$ and note that the operator $\mathcal{N} :\overline{V} \to \mathcal{G}$ is continuous and completely continuous. By the choice of $V$, there does not exist any $y\in \partial V$ satisfying $y=\nu \mathcal{N}(y)$ for some $\nu \in (0, 1)$. In consequence, by the nonlinear alternative of Leray-Schauder type [23], we deduce that there exists a fixed point $y\in \overline{V}$ for the operator $\mathcal{N}$, which is a solution of the problem (1.1).

    In our next result, we make use of Banach contraction mapping principle to establish the uniqueness of solutions for the problem (1.1).

    Theorem 3.2. Suppose that

    $(A_3)$ there exists a nonnegative constant $L$ such that

    $|f(t, u)-f(t, v)|\le L\|u-v\| , \quad \mbox{for}\, \, t\in [0, T]\, \, \, \mbox{and every}\, \, u, v \in {\mathbb R}.$

    Then the problem (1.1) has a unique solution on $[0, T]$ if

    $ L\Lambda \lt 1, $ (3.3)

    where $\Lambda$ is defined by (3.2).

    Proof. Consider the operator $\mathcal{N}: \mathcal{G}\to \mathcal{G}$ associated with the problem (1.1) defined by (3.1). With $ \Lambda$ given by (3.2), we fix

    $ r\geq\frac{\Lambda f_0+|\kappa|/|\Omega|}{1-L\Lambda}, \, \, f_0=\sup\limits_{t\in [0, T]}|f(t, 0)|, $

    and show that $ FB_{r}\subset B_{r} $, where $ B_{r}= \{y\in \mathcal{G}:\|y\|\leq r\}. $ For $ y\in B_{r} $, using $(A_{3})$, we get

    $ |N(y)(t)|ρIα0+[|f(t,y(t))f(t,0)|+|f(t,0)|]+1|Ω|{ρIα0+[|f(T,y(T))f(T,0)|+|f(T,0)|]+mi=1|σi| ρIα+β0+[|f(ηi,y(ηi))f(ηi,0)|+|f(ηi,0)|]+|κ|}(Ly+f0)[TραραΓ(α+1)+1|Ω|{TραραΓ(α+1)+mi=1|σi|ηρ(α+β)iρα+βΓ(α+β+1)}]+|κ||Ω|(Lr+f0)Λ+|κ||Ω|r,
    $

    which, on taking the norm for $t\in [0, T], $ yields $\|\mathcal{N}(y)\|\le r.$ This shows that $\mathcal{N}$ maps $B_r$ into itself. Now we show that the operator $\mathcal{N}$ is a contraction. Let $y, u\in \mathcal{G}$. Then we get

    $ |N(y)(t)N(u)(t)|ρIα0+|f(t,y(t))f(t,u(t))|+1|Ω|{ρIα0+|f(T,y(T))f(T,u(T))|+mi=1|σi| ρIα+β0+|f(ηi,y(ηi))f(ηi,u(ηi))|}LΛyu.
    $

    Consequently we obtain $\|\mathcal{N}(y)-\mathcal{N}(u)\| \le L\Lambda\|y-u\|, $ which shows that $\mathcal{N}$ is a contraction by means of (3.3). Thus the contraction mapping principle applies and the operator $\mathcal{N}$ has a unique fixed point. This shows that there exists a unique solution for the problem (1.1) on $[0, T]$.

    Now we prove the uniqueness of solutions for the problem (1.1) by applying a fixed point theorem for nonlinear contractions due to Boyd and Wong [24].

    Definition 3.1. A mapping $\mathcal{H}:E\to E$ is called a nonlinear contraction if we can find a continuous nondecreasing function $\phi:\mathbb{R^+} \to \mathbb{R^+}$ such that $\phi(0)=0$, $\phi(\xi) < \xi$ for all $\xi>0$ and $ \|\mathcal{H}y-\mathcal{H}u\|\leq \phi(\|y-u\|), \forall y, \, u\in E $ ($ E$ is a Banach space).

    Lemma 3.1. (Boyd and Wong) [24] Let $E$ be a Banach space and let $N:E\to E$ be a nonlinear contraction. Then $N$ has a unique fixed point in $E$.

    Theorem 3.3. Assume that

    $(A_4)$ $\displaystyle |f(t, y)-f(t, u)|\leq g(t) \frac{|y-u|}{G^*+|y-u|}, \, t\in [0, T], \, y, u\geq 0$, where $g:[0, T]\to \mathbb{R^+}$ is continuous and

    $ G^*={}^{\rho}I_{0^+}^{\alpha}g(T)+\frac{1}{|\Omega|}\Big\{{}^{\rho}I_{0^+}^{\alpha}g(T)+\sum\limits_{i=1}^{m}|\sigma_i|{}^{\rho}I_{0^+}^{\alpha+\beta}g(\eta_i)\Big\}. $ (3.4)

    Then the problem (1.1) has a unique solution on $[0, T]$.

    Proof. Let $\Psi:\mathbb{R}^+\to \mathbb{R}^+$ be a continuous nondecreasing function such that $\Psi(0)=0$ and $\Psi(\xi) < \xi$ for all $\xi>0$, defined by

    $\Psi(\xi)=\frac{G^* \xi}{G^*+\xi}, \, \, \forall \xi\geq 0.$

    Let $y, u\in \mathcal{G}$. Then

    $ |f(s, y(s))-f(s, u(s))|\leq \frac{g(s)}{G^*} \Psi(\|y-u\|), $

    so that

    $ |N(y)(t)N(u)(t)|ρIα0+(g(t)|y(t)u(t)|G+|y(t)u(t)|)+1|Ω|{ρIα0+(g(T)|y(T)u(T)|G+|y(T)u(T)|)+mi=1|σi|ρIα+β0+(g(ηi)|y(ηi)u(ηi)|G+|y(ηi)u(ηi)|)}|y(t)u(t)|G+|y(t)u(t)|{ρIα0+g(T)+1|Ω|{ρIα0+g(T)+mi=1|σi|ρIα+β0+g(ηi)}},
    $

    for $t\in[0, T]$. By the condition (3.4), we deduce that $\|\mathcal{N}(y)-\mathcal{N}(u)\|\leq \Psi(\|y-u\|)$ and hence $\mathcal{N}$ is a nonlinear contraction. Thus it follows from the fixed point theorem due to Boyd and Wong [24] that the operator $\mathcal{N}$ has a unique fixed point in $\mathcal{G}$, which is indeed a unique solution of problem (1.1).

    Example 3.1. Let us consider the following boundary value problem

    $ \left\{1/3  cD5/40+y=f(t,y), t[0,2],y(2)=21/3I3/4y(1/2)+1/2 1/3I3/4y(3/2)+1/4,   δy(0)=0,
    \right. $
    (3.5)

    where $ \rho=1/3, \, \alpha=5/4, \, \sigma_1=2, \, \sigma_2=1/2, \, \beta=3/4, \, \eta_1=1/2, \, \eta_2=3/2, \, \kappa=1/4$, $ T=2$ and $ f(t, y(t))$ will be fixed later.

    Using the given data, we find that $|\Omega|=4.543695998$ and $\Lambda=7.572001575$, where $\Omega$ and $\Lambda$ are given by (2.10) and (3.2) respectively.

    For illustrating Theorem 3.1, we take

    $ f(t, y)= \frac{(1+t)}{30}\Bigg( \frac{|y|}{|y|+1}+y+\frac{1}{8}\Bigg), $ (3.6)

    and find that $ p(t)=\frac{(1+t)}{30}$ and $\psi(\|y\|)=||y||+\frac{9}{8}$. By condition $(A_2)$, we have $ W>0.7066246467 $. Thus, the hypothesis of Theorem 3.1 holds true, which implies that the problem (3.5) has at least one solution.

    Furthermore, for the uniqueness results, Theorem 3.2 can be illustrated by choosing

    $ f(t, y)=\frac{\tan^{-1} y+ e^{-t} }{2\sqrt{81+\sin t}}. $ (3.7)

    Clearly the condition $(A_3)$ is satisfied with $L=1/18$. Also

    $L\Lambda\approx 0.4206667542 \lt 1.$

    Obviously all the conditions of Theorem 3.2 hold and consequently the problem (3.5) with $f(t, y)$ given by (3.7) has a unique solution on $[0, 2]$ by the conclusion of Theorem 3.2.

    Finally, for illustrating Theorem 3.3, we take

    $ f(t, y)= t\Bigg( \frac{|y|}{|y|+11}+\frac{1}{8}\Bigg). $ (3.8)

    Here we choose $g(t)=(1+t)$ and find that

    $ G^*={}^{\rho}I_{0^+}^{\alpha}g(T)+\frac{1}{|\Omega|}\Big\{{}^{\rho}I_{0^+}^{\alpha}g(T)+\sum\limits_{i=1}^{m}|\sigma_i|{}^{\rho}I_{0^+}^{\alpha+\beta}g(\eta_i)\Big\}\approx 9.923097014, $

    and

    $|f(t, y)-f(t, u)|=t\Bigg( \frac{|y|-|u|}{11+|y|+|u|+\frac{|y||u|}{11}}\Bigg)\leq \frac{(1+t)|y-u|}{9.923097014+|y-u|}.$

    So, the conclusion of Theorem 3.3 applies to the problem (3.5) with $f(t, y)$ given by (3.8).

    In this section, we present existence results for the problem (1.2).

    Definition 4.1. A function $y\in AC_\delta^2([0, T], {\mathbb R})$ is called a solution of the problem (1.2) if $y(T)=\sum_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\beta}y(\eta_i)+\kappa, \delta y(0)=0$ and there exists function $v\in L^1([0, T], {\mathbb R})$ such that $v(t)\in F(t, y(t))$ a.e. on $[0, T]$ and

    $ y(t)=ρIα0+v(t)+1Ω{ρIα0+v(T)+mi=1σi ρIα+β0+v(ηi)+κ}.
    $

    Here we prove an existence result for the problem (1.2) by applying nonlinear alternative for Kakutani maps [23] when $F$ has convex values and is of Carathéodory type.

    Theorem 4.1. Assume that

    $(B_1)$ $F :[0, T] \times {\mathbb R} \to {\mathcal{P}_{cp, c}}({\mathbb R})$ is $L^1$-Carathéodory, where $ {\mathcal P}_{cp, c}({\mathbb R})$ $ =\{Y \in {\mathcal{P}}({\mathbb {\mathbb R}}):$ $ Y $ $ \mbox{ is compact and convex}\}$;

    $(B_2)$ there exist a continuous nondecreasing function $\varphi : [0, \infty) \to (0, \infty)$ and a function $p \in L^1([0, T], {\mathbb R}^+)$ such that

    $\|F(t, y)\|_\mathcal{P}:=\sup\{|x|: x \in F(t, y)\}\le p(t)\varphi(\|y\|) ~~ \mbox{for each}~~ (t, y) \in [0, T] \times {\mathbb R};$

    $(B_3)$ there exists a constant $\widehat{W}>0$ satisfying

    $ \frac{\widehat{W}}{\displaystyle \varphi (\widehat{W})\Big({}^{\rho}I_{0^+}^{\alpha}p(T)+\frac{1}{\Omega}\Big(~^{\rho}I_{0^+}^{\alpha}p(T)+\sum\limits_{i=1}^{m}|\sigma_i|~{}^{\rho}I_{0^+}^{\alpha+\beta}p(\eta_i)+\kappa \Big)\Big)} \gt 1. $

    Then there exists at least one solution for the problem (1.2) on $[0, T].$

    Proof. Define an operator ${\mathcal M}: C([0, T], {\mathbb R})\longrightarrow {\mathcal P}(C([0, T], {\mathbb R}))$ by

    $ {\mathcal M}(y)=\{h \in C([0, T], {\mathbb R}): h(t)=\mathcal{F}(y)(t)\}, $ (4.1)

    where

    $ \mathcal{F}(y)(t)=\displaystyle {}^{\rho}I_{0^+}^{\alpha}v(t) +\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v(\eta_i)+\kappa\Big\}, $

    for $v \in S_{F, y}$. Here $S_{F, y}$ denotes the set of selections of $F$ and is defined by

    $S_{F, y} := \{ v \in L^1([0, T], {\mathbb R}) : v (t) \in F (t, y(t)) ~\mbox{a.e. on} ~ [0, T]\}, $

    for each $y \in C([0, T], {\mathbb R})$. Notice that the fixed points of the operator ${\mathcal M}$ are solutions of the problem (1.2).

    To show that ${\mathcal M}$ satisfies the assumptions of Leray-Schauder nonlinear alternative [23], we split the proof in several steps.

    Step 1. ${\mathcal M}(y)$ is convex for each $y \in C([0, T], {\mathbb R})$ as $S_{F, y}$ is convex ($F$ has convex values).

    Step 2. Let $B_r = \{y \in C([0, T], {\mathbb R}): \|y\| \le r \}$ be a bounded ball in $C([0, T], {\mathbb R})$, where $r$ is a positive number. Then, for each $h \in {\mathcal M} (y), \, y \in B_{r}$, there exists $v \in S_{F, y}$ such that

    $ h(t)=\displaystyle {}^{\rho}I_{0^+}^{\alpha}v(t)+\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v(\eta_i) +\kappa\Big\} $

    with

    $ \|h\| \leq \varphi (r)\Big({}^{\rho}I_{0^+}^{\alpha}p(T) +\frac{1}{|\Omega|}\Big\{{}^{\rho}I_{0^+}^{\alpha}p(T)+\sum\limits_{i=1}^{m}|\sigma_i|~{}^{\rho}I_{0^+}^{\alpha+\beta}p(\eta_i) +|\kappa|\Big\}\Big):=\ell_1. $

    This shows that ${\mathcal M}$ maps bounded sets (balls) into bounded sets in $ C([0, T], {\mathbb R}).$

    Step 3. In order to show that ${\mathcal M}$ maps bounded sets into equicontinuous sets of $C([0, T], {\mathbb R})$, we take $t_{1}, t_{2}\in (0, T], \, t_{1} < t_{2}, $ and $y\in B_{r}.$ Then we find that

    $ |h(t_{2})-h(t_{1})| \le\frac{\rho^{1-\alpha}\varphi(r)}{\Gamma(\alpha)}\Big|\int_{0}^{t_1}\Big[\frac{s^{\rho-1}}{(t_2^{\rho}-s^{\rho})^{1-\alpha}}-\frac{s^{\rho-1}}{(t_1^{\rho}-s^{\rho})^{1-\alpha}}\Big] p(s)ds+ \int_{t_1}^{t_2}\frac{s^{\rho-1}}{(t^{\rho}-s^{\rho})^{1-\alpha}}p(s)ds\Bigg|, $

    which tends to zero independently of $y \in B_{r}$ as $t_2-t_1 \to 0.$ In view of the foregoing steps, it follows by the Arzelá-Ascoli theorem that ${\mathcal M}: C([0, T], {\mathbb R}) \to {\mathcal{P}}(C([0, T], {\mathbb R}))$ is completely continuous.

    Step 4. In our next step, we show that ${\mathcal M}$ is upper semi-continuous (u.s.c.). Since ${\mathcal M}$ is completely continuous, it is enough to establish that it has a closed graph (see [25, Proposition 1.2]). For that, let $y_n \to y_*, h_n \in {\mathcal M} (y_n)$ and $h_n \to h_*.$ Then we have to show that $h_* \in {\mathcal M} (y_*).$ Associated with $h_n \in {\mathcal M} (y_n), $ we can find $v_n \in S_{F, y_n}$ such that for each $t \in [0, T], $

    $ h_n(t)=\displaystyle {}^{\rho}I_{0^+}^{\alpha}v_n(t)+\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v_n(s)v_n(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v_n(\eta_i)+\kappa \Big\}. $

    Next, for each $t \in [0, T], $ we establish that there exists $v_* \in S_{F, y_*}$ satisfying

    $ h_*(t)=\displaystyle {}^{\rho}I_{0^+}^{\alpha}v_*(t)+\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v_*(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v_*(\eta_i)+\kappa \Big\}. $

    Consider the linear operator $\Theta: L^1([0, T], {\mathbb R}) \to C([0, T], {\mathbb R})$ given by

    $ v\mapsto \Theta v(t) =\displaystyle {}^{\rho}I_{0^+}^{\alpha}v(t) +\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v(\eta_i)+\kappa\Big\}. $

    Notice that $ \|h_n(t)-h_*(t)\| \to 0$ as $n\to \infty.$ Thus we deduce by the closed graph theorem [26] that $\Theta \circ S_F$ is a closed graph operator. Furthermore, we have $h_n(t) \in \Theta(S_{F, y_n}).$ As $y_n \to y_*, $ we have

    $ h_*(t)=\displaystyle {}^{\rho}I_{0^+}^{\alpha}v_*(t)+\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v_*(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v_*(\xi)+\kappa \Big\}, \, \text{for ~some} ~ v_* \in S_{F, y_*}.$

    Step 5. Finally, we show the existence of an open set $U\subseteq C([0, T], {\mathbb R})$ such that $y\notin \lambda {\mathcal M} (y)$ for any $\lambda \in (0, 1)$ and all $y\in \partial U.$ For that we take $\lambda \in (0, 1)$ and $y\in \lambda {\mathcal M} (y).$ Then there exists $v \in L^1([0, T], {\mathbb R})$ with $v \in S_{F, y}$ such that, for $t \in [0, T]$, we have

    $ y(t)=\displaystyle \lambda {}^{\rho}I_{0^+}^{\alpha}v(t) +\frac{\lambda}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v(\eta_i)+\kappa\Big\}. $

    As in the second step, one can obtain

    $ |y(t)|ρIα0+|v(T)|+1|Ω|{ρIα0+|v(T)|+mi=1|σi| ρIα+β0+|v(ηi)|+|κ|}φ(y)(ρIα0+p(T)+1|Ω|{ρIα0+p(T)+mi=1|σi| ρIα+β0+p(ηi)+|κ|}),
    $

    which implies that

    $ \displaystyle\frac{\|y\| }{\displaystyle \varphi (\|y\|)\Bigg({}^{\rho}I_{0^+}^{\alpha}p(T)+\frac{1}{|\Omega|}\Big\{{}^{\rho}I_{0^+}^{\alpha}p(T)+\sum\limits_{i=1}^{m}|\sigma_i|~{}^{\rho}I_{0^+}^{\alpha+\beta}p(\eta_i) +|\kappa|\Big\}\Bigg)}\leq 1. $

    By the hypothesis $(B_{3})$, we can find $\widehat{W}$ such that $\|y\| \ne \widehat{W}$. Setting $\mathcal{Y} = \{y \in C(J, {\mathbb R}) : \|y\| < \widehat{W}\}, $ we notice that the operator ${\mathcal M} :\overline{\mathcal{Y}} \to \mathcal{P}(C(J, {\mathbb R}))$ is compact multi-valued, u.s.c. with convex closed values. From the choice of $\mathcal{Y}$, there does not exist any $y \in \partial \mathcal{Y}$ satisfying $y \in \lambda {\mathcal M} (y)$ for some $\lambda \in (0, 1)$. In consequence, we deduce by the nonlinear alternative of Leray-Schauder type [23] that ${\mathcal M}$ has a fixed point $y \in \overline{\mathcal{Y}}$ which is a solution of the problem (1.2). This completes the proof.

    Consider a mapping $H_d : {\mathcal{P}}(X) \times {\mathcal{P}}(X) \to {\mathbb R} \cup \{\infty\}$ defined by

    $H_d(S, V ) = \max\{ \sup _{s \in S}d(a, V), \sup _{v \in V}d(S, v)\}, $

    where $d(S, v) = \inf_{s\in S}d(s; v)$, $d(s, V) = \inf_{v\in V}d(s; v)$ and $(X, d)$ is a metric space induced from the normed space $(X; \|\cdot\|)$. Note that $({\mathcal P}_{cl, b}(X), H_d)$ is a metric space (see [27]), where $ {\mathcal P}_{cl, b}(X)=\{Y \in {\mathcal{P}}(X) : Y \mbox{ is closed and bounded}\}$.

    The following result, dealing with the existence of solutions for the problem (1.2) with nonconvex valued right hand side of the inclusion, relies on Covitz and Nadler's fixed point theorem for multivalued maps [28].

    Theorem 4.2. Assume that

    $(C_1)$ $F : [0, T] \times {\mathbb R} \to {\mathcal P}_{cp}({\mathbb R})$ is such that $F(\cdot, y) : [0, T] \to {\mathcal P}_{cp}({\mathbb R})$ is measurable for each $y \in {\mathbb R}$, where ${\mathcal P}_{cp}({\mathbb R})=\{Y \in {\mathcal{P}}({\mathbb R}) : Y \mbox{ is compact}\}$;

    $(C_2)$ $H_d(F(t, y), F(t, \bar{y}))\le \mu(t)|y-\bar{y}|$ for almost all $t \in [0, T]$ and $y, \bar{y} \in {\mathbb R}$ with $\mu \in C([0, T], {\mathbb R}^+)$ and $d(0, F(t, 0))\le \mu(t)$ for almost all $t \in [0, T]$.

    Then the problem (1.2) has at least one solution on $ [0, T]$ provided that

    $ \vartheta=\|\mu\|\Lambda \lt 1, $ (4.2)

    where $\Lambda$ is given by (3.2).

    Proof. By the assumption $(C_1)$, the set $S_{F, y}$ is nonempty for each $y \in C([0, T], {\mathbb R})$ and $F$ has a measurable selection by Theorem Ⅲ.6 in [29]. Now we proceed to show that the operator ${\mathcal M} : (C [0, T], {\mathbb R}) \to {\mathcal P}_{cl}(C([0, T], {\mathbb R}))$ (${\mathcal P}_{cl}(C([0, T], {\mathbb R}))= \{Y \in P({C([0, T], {\mathbb R})}) : Y~\mbox{ is closed} \}$) is a contraction so that Covitz and Nadler's Theorem [28] is applicable.

    In the first step, we show that ${\mathcal M}(y) \in {\mathcal P}_{cl}((C [0, T], {\mathbb R}))$ for each $y \in C([0, T], {\mathbb R}).$ Let $\{u_n\}_{n \ge 0} \in {\mathcal M}(y)$ with $u_n \to u ~(n \to \infty)$ in $C([0, T], {\mathbb R}).$ Then $u \in C([0, T], {\mathbb R})$ and there exists $v_n \in S_{F, y_n}$ satisfying

    $ u_n(t)=\displaystyle {}^{\rho}I_{0^+}^{\alpha}v_n(t) +\frac{1}{\Omega}\Big\{- {}^{\rho}I_{0^+}^{\alpha}v_n(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v_n(\eta_i)+\kappa\Big\} \, \, \text{for each} ~ t \in [0, T]. $

    In view of the compact values of $F$, we pass onto a subsequence (if necessary) to find that $v_n$ converges to $v$ in $L^1 ([0, T], {\mathbb R}).$ For $v \in S_{F, y}$ and for each $t \in [0, T]$, we have

    $ u_n(t)\to u(t) =\displaystyle {}^{\rho}I_{0^+}^{\alpha}v(t) +\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v(\eta_i)+\kappa\Big\}. $

    Thus $u \in {\mathcal M}(y).$

    Now, for each $y, \bar{y} \in C([0, T], R)$, we establish that there exists $\vartheta < 1$ (defined by (4.2)) satisfying

    $ H_d({\mathcal M}(y), {\mathcal M}(\bar{y}))\le\vartheta \|y-\bar{y}\|.$

    Let $y, \bar{y} \in C([0, T], {\mathbb R})$ and $h_1 \in {\mathcal M}(y)$. Then there exists $v_1(t) \in F(t, y(t))$ satisfying

    $ h_1(t)=\displaystyle {}^{\rho}I_{0^+}^{\alpha}v_1(t)+\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v_1(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v_1(\eta_i)+\kappa \Big\}, $

    for each $t \in [0, T]$. By $(C_2)$, we have

    $H_d(F(t, y), F(t, \bar{y}))\le \mu(t)|y(t)-\bar{y}(t)|.$

    Therefore, we can find $w \in F(t, \bar{y}(t))$ satisfying

    $|v_1(t)-w|\le \mu(t)|y(t)-\bar{y}(t)|, ~~t \in [0, T].$

    Introduce $\mathcal{U} : [0, T] \to \mathcal{P}({\mathbb R})$ by

    $\mathcal{U}(t)=\{w \in {\mathbb R} : |v_1(t)-w|\le \mu(t)|y(t)-\bar{y}(t)|\}.$

    As $\mathcal{U}(t)\cap F(t, \bar{y}(t))$ is measurable (Proposition Ⅲ.4 [29]), we can find a measurable selection $v_2(t)$ for $\mathcal{U}$ such that $v_2(t) \in F(t, \bar{y}(t))$ satisfying $|v_1(t)-v_2(t)|\le \mu(t)|y(t)-\bar{y}(t)|$ for each $t \in [0, T]$.

    Define

    $ h_2(t)=\displaystyle {}^{\rho}I_{0^+}^{\alpha}v_2(t)+\frac{1}{\Omega}\Big\{-{}^{\rho}I_{0^+}^{\alpha}v_2(T)+\sum\limits_{i=1}^{m}\sigma_i~{}^{\rho}I_{0^+}^{\alpha+\beta}v_2(\eta_i)+\kappa \Big\}, $

    for each $t \in [0, T]$. Then

    $ |h1(t)h2(t)|ρIα0+|v1(t)v2(t)|+1|Ω|{ρIα0+|v1(T)v2(T)|+mi=1|σi| ρIα+β0+|v1(ηi)v2(ηi)|}μ[TραραΓ(α+1)+1|Ω|{TραραΓ(α+1)+mi=1|σi|ηρ(α+β)iρα+βΓ(α+β+1)}]yˉy.
    $

    Hence

    $ \| h_1-h_2\| \le \|\mu\|\Bigg[\frac{T^{\rho \alpha}}{\rho^{\alpha}\Gamma(\alpha+1)}+\frac{1}{|\Omega|}\Bigg\{\frac{T^{\rho \alpha}}{\rho^{\alpha}\Gamma(\alpha+1)}+\sum\limits_{i=1}^{m}|\sigma_i|\frac{\eta_i^{\rho(\alpha+\beta)}}{\rho^{\alpha+\beta}\Gamma(\alpha+\beta+1)}\Bigg\}\Bigg]\|y-\bar{y}\|. $

    Analogously, switching the roles of $y$ and $\overline{y}$, we can obtain

    $ H_d({\mathcal M}(y), {\mathcal M}(\bar{y})) \le \|\mu\|\Bigg[\frac{T^{\rho \alpha}}{\rho^{\alpha}\Gamma(\alpha+1)}+\frac{1}{|\Omega|}\Bigg\{\frac{T^{\rho \alpha}}{\rho^{\alpha}\Gamma(\alpha+1)}+\sum\limits_{i=1}^{m}|\sigma_i|\frac{\eta_i^{\rho(\alpha+\beta)}}{\rho^{\alpha+\beta}\Gamma(\alpha+\beta+1)}\Bigg\}\Bigg]\|y-\bar{y}\|. $

    So ${\mathcal M}$ is a contraction. Thus, by Covitz and Nadler's fixed point theorem [28], the operator ${\mathcal M}$ has a fixed point $y$, which corresponds to a solution of (1.2).

    Example 4.1. Consider the following boundary value problem

    $ \left\{1/3  cD5/40+yF(t,y), t[0,2],y(2)=21/3I3/4y(1/2)+1/2 1/3I3/4y(3/2)+1/4,   δy(0)=0,
    \right. $
    (4.3)

    where $ F(t, y)$ will be fixed later.

    For illustrating Theorem 4.1, we take

    $ F(t, y)=\Bigg[\frac{e^{-t} }{\sqrt{900+t}}\Bigg(\sin y+\frac{1}{2}\Bigg)~, \, \frac{(1+t)}{30}\Bigg(\frac{|y|}{|y|+1}+y+\frac{1}{8}\Bigg)\Bigg]. $ (4.4)

    Using the given data, we find $\displaystyle p(t)=\frac{(1+t)}{30}, \varphi(\|y\|)=||y||+\frac{9}{8}$, and by condition $(B_3)$, we have $ \widehat{W}> 0.7066246467$. Thus all conditions of Theorem 4.1 are satisfied and consequently, there exists at least one solution for the problem (4.3) with $F(t, y)$ given by (4.4) on $[0, 2].$

    In order to demonstrate the application of Theorem 4.2, let us choose

    $ F(t, y)=\Bigg[\frac{e^{-t }}{\sqrt{900+t}}\Bigg(\tan^{-1} y+\frac{1}{2}\Bigg)~, \, \frac{(1+t)}{30}\Bigg(\frac{|y|}{|y|+1}+\frac{1}{8}\Bigg)\Bigg]. $ (4.5)

    Clearly

    $H_d(F(t, y), F(t, \bar{y}))\leq \frac{(t+1)}{30} \|y-\bar{y}\|.$

    Letting $\displaystyle \mu(t)= \frac{(t+1)}{30}$, it is easy to check that $d(0, F(t, 0))\le \mu(t)$ holds for almost all $t \in [0, 2]$ and $\vartheta \approx 0.7572001575 < 1$ ($\vartheta$ is given by 4.2). As the hypotheses of Theorem 4.2 are satisfied, we conclude that the problem (4.3) with $F(t, y)$ given by (4.5) has at least one solution on $[0, 2].$

    We have developed the existence theory for fractional differential equations and inclusions involving Caputo-type generalized fractional derivative equipped with generalized fractional integral boundary conditions (in the sense of Katugampola). Standard fixed point theorems for single-valued and multi-valued maps are employed to obtain the desired results, which are well illustrated with the aid of examples. Our results are new in the given configuration and contribute significantly to the existing literature on the topic.

    The authors gratefully acknowledge the referees for their useful comments on their paper.

    The authors declare that they have no conflict of interests.

    [1] Elwood, P. ; Longley, M. (2010) My health: whose responsibility?: A Jury decides. J Epidemiol Commun H 64: 761-764. doi: 10.1136/jech.2009.087767
    [2] Antithrombotic, T. (2009) Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373:1849-1860. doi: 10.1016/S0140-6736(09)60503-1
    [3] Elwood, P. ; Morgan, G. ; Fone, D. et al. (2011) Aspirin use in a south-Wales county. Br J Cardiol 18: 238-240.
    [4] Morgan, G. (2012) Rapid health impact assessment of aspirin promotion for the secondary prophylaxis of vascular events in Wales. Qual Prim Care 20: 299-301.
    [5] Elwood, P. ; Gallagher, A. M. ; Duthie, G. G. et al. (2008) Aspirin, salicylates and cancer. Lancet373: 1301-1309.
    [6] Rothwell, P. M; Wilson, M. ; Elwin, C. E. et al. (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376: 1741-1750. doi: 10.1016/S0140-6736(10)61543-7
    [7] Rothwell, P. M; Fowkes, F. G. R; Belch, J. F. F. et al. (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet377: 31-41.
    [8] Burn, J. ; Gerdes, A. M. ; Macrae, F. et al. (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 RCT. Lancet 378: 281-287.
    [9] Phillips, I. ; Langley, R. ; Gilbert, D. ; et al. (2013) Aspirin as a treatment for cancer. Clin Oncol (R Coll Radiol) 25: 333-335. doi: 10.1016/j.clon.2013.03.001
    [10] Morgan, G. ; Elwood, P. (2009) Could recommendations about aspirin prophylaxis enhance colorectal cancer screening programmes? Eur J Public Health 19: 576-577. doi: 10.1093/eurpub/ckp062
    [11] Morgan, G. (2009) Aspirin for the prevention of vascular events. Public Health 123: 787-788. doi: 10.1016/j.puhe.2009.10.007
    [12] Gorelick, P. B. ; Weisman, S. M. (2005) Risk of haemorrhagic stroke with aspirin use: an update. Stroke 36: 1801-1807. doi: 10.1161/01.STR.0000174189.81153.85
    [13] Hansson, L. ; Zanchetti, A. ; Carruthers, S. G. et al. (1998) Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet 351:1755-1762.
    [14] Elwood, P. ; Morgan, G. ; Brown, G. ; et al. (2005) Aspirin for all over 50? For. British Medical Journal 330: 1440-1441. doi: 10.1136/bmj.330.7505.1440
    [15] Baigent, C. ; (2005) Aspirin for all over 50? Against. British Medical Journal 330: 1441-1442.
    [16] Baron, J. A. (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med348:891-899.
    [17] Chan, A. T. ; Giconnucci, E. L. ; Schernhammer, E. S. et al. (2004) A prospective study of aspirin use and the risk for colorectal adenoma. Ann Intern Med 140: 157-166. doi: 10.7326/0003-4819-140-3-200402030-00006
    [18] Brenner, H. ; Tao, S. ; Haug, U. (2010) Low-dose aspirin use and performance of immunochemical fecal occult blood tests. JAMA 304: 2513-2520. doi: 10.1001/jama.2010.1773
    [19] Ajani, U. A. ; Ford, E. S. ; Greenland, K. J. (2006) Aspirin use among US adults: Behavioural Risk Factor Surveillance System. Amer J Prev Med 30: 74-77. doi: 10.1016/j.amepre.2005.08.042
    [20] Sung, J. J. ; Lau, J. Y. ; Ching, J. Y. et al. (2010) Continuation of low-dose aspirin therapy in peptic ulcer bleeding: a randomized trial. Ann Intern Med 152: 1-9. doi: 10.7326/0003-4819-152-1-201001050-00179
    [21] US Preventive Services Task Force. (2009) Aspirin for the prevention of cardiovascular disease: US preventive services task force recommendation statement. Ann Intern Med 150: 396-404. doi: 10.7326/0003-4819-150-6-200903170-00008
  • This article has been cited by:

    1. Subramanian Muthaiah, Dumitru Baleanu, Existence of Solutions for Nonlinear Fractional Differential Equations and Inclusions Depending on Lower-Order Fractional Derivatives, 2020, 9, 2075-1680, 44, 10.3390/axioms9020044
    2. Mehmet Giyas Sakar, Onur Saldır, A New Reproducing Kernel Approach for Nonlinear Fractional Three-Point Boundary Value Problems, 2020, 4, 2504-3110, 53, 10.3390/fractalfract4040053
    3. Bashir Ahmad, Badrah Alghamdi, Ahmed Alsaedi, Sotiris K. Ntouyas, Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions, 2021, 6, 2473-6988, 7093, 10.3934/math.2021416
    4. Muthaiah Subramanian, Shorog Aljoudi, Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative, 2022, 6, 2504-3110, 629, 10.3390/fractalfract6110629
    5. Jinsheng Du, Cuizhi Lu, Yirong Jiang, Heng Xie, Uniqueness and stability for generalized Caputo fractional differential quasi-variational inequalities, 2021, 0, 2191-0294, 10.1515/ijnsns-2020-0294
    6. Jeffrey W. Lyons, Differentiation of Solutions of Caputo Boundary Value Problems with Respect to Boundary Data, 2024, 12, 2227-7390, 1790, 10.3390/math12121790
    7. Jeffrey W. Lyons, CONTINUOUS DEPENDENCE ON BOUNDARY CONDITIONS FOR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.823
    8. Keyu Zhang, Jiafa Xu, Solvability for a system of Hadamard-type hybrid fractional differential inclusions, 2023, 56, 2391-4661, 10.1515/dema-2022-0226
    9. Madeaha Alghanmi, Shahad Alqurayqiri, Existence Results of Nonlocal Fractional Integro-Neutral Differential Inclusions with Infinite Delay, 2025, 9, 2504-3110, 46, 10.3390/fractalfract9010046
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4357) PDF downloads(889) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog