Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Mislocalization, aggregation formation and defect in proteolysis in ALS

  • Received: 20 March 2016 Accepted: 17 May 2016 Published: 25 January 2016
  • Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motoneuron degeneration. The features observed in ALS are the mislocalization and aggregation of proteins in the affected motoneurons. The mutants of Cu/Zn superoxide dismutase (SOD1) or TAR DNA binding protein (TDP-43) that cause ALS have been reported to localize aberrantly. These aggregations contain the products of ALS causative genes, including SOD1 or TDP-43. Notably, TDP-43-positive aggregations have been identified even in sporadic ALS cases, indicating the importance of aggregate formation in the pathogenesis of ALS. Various proteins other than ALS causative gene products are also included in these aggregates. It is thought that the genetic mutation-induced conformational changes of proteins cause the aberrant redistribution and formation of aggregates, resulting in a loss of function or a gain of neuronal toxicity through the undesired interactions. Additionally, valosin-containing protein (VCP), ubiquilin2 (UBQLN2) and optineurin (OPTN), which are related to the proteolysis system, have also been identified as causative genes in ALS. These facts suggest that the aberrant protein homeostasis mediated by mislocalization, aggregate formation, or defects in the proteolysis system are the underlying causes of neuronal toxicity in ALS. Here, we focus on the impaired protein homeostasis observed in ALS to discuss the potential for motoneuron toxicity.

    Citation: Atsushi Tsubota, Hidenori Ichijo, Kengo Homma. Mislocalization, aggregation formation and defect in proteolysis in ALS[J]. AIMS Molecular Science, 2016, 3(2): 246-268. doi: 10.3934/molsci.2016.2.246

    Related Papers:

    [1] Khue Vu Nguyen . Epigenetic modulation of human neurobiological disorders: Lesch-Nyhan disease as a model disorder. AIMS Neuroscience, 2025, 12(2): 58-74. doi: 10.3934/Neuroscience.2025005
    [2] Khue Vu Nguyen . Potential molecular link between the β-amyloid precursor protein (APP) and hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme in Lesch-Nyhan disease and cancer. AIMS Neuroscience, 2021, 8(4): 548-557. doi: 10.3934/Neuroscience.2021030
    [3] Khue Vu Nguyen . Special Issue: Alzheimer’s disease. AIMS Neuroscience, 2018, 5(1): 74-80. doi: 10.3934/Neuroscience.2018.1.74
    [4] Khue Vu Nguyen . Encephalomalacia/gliosis, deep venous thrombosis, and cancer in Arg393His antithrombin Hanoi and the potential impact of the β-amyloid precursor protein (APP) on thrombosis and cancer. AIMS Neuroscience, 2022, 9(2): 175-215. doi: 10.3934/Neuroscience.2022010
    [5] Frank O. Bastian . Is Alzheimers Disease Infectious?
    Relative to the CJD Bacterial Infection Model of Neurodegeneration. AIMS Neuroscience, 2015, 2(4): 240-258. doi: 10.3934/Neuroscience.2015.4.240
    [6] Craig T. Vollert, Jason L. Eriksen . Microglia in the Alzheimers brain: a help or a hindrance?. AIMS Neuroscience, 2014, 1(3): 210-224. doi: 10.3934/Neuroscience.2014.3.210
    [7] Marco Calabrò, Carmela Rinaldi, Giuseppe Santoro, Concetta Crisafulli . The biological pathways of Alzheimer disease: a review. AIMS Neuroscience, 2021, 8(1): 86-132. doi: 10.3934/Neuroscience.2021005
    [8] Kiran Kumar Siddappaji, Shubha Gopal . Molecular mechanisms in Alzheimer's disease and the impact of physical exercise with advancements in therapeutic approaches. AIMS Neuroscience, 2021, 8(3): 357-389. doi: 10.3934/Neuroscience.2021020
    [9] Ubaid Ansari, Jimmy Wen, Burhaan Syed, Dawnica Nadora, Romteen Sedighi, Denise Nadora, Vincent Chen, Forshing Lui . Analyzing the potential of neuronal pentraxin 2 as a biomarker in neurological disorders: A literature review. AIMS Neuroscience, 2024, 11(4): 505-519. doi: 10.3934/Neuroscience.2024031
    [10] Ubaid Ansari, Vincent Chen, Romteen Sedighi, Burhaan Syed, Zohaer Muttalib, Khadija Ansari, Fatima Ansari, Denise Nadora, Daniel Razick, Forshing Lui . Role of the UNC13 family in human diseases: A literature review. AIMS Neuroscience, 2023, 10(4): 388-400. doi: 10.3934/Neuroscience.2023029
  • Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motoneuron degeneration. The features observed in ALS are the mislocalization and aggregation of proteins in the affected motoneurons. The mutants of Cu/Zn superoxide dismutase (SOD1) or TAR DNA binding protein (TDP-43) that cause ALS have been reported to localize aberrantly. These aggregations contain the products of ALS causative genes, including SOD1 or TDP-43. Notably, TDP-43-positive aggregations have been identified even in sporadic ALS cases, indicating the importance of aggregate formation in the pathogenesis of ALS. Various proteins other than ALS causative gene products are also included in these aggregates. It is thought that the genetic mutation-induced conformational changes of proteins cause the aberrant redistribution and formation of aggregates, resulting in a loss of function or a gain of neuronal toxicity through the undesired interactions. Additionally, valosin-containing protein (VCP), ubiquilin2 (UBQLN2) and optineurin (OPTN), which are related to the proteolysis system, have also been identified as causative genes in ALS. These facts suggest that the aberrant protein homeostasis mediated by mislocalization, aggregate formation, or defects in the proteolysis system are the underlying causes of neuronal toxicity in ALS. Here, we focus on the impaired protein homeostasis observed in ALS to discuss the potential for motoneuron toxicity.


    Nowadays, hundreds of millions of residents have shrouded in the heavy smog especially in winter [1]. Numerous epidemiological studies have shown associations of particulate air pollution with risk for various adverse health outcomes, in which the most affected pathologies are chronic obstructive pulmonary disease, lung cancer, influenza and respiratory infectious diseases (e.g., measles) [2,3,4,5,6,7]. Therefore, it is of great significance to study the respiratory infectious disease affected by air pollution through mathematical means.

    Actually, for the respiratory infectious disease, the susceptible-infective(SI) and SIS models are usually used to describe this epidemic dynamic. For instance, Wang et al.[8] discussed the persistence and periodic orbits for a SIS model in a polluted environment. Liu et al.[9] analyzed dynamics behavior of an SI epidemic model. Note that these studies did not consider the influence of random environmental factors. In fact, AQI depends on pollutants emissions, weather conditions, wind speed and air temperature, which are generated randomly. Therefore, it is more reasonable to use stochastic differential equation to establish an infectious disease model with air pollution.

    Considering random air pollution, there have been many studies on epidemic models. For instance, He et al.[10] studied the dynamics of infectious respiratory disease spread by developed a stochastic SIS model. Zhao et al.[11] discussed the existence of a positive stochastic periodic solution of a SI epidemic model by constructing a nonnegative function. He et al.[12] analyzed dynamics behavior of a stochastic SIS model by applying Itô formula. However, it is worth pointing out that stationary distribution of epidemic models with stochastic air pollution has not been investigated until now.

    In addition, it is almost impossible to know the analytical solution of stochastic SIS epidemic model. In view of this, in order to quickly predict the number of infected people at a certain time $ t $, it is important to seek an effective numerical algorithm. It is well known that classical Euler-Maruyama (EM) algorithm is widely used to approximate stochastic differential equation (SDE) because of its fast calculation speed and simple format. However, if EM method is used to approximate stochastic SIS model, it will produce negative values [13], which is meaningless. Hence, there is the challenging work to establish positive preserving numerical algorithm for stochastic SIS model which the transmission coefficient is a function of AQI by using EM scheme.

    In this paper, we study dynamics and approximation of positive solution of the stochastic SIS model. Our main contributions of the work are as follows:

    ● We develop a stochastic SIS model with air pollution which the transmission coefficient is a function of AQI. It extends the work of [12].

    ● We identify the conditions that guarantee the extinction and the stationary distribution by Foguel alternative, Khasminsk$\check{\rm l}$ function and Itô formula.

    ● We establish the positive preserving numerical algorithm for stochastic SIS model which the transmission coefficient is a function of AQI through the logarithmic transformed EM method and prove the positive preserving algorithm has first-order convergence rate. It extends the work of [14,15,16] which can only achieve convergence rate of 1/2.

    The rest of the paper is so organized as. In Section 2, preliminaries and introduction of a stochastic SIS model affected by air pollutants. The existence of kernel operator and the sufficient conditions that guarantee the stationary distribution and the extinction are obtained in Section 3. In Section 4, to approximate the solution a positivity-preserving numerical method is introduced. Section 5 verifies the theoretical results by numerical simulations. In Section 6, we conclude the paper.

    In this section, we obtain a stochastic SIS model affected by air pollutants and some preliminary knowledge is given for future needs.

    Since the proof of result is based on the theory of integral Markov semigroups, we need some auxiliary definitions and results concerning Markov semigroups (see, [17,18,19]). For the convenience of the reader, these definitions and results are presented. Let $ \Sigma = \mathscr{B}(\mathbb{X}) $ be the $ \sigma $-algebra of Borel subset of $ \mathbb{X} $ and $ m $ the $ \sigma $-finite measure on $ (\mathbb{X}, \Sigma) $, then the triple $ (\mathbb{X}, \Sigma, m) $ be a $ \sigma $-finite measure space. Denote by $ \mathbb{D} $ the subset of the space $ L^{1} = L^{1}(\mathbb{X}, \Sigma, m) $ which contains all densities, i.e.,

    $ D={fL1:f0,f=1}, $

    where $ \|\cdot\| $ represent the norm in $ L^{1} $. A linear mapping $ P : L^{1}\rightarrow L^{1} $ is called a Markov operator if $ P(\mathbb{D})\in \mathbb{D} $.

    Assume that $ k : \mathbb{X}\times \mathbb{X}\rightarrow [0, \infty) $ is a measurable function such that

    $ Xk(x,y)m(dx)=1 $ (2.1)

    for almost all $ y\in \mathbb{X} $, and

    $ Pf(x)=Xk(x,y)f(y)m(dy) $

    is an integral Markov operator. The function $ k $ is called a kernel operator of the Markov operator $ P $.

    A family $ \{P(t)\}_{t\geq 0} $ of Markov operator is called a Markov semigroup, if $ \{P(t)\}_{t\geq 0} $ satisfies

    (a) $ P(0) = Id $,

    (b) $ P(t+s) = P(t)P(s) $ for $ s, t\geq 0 $,

    (c) The function $ t\mapsto P(t)f $ is continuous for every $ f\in L^{1} $.

    A Markov semigroup $ \{P(t)\}_{t\geq 0} $ is called integral, if for each $ t > 0 $, the operator $ P(t) $ ia an integral Markov operator, i.e., there exists a measurable function $ k : (0, \infty)\times \mathbb{X} \times \mathbb{X}\rightarrow [0, \infty) $ such that

    $ P(t)f(x)=Xk(t,x,y)f(y)m(dy) $

    for every density $ f $.

    We need also two definitions concerning the asymptotic behavior of a Markov semigroup. A density $ f_{*} $ is called invariant if $ P(t)f_{*} = f_{*} $ for each $ t > 0 $. The Markov semigroup $ \{P(t)\}_{t\geq 0} $ is called asymptotically stable if there is an invariant density $ f_{*} $ such that

    $ limtP(t)ff=0forfD. $

    A Markov semigroup $ \{P(t)\}_{t\geq 0} $ is called sweeping with respect to a set $ A\in \Sigma $ if for every $ f\in \mathbb{D} $

    $ limtAP(t)f(x)m(dx)=0. $

    The following Lemma summarizes result of asymptotic stability and sweeping.

    Lemma 2.1. Let $ \mathbb{X} $ be a metric space and $ \Sigma $ be the $ \sigma $-algebra of Borel sets [17]. Let $ \{P(t)\}_{t\geq 0} $ be an integral Markov semigroup with a continuous kernel $ k(t, x, y) $ for $ t > 0 $, which satisfies Eq $(2.1)$ for any $ y\in \mathbb{X} $. We assume that for every $ f\in \mathbb{D} $ we have

    $ 0P(t)f(x)dt>0a.e., $

    then the semigroup $ \{P(t)\}_{t\geq 0} $ is asymptotically stable or is sweeping with respect to compact sets.

    The property that a Markov semigroup $ \{P(t)\}_{t\geq 0} $ is asymptotically stable or sweeping from a sufficiently large family of sets(e.g. from all compact sets) is called the Foguel alternative.

    Throughout this paper we use the following notation. $ |\cdot| $ is Euclidean norm on $ \mathbb{R} $. $ \emptyset $ denote the empty set. Given $ a, b\in \mathbb{R} $, $ a\vee b $ and $ a\wedge b $ denote the maximum of $ a $ and $ b $ and the minimum of $ a $ and $ b $, respectively. For any $ \Delta\in(0, 1] $ and $ T\in(0, \infty) $, $ \lfloor T/\Delta \rfloor $ represents the integer part of $ T/\Delta $. $ C $ stands for the generic positive real constants whose value may change between occurrences and is independent of $ \Delta $ and positive integer $ T $.

    According to the mechanism of respiratory infectious diseases, He et al.[12] proposed the following model:

    $ {dS(t)dt=γI(t)βF(t)S(t)I(t),dF(t)dt=cθF(t),dI(t)dt=βF(t)S(t)I(t)γI(t), $ (2.2)

    with initial values $ S_{0}, F_{0} $ and $ I_{0} $, where $ S(t) $, $ I(t) $ and $ F(t) $ represent the number of susceptible humans, the number of infected humans and AQI at time $ t $, respectively. $ c $, $ \theta $ and $ \gamma $ denote the inflow rate of pollutants into the air, the clearance rate of pollutants and the recovery rate for infected individuals, respectively. $ \beta F(t) $ is the infection rate. $ S(t)+I(t) = N $ and $ N $ is the total number of people. $ c $, $ \theta $, $ \gamma $ and $ \beta $ are non-negative numbers.

    Because the inflow rate of pollutants $ c $ including the emission of automobile exhaust, industrial exhaust and so on is affected by random noise. Hence, we now perturb the inflow rate of pollutants $ c $. In this case, $ c $ changes to a random variable and then we replace $ c $ by $ c+\sigma B(t) $, where $ B(t) $ is a white noise. In addition, the infectious disease model with birth rate and natural mortality is more realistic. Therefore, based on Eq (2.2), we can get the following model:

    $ {dS(t)=[μNβF(t)S(t)I(t)+γI(t)μS(t)]dt,dF(t)=[cθF(t)]dt+σdB(t),dI(t)=[βF(t)S(t)I(t)γI(t)μI(t)]dt. $ (2.3)

    where $ B(t) $ is a standard Brownian motion defined on a complete probability space $ (\Omega, \mathcal{F}, \mathbb{P}) $ with a filtration $ \{\mathcal{F}_{0}\}_{t\geq 0} $ satisfying the usual conditions(i.e., it is right continuous and $ \mathcal{F}_{0} $ contains all $ \mathbb{P} $-null sets). $ \mu $ and $ \sigma $ denote the per capita death rate and the noise intensity. $ \mu $ and $ \sigma $ are non-negative numbers. The meaning of other symbol is similar to that in Eq (2.2). Since the second equation of model (2.3) does not appear $ S(t) $ and $ I(t) $, through the same method as literature[12] the stochastic SIS model affected by air pollutants can be represented as follow:

    $ {dS(t)=[μN+γI(t)βm(t)S(t)I(t)μS(t)]dtσn(t)S(t)I(t)dB(t),dI(t)=[βm(t)S(t)I(t)γI(t)μI(t)]dt+σn(t)S(t)I(t)dB(t) $ (2.4)

    where $ m(t) = \frac{c}{\theta}+(F_{0}-\frac{c}{\theta})e^{-\theta t} $, $ n(t) = \frac{\beta}{\theta}(1-e^{-\theta t}) $. Combining with $ S(t)+I(t) = N $, it is immediate to get an equation about $ I(t) $:

    $ dI(t)=[βm(t)(NI(t))γμ]I(t)dt+σn(t)(NI(t))I(t)dB(t). $ (2.5)

    In this section, the existence and uniqueness of the positive solution of Eq (2.5) is proved. Then, we have obtained the sufficient conditions that guarantee the existence of stationary distribution and the extinction of the disease.

    In order to make Eq (2.5) meaningful, we need to show not only that it has a unique global solution but also that the solution will remain within $ (0, N) $ whenever it starts from $ (0, N) $. To guarantee these properties, it is therefore necessary to establish the following theorem.

    Theorem 3.1. For any given initial value $ I_{0}\in(0, N) $, there exists a unique global positive solution $ I(t)\in(0, N) $ for all$ t\geq0 $ with probability one, namely,

    $ P{I(t)(0,N)t0}=1. $

    Proof. By the same method as literature[12], we can complete the proof.

    Denote

    $ R+={xR:x>0}. $ (3.1)

    Since the existence of positive solution of Eq (2.5) has been obtained by Theorem 3.1, we let $ \mathbb{X} = \mathbb{R}_{+} $. Moreover, it is easy to check that the region $ \Gamma^{*} = \{(S(t), I(t))\in\mathbb{R}_{+}\times\mathbb{R}_{+}:0 < S(t)+I(t) < N\} $ is a positively invariant set of Eq (2.4). Hence, we always assume that $ (S_{0}, I_{0})\in\Gamma^{*} $.

    For Eq (2.5), we get the condition which lead to the extinction of the disease under the stochastic disturbance. Denote

    $ Rs0=βcNθ(λ+μ)σ2β2N22θ2(λ+μ), $ (3.2)

    which can be seen as a threshold of the extinction (i.e., disease-free) or persistence (i.e., endemic) of disease for Eq (2.5).

    Theorem 3.2. If $ R_{0}^{s} < 1 $ and $ \delta^{2} < \frac{c\theta}{\beta N} $, then for any initial value $ I(0)\in(0, N) $ the solution $ I(t) $ of Eq $(2.5)$ has the following property:

    $ P{limtI(t)=0}=1. $ (3.3)

    That is, the disease will die out with probability one.

    Proof. By Itô formula, it is easy to get that

    $ lim suptlnI(t)t=lim supt[lnI(0)t+t0(f1(I(s))+f2(I(s),s))dst+t0f3(I(s),s)dB(s)t], $ (3.4)

    where

    $ f1(x)=σ2β22θ2(Nx)2+βcθ(Nx)λμ, $
    $ f2(I,t)=[β(F0cθ)(NI)+σ2β2θ2(NI)2σ2β22θ2(NI)2eθt]eθt, $ (3.5)
    $ f3(I,t)=σn(t)(NI). $

    For the function $ f_{1}(I(s)) $, when

    $ σ2β2θ2Nβcθ<0 , i.e. σ2<cθβN, $

    it is immediate to get that

    $ f1(I)=σ2β22θ2(N2+I2)+(σ2β2θ2Nβcθ)I+βcθN(λ+μ)<σ2β22θ2N2+βcθN(λ+μ)=(λ+μ)(βcNθ(λ+μ)σ2β2N22θ2(λ+μ)1)=(λ+μ)(Rs01). $ (3.6)

    From Eq (3.5), it follows that

    $ lim supt1tt0f2(I(s),s)ds=lim supt1tt0β(F0cθ)(NI(s))eθsds+lim supt1tt0σ2β2θ2(NI(s))2eθsdslim supt1tt0σ2β22θ2(NI(s))2e2θsds. $ (3.7)

    With the help of the L'Hospital law, it is immediate to get that

    $ lim supt1tt0|β(F0cθ)(NI(s))eθs|dslim supt|β(F0cθ)Neθt|=0 $

    Hence, it follows that

    $ lim supt1tt0β(F0cθ)(NI(s))eθsds=0. $ (3.8)

    Similarly, we can get

    $ lim supt1tt0σ2β2θ2(NI(s))2eθsds=lim supt1tt0σ2β22θ2(NI(s))2e2θsds=0. $ (3.9)

    Bring Eqs (3.8)–(3.9) into Eq (3.7), it is easy to get that

    $ lim supt1tt0f2(I(s),s)ds=0. $ (3.10)

    Through the large number theorem for martingales, it is easy to get

    $ lim supt1tt0f3(I(s),s)ds=0. $ (3.11)

    Bring Eqs (3.6), (3.10) and (3.11) into Eq (3.4), it follows that $ \limsup\limits_{t\rightarrow \infty}\frac{\ln I(t)}{t} = 0 $. Therefore, based on the analyses above we conclude that $ I(t) $ tends to zero exponentially almost surely. This completes the proof.

    For any $ A\in \Sigma $, the transition probability function is denoted by $ P(t, x_{0}, A) $ for the diffusion process $ I(t) $, i.e.,

    $ P(t,x0,A)=Prob{I(t)A} $

    with the initial value $ I(0) = x $, where $ I(t) $ be a solution of Eq (2.5) such that the distribution of $ I(0) $ is absolutely continuous and has the density $ v(x) $. Then $ I(t) $ has also the density $ U(t, x) $, where $ U(0, x) = v(x) $, and $ U(t, x) $ satisfies the following Fokker-Planck equation (see [19,20])

    $ Ut=12σ2n2(t)2(x2(Nx)2U)x2(fU)x, $ (3.12)

    where

    $ f(x)=(βm(t)(Nx)γμ)x. $

    Now we introduce a Markov semigroup associated with Eq (3.12). Let $ P(t)v(x) = U(t, x) $ for $ v(x)\in \mathbb{D} $. Since the operator $ P(t) $ is a contraction on $ \mathbb{D} $, it can be extended to a contraction on $ L^{1} $. Hence, the operator $ \{P(t)\}_{t\geq 0} $ generates a Markov semigroup. Denote $ \mathcal{A} $ the infinitesimal generator of semigroup $ \{P(t)\}_{t\geq 0} $, i.e.,

    $ Av=12σ2n2(t)2(x2(Nx)2v)x2(fv)x. $

    The adjoint operator of $ \mathcal{A} $ is as follows:

    $ Av=12σ2n2(t)x2(Nx)22vx2+(fv)x. $

    For the convenience of discussing the main results of this section, Some useful lemmas are given.

    Lemma 3.1. For every point $ x_{0}\in (0, N) $ and $ t > 0 $, the transition probability function $ P(t, x_{0}, A) $ has a continuous density $ k(t, x, x_{0})\in C^{\infty}(\mathbb{R}_{+}, \mathbb{R}_{+}, \mathbb{R}_{+}) $.

    Proof. Let

    $ b(ϕ)=σn(t)(Nϕ)ϕ, $

    where $ \phi\in(0, N) $. Since for any $ \phi\in(0, N) $ we have $ b(\phi) > 0 $, $ b(\phi) $ span the space $ (0, N) $. Based on Hörmander theorem(See Theorem 8 in [19]), the transition probability function $ P(t, x_{0}, A) $ has a continuous density $ k(t, x, x_{0})\in C^{\infty}(\mathbb{R}_{+}, \mathbb{R}_{+}, \mathbb{R}_{+}) $.

    According to Lemma 3.1, it follows that for any $ f\in \mathbb{D} $,

    $ P(t)f(x)=N0k(t,x,u)f(u)du. $

    Hence, the semigroup $ \{P(t)\}_{t\geq 0} $ is an integral Markov semigroup. Next, we rewrite Eq (2.5) of Itô type as Stratonovitch type:

    $ ˙I(t)=ˆf(I(t))dt+σn(t)(NI(t))I(t)dB(t), $

    where

    $ ˆf(x)=[βm(t)(Nx)γμ]x12σ2n2(t)(Nx)(N2x)x. $

    Now we briefly describe the method based on support theorems [21,22,23] which allows us to check where the kernel $ k $ is positive. Fixing a point $ x_{0}\in \mathbb{R}_{+} $ and a function $ \varphi\in L^{2}([0, T];\mathbb{R}) $, consider the following system of integral equations:

    $ xφ(t)=x0+t0[ˆf(xφ(s))+σn(s)φ(Nxφ(s))xφ(s)]ds. $ (3.13)

    Let $ D_{x_{0}, \varphi} $ be the Frechét derivative of the function $ h\mapsto x_{\varphi+h}(t) $ from $ L^{2}([0, T];\mathbb{R}) $ to $ \mathbb{R} $. If for some $ \varphi\in L^{2}([0, T];\mathbb{R}) $ the Frechét derivative $ D_{x_{0}, \varphi} $ has rank 1, then $ k(t, x, x_{0}) > 0 $ for $ x = x_{\varphi}(T) $. The derivative $ D_{x_{0}, \varphi} $ can be found by means of the perturbation method for ordinary differential equations. Let $ \Gamma(t) = \hat{f}'(x_{\varphi}(t))+b'(x_{\varphi}(t))\varphi $. For $ 0\leq t_{0}\leq t\leq T $, let $ Q(t, t_{0}) $ is the matrix function such that $ Q(t_{0}, t_{0}) = 1 $, $ \frac{\partial Q(t, t_{0})}{\partial t} = \Gamma(t)Q(t, t_{0}) $. Then,

    $ Dx0,φh=T0Q(T,s)b(s)h(s)ds. $

    Lemma 3.2. For each $ x_{0}\in \mathbb{R}_{+} $, and for every $ x\in \mathbb{R}_{+} $, there exists $ T > 0 $ such that $ k(t, x, x_{0}) > 0 $.

    Proof. We first verify that the rank of $ D_{x_{0}, \varphi} $ is 1. Let $ \epsilon\in(0, T) $ and $ h(t) = \frac{1_{[T-\epsilon, T]}(t)}{n(t)x_{\varphi}(t)(N-x_{\varphi}(t))} $, $ t\in[0, T] $, where $ 1_{[T-\epsilon, T]}(t) $ is the characteristic function of interval $ [T-\epsilon, T] $. Since $ Q(T, s) = 1-\Gamma(T)(T-s)+o(T-s) $, it is easy to get that

    $ Dx0,φh=ϵσ+12ϵ2Γ(T)σ+o(ϵ2). $

    Since $ \Gamma(T)\neq 0 $, $ D_{x_{0}, \varphi} $ has rank 1.

    Next we show that for any two points $ x_{0}\in \mathbb{R}_{+} $ and $ x\in \mathbb{R}_{+} $, there exist a control function $ \varphi $ and $ T > 0 $ such that $ x_{\varphi}(0) = x_{0}, x_{\varphi}(T) = x $. The Eq (3.13) can be replaced by the following equation:

    $ ˙xφ(t)=ˆf(xφ(t))σn(t)φ(Nxφ(t))xφ(t). $

    By the same discussion as in reference [24], it is easy to find a control function $ \varphi $ and $ T > 0 $ such that $ x_{\varphi}(0) = x_{0}, x_{\varphi}(T) = x_{1} $. This claims $ k(t, x, x_{0}) > 0 $.

    Lemma 2.1 and Lemma 3.2 yield that the Markov semigroup $ \{P(t)\}_{t\geq 0} $ is asymptotically stable or is sweeping. Next, the sufficient condition that guarantee Markov semigroup $ \{P(t)\}_{t\geq 0} $ is asymptotically stable will be given by using Foguel alternative.

    Theorem 3.3. Let $ (S(t), I(t)) $ be a solution of the Eq $(2.4)$ for any given initial value $ (S(0), I(0))\in\Gamma^{*} $. If

    $ Rs0>1andσ2<2μθ2γIβ2N2min{S2,I2}2βmax(I,S)|F0cμ|θ2NIβ2 $ (3.14)

    hold, then the semigroup $ \{P(t)\}_{t\geq 0} $ is asymptotically stable, where $ S^{*}(t) = \frac{\beta c}{\theta(\mu+\gamma)} $, $ I^{*}(t) = N-\frac{\beta c}{\theta(\mu+\gamma)} $.

    Proof. According to Lemma 3.1, it follows that $ \{P(t)\}_{t\geq 0} $ is an integral Markov semigroup with a continuous kernel $ k(t, x, x_{0}) $. Then from Lemma 3.2 for every $ f\in \mathbb{D} $, it is immediate to get that

    $ 0P(t)fdt>0. $

    By virtue of Lemma 2.1, it follows that the semigroup $ \{P(t)\}_{t\geq 0} $ is asymptotically stable or sweeping with respect to compact sets. In order to exclude the sweeping case, we shall construct a non-negative $ C^{2} $-function $ V $ and a closed set $ O\in\Sigma $ such that

    $ sup(S,I)R2+OAV<0. $

    Such function is called Khasminski$\check{\rm l}$ function. In fact, it is easy to get that Eq (2.4) has an endemic equilibrium $ E^{*} = (S^{*}, I^{*}) = (\frac{\beta c}{\theta(\mu+\gamma)}, N-\frac{\beta c}{\theta(\mu+\gamma)}) $. Then we know

    $ {μN+γIcθβSIμS=0,cθβSIγIμI=0. $

    Let

    $ V=12(SS+II)2+λ(IIIlnII)=V1+λV2. $

    where $ \lambda = \frac{2\theta\mu}{c\beta} $.Then,

    $ AV1=(SS+II)(μNμIμS)=(SS+II)(μS+μIμIμS)=μ(SS)2μ(II)22μ(SS)(II), $
    $ AV2=(II)(βm(t)Sγμ)+12σ2n2(t)S2I=(II)(βm(t)SβcθS)+12σ2n2(t)S2Iβcθ(SS)(II)+βNmax(I,S)|F0cμ|+12σ2n2(t)S2I, $
    $ AV=AV1+AV2=μ[(SS)2+(II)2]2μ(SS)(II)+λβcθ(SS)(II)+λβNmax(I,S)|F0cμ|+λ2σ2n2(t)S2Iμ[(SS)2+(II)2]+λβNmax(I,S)|F0cμ|+λβ22θ2σ2N2I:=b1(SS)2b1(II)2+b3. $

    Conditions Eq (3.14) implies that the ball

    $ b1(SS)2+b1(II)2=b3. $

    lies entirely in the positive zone of $ \mathbb{R}_{+}^{2} $. Hence there exists a closed set $ O\in\Sigma $ which contains the ellipsoid and $ C > 0 $ such that

    $ sup(S,I)R2+OAVC<0. $

    The proof is hence completed.

    Since it is impossible to know the explicit solution of Eq (2.5), constructing appropriate numerical methods to approximate Eq (2.5) and even preserve properties of Eq (2.5) is important and necessary. In this section, to approximate Eq (2.5) a positivity-preserving numerical method is introduced.

    In order to obtain a positive numerical solution, we first make a transformation

    $ y(t)=ln(I(t))ln(NI(t))=lnI(t)NI(t). $ (4.1)

    According to Eq (2.5), applying Itô formula to $ y(t) $ yields

    $ dy(t)=F(y(t))dt+σNn(t)dB(t), $ (4.2)

    with $ y_{0} = \ln(I_{0})-\ln(N-I_{0}) $, where

    $ F(y(t))=βm(t)N(γ+μ)(1+ey(t))+N2(2Ney(t)1+ey(t)N)σ2n2(t). $ (4.3)

    Now, we apply the EM scheme to Eq (4.2) then obtain

    $ X(tk+1)=X(tk)+F(X(tk))Δ+σNn(tk)ΔB(tk), $ (4.4)

    for any $ \Delta\in(0, 1] $ and $ k\geq 0 $, where $ \Delta B(t_{k}) = B(t_{k+1})-B(t_{k}) $ and $ t_{k} = k\Delta $. Transforming back, i.e.,

    $ I(tk+1)=NN1+eX(tk)=NeX(tk)1+eX(tk), $

    gives a strictly positive approximation of Eq (2.5). The forthcoming results concern exponential property of $ I(t) $ and $ X(t) $, $ t\in[0, T] $, which will be used in convergence analysis of the numerical scheme.

    Theorem 4.1. For any $ p\geq0 $

    $ (supt[0,T]E[Ip(t)])(supt[0,T]E[(NI(t))p])Kp, $

    where

    $ Kp=(Ip0(NI0)p)e[γ+μ+βN2c+θF0θ+p+12(βσNθ)2]pT. $

    Proof. Define a continuous function $ V:(0, N)\rightarrow \mathbb{R}^{+} $ by

    $ V=Ip. $

    By the Itô formula, it is easy to get that

    $ dV=p[γ+μβm(t)(NI)+p+12(σn(t)(NI(t)))2]Ipdt+JdB(t)p[γ+μ+βN2c+θF0θ+p+12(βσNθ)2]Ipdt+JdB(t), $ (4.5)

    where $ J = -p\sigma n(t)(N-I)I^{-p} $. we choose $ m_{0} > 0 $ sufficiently large such that $ 1/m_{0} < I_{0} < N-1/m_{0} $. For each integer $ m\geq m_{0} $, define a stopping time

    $ τm=inf{t[0,T]:I(t)(1/m,N(1/m))}. $

    Integrating both sides of Eq (4.5) and then taking expectation, it is immediate to get that

    $ EIp(tτm)=Ip0+Etτm0p[γ+μβm(s)(NI(s))+p+12(σn(s)(NI(s)))2]Ip(s)dsIp0+p[γ+μ+βN2c+θF0θ+p+12(βσNθ)2]Et0Ip(sτm)ds. $ (4.6)

    With the help of the Gronwall inequality, it follows that

    $ EIp(tτm)Ip0e[γ+μ+βN2c+θF0θ+p+12(βσNθ)2]pT. $ (4.7)

    Then, letting $ m\rightarrow \infty $ and using the Fatou lemma yield

    $ supt[0,T]E[Ip(t)]Kp. $ (4.8)

    According to calculations similar to those for obtaining Eqs (4.6)–(4.8), it is easy to get that

    $ supt[0,T]E[(NI(t))p]Kp. $

    Therefore the desired conclusion holds.

    Remark 4.2. As for moment boundedness, Theorem 4.1 proves the boundedness of inverse moments and we can obtain the boundedness of positive moments by using Theorem 3.2.

    Now, we will concern exponential integrability property of analysis solution $ y(t) $, $ t\in[0, T] $ through using Theorem 4.1.

    Theorem 4.3. For any $ p\in \mathbb{R} $, Eq $(4.2)$ has the following exponential integrability property

    $ supt[0,T]E[epy(t)]N|p|K|p|, $

    where $ K_{p} $ is given by Theorem 4.1.

    Proof. Through Eq (4.1) and Theorem 4.1, for any $ p\geq0 $, it is easy to get that

    $ supt[0,T]E[epy(t)]=supt[0,T]E[Ip(t)(NI(t))p]Npsupt[0,T]E[(NI(t))p]NpKp. $

    For any $ p < 0 $, it follows that

    $ supt[0,T]E[epy(t)]=supt[0,T]E[Ip(t)(NI(t))p]N|p|supt[0,T]E[Ip(t)]N|p|K|p|. $

    Hence the desired conclusion holds.

    The forthcoming theorem concerns exponential property of numerical solution $ X(t) $, $ t\in[0, T] $, which plays an important role in discussing strong convergence rate of arithmetic.

    Theorem 4.4. For any $ P > 0 $, Eq $(4.4)$ has the property that

    $ supΔ(0,1]sup0kT/ΔE[epX(tk)]C,T>0. $

    Proof. By Eq (4.1), it is immediate to get that

    $ F(X(tk1))(F0cθ)βN+σ2N2β2θ2. $ (4.9)

    Substituting Eq (4.9) into Eq (4.4), it is immediate to get that

    $ X(tk)X(tk1)+[(F0cθ)βN+σ2N2β2θ2]Δ+σβNθΔB(tk1)y0+[(F0cθ)βN+σ2N2β2θ2]kΔ+σβNθk1i=0ΔBi, $

    for any integer $ k\geq1 $. For any $ p > 0 $, using the Itô formula and the Gronwall inequality further yields

    $ E[epX(tk)]epy0+pT[(F0cθ)βN+σ2N2β2θ2]E[eσpβNθk1i=0ΔBi]epy0+pT[(F0cθ)βN+σ2N2β2θ2]e(σpβN2θ)2TC. $

    The proof is complete.

    In this subsection, the first order strong convergence of positivity preserving logarithmic EM method for Eq (2.5) is proved by using Theorem 4.1, Theorem 4.3 and Theorem 4.4.

    Theorem 4.5. For any $ q > 0 $ there exists a constant $ C > 0 $ such that for any $ \Delta\in(0, 1] $

    $ E[supk=0,1,,T/Δ|X(tk)y(tk)|q]CΔq,T>0. $

    Proof. By integrating on both sides of Eq (4.2), it is easy to get that

    $ y(tk+1)=y(tk)+tk+1tkF(y(s))ds+tk+1tkσNn(s)dB(s). $ (4.10)

    Using Eqs (4.1), (4.4) and (4.10), it follows that

    $ X(tk+1)y(tk+1)=X(tk)y(tk)+(F(X(tk))F(y(tk)))Δ+σβNθ(1eθtk)ΔB(tk)+tk+1tk(F(y(tk))F(y(s)))dstk+1tkσβNθ(1eθs)dB(s)=X(tk)y(tk)+(γ+μ)Ntk+1tkstk1(NI(s))(NI(tk))dI(u)dstk+1tkσβNθ(1eθs)dB(s)+σ2β2Nθ2tk+1tktks(1eθs)2dI(u)ds+2σ2β2N(NI(tk))θtk+1tkstkeθu(1eθu)duds+βN(cF0θ)tk+1tktkseθududs+2σ2β2N(NI(tk))θtk+1tkstkeθu(1eθu)duds(γ+μ)(eX(tk)ey(tk))Δ+σ2β2N2θtk+1tktkseθu(1eθu)duds+σβNθ(1eθtk)ΔB(tk)+(11+ey(tk)11+eX(tk))(σβNθ(1eθtk))2Δ=X(tk)y(tk)+eX(tk)ey(tk)(1+ey(tk))(1+eX(tk))(σβNθ(1eθtk))2Δ(γ+μ)(eX(tk)ey(tk))Δ+J(1)k+J(2)k+J(3)k+J(4)k+Z(1)k+Z(2)k. $

    where

    $ J(1)k=βN(cF0θ)tk+1tktkseθududs,J(3)k=σβNθ(1eθtk)ΔB(tk)tk+1tkσβNθ(1eθs)dB(s), $ (4.11)
    $ J(2)k=σ2β2N2θtk+1tktkseθu(1eθu)duds,J(4)k=2σ2β2N(NI(tk))θtk+1tkstkeθu(1eθu)duds, $ (4.12)
    $ Z(1)k=(γ+μ)Ntk+1tkstk1(NI(s))(NI(tk))[(βcθ+(F0βcβθ)eθu)(NI(u))γμ]I(u)duds+σ2β2Nθ2tk+1tktks(1eθs)2[(βcθ+(F0βcβθ)eθu)(NI(u))γμ]I(u)duds, $ (4.13)
    $ Z(2)k=(γ+μ)Ntk+1tkstk1(NI(s))(NI(tk))σβθ(1eθu)(NI(u))I(u)dB(u)ds+σ2β2Nθ2tk+1tktks(1eθs)2σβθ(1eθu)(NI(u))I(u)dB(u)ds. $ (4.14)

    Let $ u_{k} = X(t_{k})-y(t_{k}) $, $ J_{k} = J^{(1)}_{k}+J^{(2)}_{k}+J^{(3)}_{k}+J^{(4)}_{k} $ and $ Z_{k} = Z^{(1)}_{k}+Z^{(2)}_{k} $, then

    $ u2k+1=u2k+(γ+μ)2(eX(tk)ey(tk))2Δ2+(eX(tk)ey(tk))2(1+ey(tk))2(1+eX(tk))2(σβNθ(1eθtk))4Δ22(γ+μ)uk(eX(tk)ey(tk))Δ+2ukeX(tk)ey(tk)(1+ey(tk))(1+eX(tk))(σβNθ(1eθtk))2Δ+J2k+Z2k+2ukJk+2ukZk2(γ+μ)(eX(tk)ey(tk))2(1+ey(tk))(1+eX(tk))(σβNθ(1eθtk))2Δ22(γ+μ)(eX(tk)ey(tk))JkΔ2(γ+μ)(eX(tk)ey(tk))ZkΔ+2JkZk+2(1eθtk)2ΔJkeX(tk)ey(tk)(1+ey(tk))(1+eX(tk))(σβNθ)2+2ZkeX(tk)ey(tk)(1+ey(tk))(1+eX(tk))(σβNθ(1eθtk))2Δ. $ (4.15)

    Further, it is immediate to get that

    $ uk(eX(tk)ey(tk))(1+ey(tk))(1+eX(tk))|uk||eX(tk)ey(tk)|(1+ey(tk))(1+eX(tk))u2k, $

    By using Lagrange mean value theorem, it follows that

    $ (eX(tk)ey(tk))2(1+ey(tk))2(1+eX(tk))2(X(tk)y(tk))2e2ξ(1+ey(tk))2(1+eX(tk))2u2ke2(X(tk)y(tk))(1+e(X(tk)y(tk)))2u2k, $

    where $ \xi\in (X(t_{k})\wedge y(t_{k}), X(t_{k})\vee y(t_{k})) $.Then, Eq (4.15) can be estimated as

    $ u2k+12u2k+4(γ+μ)2(eX(tk)ey(tk))2Δ2+2u2k(σβNθ)4Δ2+3u2k(σβNθ)2Δ+4J2k+4Z2k+2ukJk+2ukZk[2+(σβNθ)2(3+2(σβNθ)2Δ)Δ]u2k+4(γ+μ)2(eX(tk)ey(tk))2Δ2+4J2k+4Z2k+2ukJk+2ukZkki=0(2+CΔ)ki[4J2i+4Z2i+4(γ+μ)2(eX(ti)ey(ti))2Δ2]+2ki=0(2+CΔ)ki[uiJi+uiZi]Cki=0[J2i+Z2i]+Cki=0[(eX(ti)ey(ti))2Δ2]+2ki=0(2+CΔ)ki[uiJi+uiZi]. $ (4.16)

    Let $ \mathfrak{M}_{0} = 0 $, and $ \mathfrak{M}_{k} = \sum^{k-1}_{i = 0}(2+C\Delta)^{k-1-i}u_{i}Z^{(2)}_{i} $ for any $ k\geq 1 $, since

    $ E[Z(2)k|Fk]=σβN(γ+μ)θE[tk+1tkstk1(NI(s))(NI(tk))(1eθu)(NI(u))I(u)dB(u)ds|Fk]+σ3β3Nθ3E[tk+1tktks(1eθs)2(1eθu)(NI(u))I(u)dB(u)ds|Fk]=0, $

    it is then easy to show that $ \mathbb{E}[\mathfrak{M}_{k+1}|\mathcal{F}_{k}] = \mathfrak{M}_{k}+u_{k} \mathbb{E}[Z^{(2)}_{k}|\mathcal{F}_{k}] = \mathfrak{M}_{k} $. This implies immediate that $ \mathfrak{M}_{k} $ is a martingale. Using Burkholder-Davis-Gundy inequality and Hölder inequality, it is easy to get that

    $ E[supk=0,1,,l|Mk|q]CE[(l1i=0u2i|Z(2)i|2)q2]CE[(T/Δ)q/21li=0|ui|q|Z(2)i|q], $ (4.17)

    for any $ q\geq2 $ and $ l = 0, \cdot\cdot\cdot, \lfloor T/\Delta \rfloor $.Using Eq (4.17) and the basic inequality $ (\sum_{i = 1}^{n}a_{i})^{p}\leq C\sum_{i = 1}^{n}a_{i}^{p} $ for Eq (4.16), it follows that

    $ E[supk=0,1,,l|uk+1|2q]E[supk=0,1,,l|Cki=0(J2i+Z2i)+Cki=0(eX(ti)ey(ti))2Δ2+2ki=0(2+CΔ)ki(uiJi+uiZi)|q]CE[(li=0(J2i+Z2i))q+(li=0(ex(ti)ey(ti))2)qΔ2q+supk=0,1,,l|ki=0(2+CΔ)ki(uiJi+uiZi)|q], $

    then, using the Hölder inequality, the triangle inequality and the basic inequality, it is easy to get that

    $ E[supk=0,1,,l|uk+1|2q]CE[supk=0,1,,l(|Mk+1|q+|ki=0(2+CΔ)kiuiJi|q)+(T/Δ)q1(li=0|J2i+Z2i|q+li=0|ex(ti)ey(ti)|2qΔ2q+li=0|uiZ(1)i|q)]CE[(T/Δ)q1li=0(|J(1)i|2q+|J(2)i|2q+|J(3)i|2q+|J(4)i|2q+|Z(1)i|2q+|Z(2)i|2q+|ex(ti)ey(ti)|2qΔ2q+|uiZ(1)i|q+((2+CΔ)li|uiJi|)q)+supk=0,1,,l|Mk+1|q] $ (4.18)

    for any $ q\geq 2 $ and $ l = 0, 1, \cdot\cdot\cdot, \lfloor T/\Delta\rfloor $.By using Lagrange mean value theorem, it follows that

    $ E[(ex(ti)ey(ti))2q]E[(ex(ti)+ey(ti))q|ex(ti)ey(ti)|q]E[(ex(ti)+ey(ti))2q|x(ti)y(ti)|q]. $ (4.19)

    Combining Eq (4.19), Theorem 4.3, Theorem 4.4 and Young inequality, it is easy to get that

    $ E[Δ2q(T/Δ)q1li=0(ex(ti)ey(ti))2q]Tq1li=0E[Δq+12(ex(ti)+ey(ti))2q|ui|qΔ12]Tq12li=0E[Δ2q+1(ex(ti)+ey(ti))4q+|ui|2qΔ]CTqΔ2q+CTq1Δli=0E|ui|2q. $ (4.20)

    For any $ q\geq2 $, using triangle inequality, basic inequality, Hölder inequality, Theorem 3.1 and Theorem 4.1 for Eq (4.13), it is immediate to get that

    $ E|Z(1)i|2qCE[(tk+1tkstk1(NI(s))(NI(tk))|(βcθ+(F0ββcθ)eθu)(NI(u))(γ+μ)|I(u)duds)2q+(tk+1tkstk(1eθs)2|(cβθ+(F0βcβθ)eθu)(NI(u))(γ+μ)|duds)2q]CΔ2qE[(tk+1tk1(NI(s))(NI(tk))ds)2q]+CΔ4qCΔ2qE[(tk+1tk12q2q1ds)2q1(tk+1tk((NI(s))(NI(tk)))2qds)]+CΔ4qCΔ4q1tk+1tk(E[(NI(s))4q])12(E(NI(tk))4q)12ds+CΔ4qCΔ4q. $ (4.21)

    Using Hölder inequality, Burkholder-Davis-Gundy inequality, Theorem 3.1 and Theorem 4.1 for Eq (4.14), it is immediate to get that

    $ E|Z(2)i|2qCE[|tk+1tkstk1(NI(s))(NI(tk))σβθ(1Eθu)(NI(u))I(u)dB(u)ds|2q+|tk+1tkstk(1Eθs)2σβθ(1eθu)(NI(u))I(u)dB(u)ds|2q]CE[|tk+1tkstk1(NI(s))(NI(tk))dB(u)ds|2q+|tk+1tkstkdB(u)ds|2q]CΔ2q1[tk+1tkE[|stk1(NI(s))(NI(tk))dB(u)|2q]ds+tk+1tkE[|stkdB(u)|2q]ds]CΔ3q2[tk+1tkstkE[((NI(s))(NI(tk)))2q]duds+Δ2]CΔ3q2[tk+1tkstk(E[(NI(s))4q])12(E(NI(tk))4q)12duds+Δ2]CΔ3q. $ (4.22)

    Thus, the Hölder inequality gives that

    $ E[|ui|q|Z(1)i|q](E|ui|2q)12(E|Z(1)i|2q)12C(E|ui|2q)12Δ2q. $ (4.23)
    $ E[|ui|q|Z(2)i|q](E|ui|2q)12(E|Z(2)i|2q)12C(E|ui|2q)12Δ3q2. $ (4.24)

    For any $ q\geq2 $, using Eqs (4.11) and (4.12) and Theorem 3.1, it follows that

    $ E|J(1)k|2qE|βN(cF0θ)tk+1tktkseθududs|2qCΔ4q, $ (4.25)
    $ E|J(2)k|2qE|σ2β2N2θtk+1tktksEθu(1eθu)duds|2qCΔ4q, $ (4.26)
    $ E|J(4)k|2qE|2σ2β2N(NI(tk))θtk+1tkstkeθu(1eθu)duds|2qCΔ4q. $ (4.27)

    using Eq (4.12), Burkholder-Davis-Gundy inequality and Lagrange mean value theorem, it follows that

    $ E|J(3)k|2qE|σβNθ(1e0tk)ΔB(tk)tk+1tkσβNθ(1eθs)dB(s)|2qCE|tk+1tk(eθseθtk)dB(s)|2qCE[(tk+1tk|eθseθtk|2ds)q]CΔ3q. $ (4.28)

    For any $ q\geq2 $, the Canchy-Schwarz inequality gives that

    $ E[|ui|q|J(j)i|q](E|ui|2q)12(E|J(j)i|2q)12C(E|ui|2q)12Δ2q,j=1,2,4, $ (4.29)
    $ E[|ui|q|J(3)i|q](E|ui|2q)12(E|J(3)i|2q)12C(E|ui|2q)12Δ3q2. $ (4.30)

    Thus, substituting Eqs (4.20)–(4.30) into Eq (4.18), it is immediate to get that

    $ E[supk=0,1,,l|uk+1|2q]CE[(T/Δ)q1li=0(|J(1)i|2q+|J(2)i|2q+|J(3)i|2q+|J(4)i|2q+|Z(1)i|2q+|Z(2)i|2q+|ex(ti)ey(ti)|2qΔ2q+|uiZ(1)i|q+((2+CΔ)li|uiJi|)q)+supk=0,1,,l|Mk+1|q]CTq1Δq1[CΔ3q+Cli=0(E|ui|2q)12Δ2q+Cli=0(E|ui|2q)12Δ3q2]+CTqΔ2q+CTq1Δli=0E|ui|2q+CE[(T/Δ)q/21li=0|ui|q|Z(2)i|q]CΔ2q+CΔli=0E|ui|2q $

    for any $ q\geq2 $, and $ l = 0, 1, \cdot\cdot\cdot, \lfloor T/\Delta \rfloor $, and applying the Gromwall inequality we obtain

    $ E[supk=0,1,,l|uk+1|2q]CΔ2q $

    for any $ q\geq2 $, and $ l = 0, 1, \cdot\cdot\cdot, \lfloor T/\Delta \rfloor $. This completes now the proof of the assertion for $ q\geq2 $. The Hölder inequality yields

    $ E[supk=0,1,,l|uk+1|2p]E[supk=0,1,,l|uk+1|2q]pqCΔ2p $

    for any $ p\in(0, 2) $, and $ l = 0, 1, \cdot\cdot\cdot, \lfloor T/\Delta \rfloor $. The proof is complete.

    Above, the convergence rate of the EM method of Eq (4.2) is given. Below, we will give the convergence rate of the original Eq (2.5) of Eq (4.2).

    Theorem 4.6. For any $ p > 0 $, there exists a constant $ C > 0 $ such that for any $ \Delta\in (0, 1] $

    $ E[supk=0,1,,T/Δ|I(tk)ˉI(tk)|p]CΔp,T>0, $

    Where $ \bar{I}(t_{k}) $ and $ I(t_{k}) $ denote the value of the analytical solution at time $ t_{k} $ and the value of the numerical solution at time $ t_{k} $ respectively.

    Proof. The Lamperti-type transformation yields

    $ E[supk=0,1,,T/Δ|I(tk)ˉI(tk)|p]NE[supk=0,1,,T/Δ|eytk1+eytkeXtk1+eXtk|]NE[supk=0,1,,T/Δ|y(tk)X(tk)|p]. $

    Thus, by applying Theorem 4.5, we infer that

    $ E[supk=0,1,,T/Δ|I(tk)ˉI(tk)|p]NE[supk=0,1,,T/Δ|y(tk)X(tk)|p]CΔp $

    for any $ \Delta\in (0, 1] $. The proof is complete.

    Remark 4.7. For positive preserving numerical methods of nonlinear SDE, Mao et al.[25] have established a truncated EM method for stochastic Lotka-Volterra competition model but without any convergence rate of the algorithm. Theorem 4.6 has stated that for a stochastic SIS model which the transmission coefficient and the noise intensity are the function of AQI, the logarithmic EM method has the first-order $ p $th-moment convergence rate over a finite time for all $ p > 0 $. This is a major innovation of this paper.

    In this section, we want to illustrate the correctness of our theoretical results obtained in previous section by numerical simulations.

    In this subsection, in order to show theoretical result of stationary distribution, some numerical simulations are presented. By using explicit Milsteins method [26], the numerical scheme for Eq (2.4) is given by:

    $ {S(tk+1)=S(tk)+μN+γI(tk)β[cθ+(F0cθ)eθtk]S(tk)I(tk)μS(tk)+σβθ[1eθtk]S(tk)I(tk)Δtξk+β2σ2S2(tk)I(tk)2θ2[1eθtk]2(ξ2k1)Δt,I(tk+1)=I(tk)+β[cθ+(F0cθ)eθtk]S(tk)I(tk)γI(tk)μI(tk)+σβθ[1eθtk]S(tk)I(tk)Δtξk+β2σ2S(tk)I2(tk)2θ2[1eθtk]2(ξ2k1)Δt, $ (5.1)

    where $ \xi_{k}(k = 1, 2, \cdot\cdot\cdot) $ are independent Gaussian random variables $ N(0, 1) $.

    With the parameters in Table 1 and taking $ T = 600, 000\; day, \Delta t = 1\; day $, $ \sigma = 0.05\; \mu g \cdot m^{-3} $(resp.$ \sigma = 0.10\; \mu g \cdot m^{-3} $), simple calculation further yields that $ R^{s}_{0} = 2.569865 > 1, \sigma^{2} = 2.5\times 10^{-3}\; \mu g ^{2}\cdot m^{-9} < 2.47\times 10^{-3}\; \mu g ^{2}\cdot m^{-9} = \frac{2\mu\theta^{2}}{\gamma I^{*}\beta^{2}N^{2}}\min\{S^{*2}, I^{*2}\}-\frac{2\beta\max(I^{*}, S^{*})|F_{0}-\frac{c}{\mu}|\theta^{2}}{NI^{*}\beta^{2}} $(resp.$ R^{s}_{0} = 2.569875 > 1, \sigma^{2} = 1\times 10^{-2}\; \mu g ^{2}\cdot m^{-9} < 2.47\times 10^{-2}\; \mu g ^{2}\cdot m^{-9} = \frac{2\mu\theta^{2}}{\gamma I^{*}\beta^{2}N^{2}}\min\{S^{*2}, I^{*2}\}-\frac{2\beta\max(I^{*}, S^{*})|F_{0}-\frac{c}{\mu}|\theta^{2}}{NI^{*}\beta^{2}} $) by Eqs (3.2) and (3.14). Thus, it is immediate to get that Eq (2.4) exists stationary distribution under noise intensity $ \sigma = 0.05\; \mu g \cdot m^{-3} $ and $ \sigma = 0.1\; \mu g \cdot m^{-3} $ by Theorem 4.1. Actually, as shown in from Figure 2, for Eq (2.4), the probability density functions of $ S(600000\; day) $ and $ I(600000\; day) $ population satisfy normal distribution under two different values of $ \sigma = 0.05\; \mu g \cdot m^{-3} $ and $ \sigma = 0.10\; \mu g \cdot m^{-3} $. This is the same conclusion as given by Theorem 4.1.

    Table 1.  Parameter values of stationary distribution.
    Parameters and the epidemiological meaning Value Unit Source of data
    $ N $: The total number of people 50 $ person\cdot km^{-3} $ Assumption
    $ S_{0} $: The total number of people 47 $ person\cdot km^{-3} $ Assumption
    $ I_{0} $: The total number of people 3 $ person\cdot km^{-3} $ Assumption
    $ F_{0} $: The initial concentration of AQI $ 3000/7.07 $ $ \mu g \cdot m^{-3} $ Assumption
    $ \beta $: Baseline transmission coefficient $ 2.4769\times10^{-4} $ $ m^{3}\cdot km^{3} \cdot person^{-1}\cdot \mu g ^{-1}\cdot day^{-1} $ Reference [10]
    $ \theta $: Clearance rate of pollutants 0.39 $ day^{-1} $ Reference [12]
    $ c $: Inflow rate of pollutants 30 $ \mu g \cdot m^{-3}\cdot day^{-1} $ Reference [12]
    $ \gamma $: Recovery rate for infected 0.3 $ day^{-1} $ Reference [12]
    $ \mu $: The per capita death rate 0.0707 $ day^{-1} $ Assumption

     | Show Table
    DownLoad: CSV
    Figure 1.  The paths of $ S(t), I(t) $ of Eq (2.4) under different noise intensities $ \sigma = 0.05\mu g \cdot m^{-3} $(a) and $ \sigma = 0.10\mu g \cdot m^{-3} $(b).
    Figure 2.  Histogram of the probability density function of $ S(600, 000~ day) $(left column) and $ I(600, 000~ day) $(right column) population for Eq (2.4) with two different values of $ \sigma: \sigma = 0.05 \mu g \cdot m^{-3} $ and $ \sigma = 0.10 \mu g \cdot m^{-3} $, the smoothed curves are the probability density functions of $ S(t) $ and $ I(t) $, respectively.

    In this subsection, in order to illustrate the efficiency of the logarithmic Euler-Maruyama scheme, some numerical simulations are given.

    By using logarithmic Euler-Maruyama method, Eq (2.5) can be discretized in the following form:

    $ {X(tk+1)=X(tk)+[β(cθ+(F0cθ)eθtk)N(γ+μ)(1+eX(tk))+N2(2NeX(tk)1+eX(tk)N)(σβθ(1eθtk))2]Δt+σβNθ(1eθtk)Δtξk,I(tk+1)=NN1+eX(tk)=NeX(tk)1+eX(tk). $ (5.2)

    With the parameters in Table 2, Figure 3 plots the sample paths of the numerical solutions of the logarithmic EM scheme, the classic EM scheme and $ I = 0\; person\cdot km^{-3} $ under different initial values ($ I_{0} = 1\; person\cdot km^{-3} $ and $ I_{0} = 10\; person\cdot km^{-3} $, respectively). It is clear to see from Figure 3 that the purple line will have negative values, but red line will achieve the effect of maintaining positive.

    Table 2.  Parameter values of approximation of positive solution.
    Parameters and the epidemiological meaning Value Unit Source of data
    $ N $: The total number of people $ 100 $ $ person\cdot km^{-3} $ Assumption
    $ F_{0} $: The initial concentration of AQI $ 100 $ $ \mu g \cdot m^{-3} $ Assumption
    $ \beta $: Baseline transmission coefficient $ 2.4769\times10^{-4} $ $ m^{3}\cdot km^{-3}\cdot person^{-1}\cdot \mu g ^{-1}\cdot day^{-1} $ Reference [10]
    $ \theta $: Clearance rate of pollutants 0.3 $ day^{-1} $ Reference [12]
    $ c $: Inflow rate of pollutants 5 $ \mu g \cdot m^{-3}\cdot day^{-1} $ Assumption
    $ \mu $: The per capita death rate 0.0707 $ day^{-1} $ Assumption
    $ \gamma $: Recovery rate for infected 0.4 $ day^{-1} $ Reference [12]

     | Show Table
    DownLoad: CSV
    Figure 3.  When $ T = 400~ day $, $ \Delta = 1~ day $ and $ \sigma = 5~ \mu g \cdot m^{-3} $, the paths of $ I(t) $ of Eq (2.4) with $ R_{0}^{s} = 0.69 $. Left: $ I_{0} = 1 $~ $ person\cdot km^{-3} $. Right: $ I_{0} = 10 $~ $ person\cdot km^{-3} $.

    In this subsubsection, the parameters of simulations are those in Table 2. Since the exact solution of Eq (2.5) cannot be obtained, we regard the classic EM scheme with small step size $ \Delta = 2^{-19}\; day $ as the replacement of the exact solution $ I(t) $ of Eq (2.5). Figure 4 respectively shows that when $ p = 2 $ and $ p = 3 $ the $ \log_{2}\; day-\log_{2}\; person\cdot km^{-3} $ approximation errors Error(2) and Error(3) between the exact solution $ I(t) $ and the numerical solution $ I(t_{k}) $ with different step sizes $ \Delta\in[2^{-9}\; day, 2^{-8}\; day, \cdot\cdot\cdot, 2^{-4}\; day] $ for 10, 000 simulations. According to Theorem 4.6, we can get that when $ p $ is other positive values, it also has the first-order convergence rate. In Figure 4, the blue solid line depicts $ \log_{2}\; day-\log_{2}\; person\cdot km^{-3} $ error while the red dashed is a reference line of slope $ 1\; person\cdot km^{-3}\cdot day^{-1} $, and

    $ Error(p):=(E[supk=1,2,,2/Δ|I(tk)ˉI(tk)|p])1p(11000010000j=1[supk=1,2,,2/Δ|I(j)(tk)ˉI(t(j)k)|p])1p, $
    Figure 4.  The approximation error of the exact solution and the numerical solution by the logarithmic EM scheme (5.2) as the function of step size $ \Delta\in[2^{-9}~ day, 2^{-8}~ day, \cdot\cdot\cdot, 2^{-4}~ day] $, with $ \sigma = 0.005~ \mu g \cdot m^{-3}, ~ T = 2~ day $.

    where $ j $ stands for the $ j $th sample path. It is clear to see from Figure 4 that the logarithmic Euler-Maruyama method has the first-order convergence rate. This is the same conclusion as given by Theorem 4.6.

    In this paper, we obtain an epidemic model affected by air pollution through disturbing the inflow rate of pollutants. First, we prove existence and uniqueness of positive solution of Eq (2.5) in Theorem 3.1. Then, the sufficient conditions for diseases extinction and existence of stationary distribution is given by Theorem 3.2 and Theorem 3.3. Next, to approximate Eq (2.5) a positivity-preserving numerical method logarithmic Euler-Maruyama method is introduced. Finally, for Eq (2.5), we prove that the logarithmic Euler-Maruyama method has the $ p $th-moment convergence rate over a finite time interval for all $ p > 0 $ in Theorem 4.5.

    It is well known that different places have huge divergence in the degree of air pollution. In view of this, considering the heterogeneity of each individual is an important factor in constructing more realistic models, that is, spatially heterogeneous epidemic models affected by air pollutants. The theoretical analysis of these models affected by air pollutants may be more complicated and we leave it for further investigation.

    The authors thank the editor and referees for their careful reading and valuable comments. The research was supported by the Ningxia Natural Science Foundation Project (2020AAC03067) and the Natural Science Foundation of China (12161068).

    The authors have no conflict of interest.

    [1] Rosen DR, Siddique T, Patterson D, et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59-62. doi: 10.1038/362059a0
    [2] Sreedharan J, Blair IP, Tripathi VB, et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 249: 1668-1672.
    [3] DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72: 245-256. doi: 10.1016/j.neuron.2011.09.011
    [4] Renton AE, Majounie E, Waite A, et al. (2011) A Hexanucleotide repeat expansion in C9ORF72 is the aause of chromosome 9p21-linked ALS-FTD. Neuron 72: 257-268. doi: 10.1016/j.neuron.2011.09.010
    [5] Majounie E, Renton AE, Mok K, et al. (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11: 323-330. doi: 10.1016/S1474-4422(12)70043-1
    [6] Keller BA, Volkening K, Droppelmann CA, et al. (2012) Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol 124: 733-747. doi: 10.1007/s00401-012-1035-z
    [7] Neumann M, Sampathu DM, Kwong LK, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 130: 130-133.
    [8] Arai T, Hasegawa M, Akiyama H, et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351: 602-611. doi: 10.1016/j.bbrc.2006.10.093
    [9] Leigh PN, Anderton BH, Dodson A, et al. (1988) Ubiquitin deposits in anterior horn cells in motor neuron disease. Neurosci Lett 93: 197-203. doi: 10.1016/0304-3940(88)90081-X
    [10] Johnson JO, Mandrioli J, Benatar M, et al. (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68: 857-864. doi: 10.1016/j.neuron.2010.11.036
    [11] Deng H-X, Chen W, Hong S-T, et al. (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477: 211-215. doi: 10.1038/nature10353
    [12] Maruyama H, Morino H, Ito H, et al. (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465: 223-226. doi: 10.1038/nature08971
    [13] ALSoD (Amyotrophic Lateral Sclerosis Online Genetics Database). Available from: http://alsod.iop.kcl.ac.uk/
    [14] Cleveland DW, Laing N, Hurse PV, et al. (1995) Toxic mutants in Charcot’s sclerosis. Nature 378: 342-343. doi: 10.1038/378342a0
    [15] Bruijn LI, Houseweart MK, Kato S, et al. (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281: 1851-1854.
    [16] Hayward LJ, Rodriguez JA, Kim JW, et al. (2002) Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 277: 15923-15931. doi: 10.1074/jbc.M112087200
    [17] Reaume AG, Elliott JL, Hoffman EK, et al. (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13: 43-47. doi: 10.1038/ng0596-43
    [18] Fujisawa T, Homma K, Yamaguchi N, et al. (2012) A novel monoclonal antibody reveals a conformational alteration shared by amyotrophic lateral sclerosis-linked SOD1 mutants. Ann Neurol 72: 739-49. doi: 10.1002/ana.23668
    [19] Urushitani M, Ezzi SA, Julien JP (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 104: 2495-2500. doi: 10.1073/pnas.0606201104
    [20] Bosco DA, Morfini G, Karabacak NM, et al. (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13: 1396-1403. doi: 10.1038/nn.2660
    [21] Watanabe M, Dykes-Hoberg M, Culotta VC, et al. (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8: 933-941. doi: 10.1006/nbdi.2001.0443
    [22] Basso M, Massignan T, Samengo G, et al. (2006) Insoluble mutant SOD1 is partly oligoubiquitinated in amyotrophic lateral sclerosis mice. J Biol Chem 281: 33325-33335. doi: 10.1074/jbc.M603489200
    [23] Wang J, Xu G, Gonzales V, et al. (2002) Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 10: 128-138. doi: 10.1006/nbdi.2002.0498
    [24] Furukawa Y, Fu R, Deng HX, et al. (2006) Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proc Natl Acad Sci U S A 103: 7148-7153. doi: 10.1073/pnas.0602048103
    [25] Rodriguez JA, Valentine JS, Eggers DK, et al. (2002) Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal stability of distinctly metallated species of human Copper/Zinc superoxide dismutase. J Biol Chem 277: 15932-15937. doi: 10.1074/jbc.M112088200
    [26] Sea K, Sohn SH, Durazo A, et al. (2015) Insights into the role of the unusual disulfide bond in Copper-Zinc superoxide dismutase. J Biol Chem 290: 2405-2418. doi: 10.1074/jbc.M114.588798
    [27] Doucette PA, Whitson LJ, Cao X, et al. (2004) Dissociation of human copper-zinc superoxide dismutase dimers using chaotrope and reductant: Insights into the molecular basis for dimer stability. J Biol Chem 279: 54558-54566. doi: 10.1074/jbc.M409744200
    [28] Hough MA, Grossmann JG, Antonyuk SV, et al. (2004) Dimer destabilization in superoxide dismutase may result in disease-causing properties: structures of motor neuron disease mutants. Proc Natl Acad Sci U S A 101: 5976-5981. doi: 10.1073/pnas.0305143101
    [29] Araki K, Iemura S, Kamiya Y, et al. (2013) Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases. J Cell Biol 202: 861-874. doi: 10.1083/jcb.201303027
    [30] Atkin JD, Farg MA, Turner BJ, et al. (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281: 30152-30165. doi: 10.1074/jbc.M603393200
    [31] Chen X, Zhang X, Li C, et al. (2013) S-nitrosylated protein disulfide isomerase contributes to mutant SOD1 aggregates in amyotrophic lateral sclerosis. J Neurochem 124: 45-58. doi: 10.1111/jnc.12046
    [32] Jeon GS, Nakamura T, Lee JS, et al. (2014) Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Mol Neurobiol 49: 796-807. doi: 10.1007/s12035-013-8562-z
    [33] Honjo Y, Kaneko S, Ito H, et al. (2011) Protein disulfide isomerase-immunopositive inclusions in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2968: 1-7.
    [34] Toichi K, Yamanaka K, Furukawa Y (2013) Disulfide scrambling describes the oligomer formation of superoxide dismutase (SOD1) proteins in the familial form of amyotrophic lateral sclerosis. J Biol Chem 288: 4970-4980. doi: 10.1074/jbc.M112.414235
    [35] Crow JP, Sampson JB, Zhuang Y, et al. (1997) Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 69: 1936-1944.
    [36] Lyons TJ, Liu H, Goto JJ, et al. (1996) Mutation in copper-zinc superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behavior of the protein. Proc Natl Acad Sci U S A 93: 12240-12244. doi: 10.1073/pnas.93.22.12240
    [37] Homma K, Fujisawa T, Tsuburaya N, et al. (2013) SOD1 as a molecular switch for initiating the homeostatic ER stress response under zinc deficiency. Mol Cell 52: 75-86. doi: 10.1016/j.molcel.2013.08.038
    [38] Urushitani M, Sik A, Sakurai T, et al. (2006) Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9: 108-118. doi: 10.1038/nn1603
    [39] Israelson A, Ditsworth D, Sun S, et al. (2013) Macrophage migration inhibitory factor as a chaperone inhibiting accumulation of misfolded SOD1. Neuron 86: 218–232. doi: 10.1016/j.neuron.2015.02.034
    [40] Tan W, Naniche N, Bogush A, et al. (2013) Small peptides against the mutant SOD1/Bcl-2 toxic mitochondrial complex restore mitochondrial function and cell viability in mutant SOD1-mediated ALS. J Neurosci 33: 11588-11598. doi: 10.1523/JNEUROSCI.5385-12.2013
    [41] Kikuchi H, Almer G, Yamashita S, et al. (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci U S A 103: 6025-6030. doi: 10.1073/pnas.0509227103
    [42] Sun S, Sun Y, Ling SC, et al. (2015) Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc Natl Acad Sci U S A 112: E6993-E7002. doi: 10.1073/pnas.1520639112
    [43] Ito Y, Yamada M, Tanaka H, et al. (2009) Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol Dis 36: 470-476. doi: 10.1016/j.nbd.2009.08.013
    [44] Nishitoh H, Kadowaki H, Nagai A, et al. (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22: 1451-1464. doi: 10.1101/gad.1640108
    [45] Pokrishevsky E, Grad LI, Yousefi M, et al. (2012) Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PLoS One 7: 1-9.
    [46] Dimos JT, Rodolfa KT, Niakan KK, et al. (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321: 1218-1221. doi: 10.1126/science.1158799
    [47] Chen H, Qian K, Du Z, et al. (2014) Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14: 796-809. doi: 10.1016/j.stem.2014.02.004
    [48] Kiskinis E, Sandoe J, Williams LA, et al. (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14: 781-795. doi: 10.1016/j.stem.2014.03.004
    [49] Neary D, Snowden JS, Mann DM (2000) Classification and description of frontotemporal dementias. Ann N Y Acad Sci 920: 46-51.
    [50] Higashi S, Iseki E, Yamamoto R, et al. (2007) Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184: 284-294. doi: 10.1016/j.brainres.2007.09.048
    [51] Ou SH, Wu F, Harrich D, et al. (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69: 3584-3596.
    [52] Lu Y, Ferris J, Gao FB (2009) Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching. Mol Brain 2: 30. doi: 10.1186/1756-6606-2-30
    [53] Winton MJ, Igaz LM, Wong MM, et al. (2008) Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 283: 13302-13309. doi: 10.1074/jbc.M800342200
    [54] Kuo PH, Doudeva LG, Wang YT, et al. (2009) Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 37: 1799-1808. doi: 10.1093/nar/gkp013
    [55] Buratti E, Brindisi A, Giombi M, et al. (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon9 splicing. J Biol Chem 280: 37572-37584. doi: 10.1074/jbc.M505557200
    [56] Kabashi E, Valdmanis PN, Dion P, et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40: 572-574. doi: 10.1038/ng.132
    [57] Johnson BS, McCaffery JM, Lindquist S, et al. (2008) A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 105: 6439-6444. doi: 10.1073/pnas.0802082105
    [58] Hasegawa M, Arai T, Nonaka T, et al. (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and ALS. Ann Neurol 64: 60-70. doi: 10.1002/ana.21425
    [59] Kadokura A, Yamazaki T, Kakuda S, et al. (2009) Phosphorylation-dependent TDP-43 antibody detects intraneuronal dot-like structures showing morphological characters of granulovacuolar degeneration. Neurosci Lett 463: 87-92. doi: 10.1016/j.neulet.2009.06.024
    [60] Igaz LM, Kwong LK, Chen-Plotkin A, et al. (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284: 8516-8524. doi: 10.1074/jbc.M809462200
    [61] Zhang YJ, Xu YF, Cook C, et al. (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A 106: 7607-7612. doi: 10.1073/pnas.0900688106
    [62] Arai T, Hasegawa M, Akiyama H, et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351: 602-611. doi: 10.1016/j.bbrc.2006.10.093
    [63] Dormann D, Capell A, Carlson AM, et al. (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 110: 1082-1094. doi: 10.1111/j.1471-4159.2009.06211.x
    [64] Wils H, Kleinberger G, Janssens J, et al. (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 107: 3858-3863. doi: 10.1073/pnas.0912417107
    [65] Giordana MT, Piccinini M, Grifoni S, et al. (2010) TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol 20: 351-360. doi: 10.1111/j.1750-3639.2009.00284.x
    [66] Udan M, Baloh RH (2011) Implications of the prion-related Q/N domains in TDP-43 and FUS. Prion 5: 1-5.
    [67] Nonaka T, Masuda-Suzukake M, Arai T, et al. (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4: 124-134. doi: 10.1016/j.celrep.2013.06.007
    [68] Walker AK, Soo KY, Sundaramoorthy V, et al. (2013) ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS One 8: e81170. doi: 10.1371/journal.pone.0081170
    [69] Polymenidou M, Lagier-Tourenne C, Hutt KR, et al. (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14: 459-468. doi: 10.1038/nn.2779
    [70] Watanabe S, Kaneko K, Yamanaka K (2013) Accelerated disease onset with stabilized familial amyotrophic lateral ssclerosis (ALS)-linked mutant TDP-43 proteins. J Biol Chem 288: 3641-3654. doi: 10.1074/jbc.M112.433615
    [71] Iguchi Y, Katsuno M, Niwa J, et al. (2013) Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain 136: 1371-1382. doi: 10.1093/brain/awt029
    [72] Wegorzewska I, Bell S, Cairns NJ, et al. (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 106: 18809-18814. doi: 10.1073/pnas.0908767106
    [73] Feiguin F, Godena VK, Romano G, et al. (2009) Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 583: 1586-1592. doi: 10.1016/j.febslet.2009.04.019
    [74] Alami NH, Smith RB, Carrasco MA, et al. (2013) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81: 536-543.
    [75] Xia Q, Wang H, Hao Z, et al. (2015) TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion. EMBO J 35: 1-22.
    [76] Armakola M, Higgins MJ, Figley MD, et al. (2012) Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44: 1302-1309. doi: 10.1038/ng.2434
    [77] Elden AC, Kim HJ, Hart MP, et al. (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466: 1069-1075. doi: 10.1038/nature09320
    [78] Liu-Yesucevitz L, Lin AY, Ebata A, et al. (2014) ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor. J Neurosci 34: 4167-4174. doi: 10.1523/JNEUROSCI.2350-13.2014
    [79] Crozat A, Aman P, Mandahl N, et al. (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363: 640-644. doi: 10.1038/363640a0
    [80] Rabbits TH, Forster A, Larson R, et al. (1993) Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t (12; 16) in malignant liposarcoma. Nat Genet 4: 175-180. doi: 10.1038/ng0693-175
    [81] Vance C, Rogelj B, Hortobágyi T, et al. (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis Type 6. Science 323: 1208-1211. doi: 10.1126/science.1165942
    [82] Kwiatkowski TJ, Bosco DA, Leclerc AL, et al. (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323: 1205-1208. doi: 10.1126/science.1166066
    [83] Neumann M, Rademakers R, Roeber S, et al. (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132: 2922-2931. doi: 10.1093/brain/awp214
    [84] Kovar H (2011) The two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011: 1-13.
    [85] Couthouis J, Hart MP, Erion R, et al. (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21: 2899-2911. doi: 10.1093/hmg/dds116
    [86] Lee BJ, Cansizoglu AE, Süel KE, et al. (2006) Rules for Nuclear Localization Sequence Recognition by Karyopherinβ2. Cell 126: 543-558. doi: 10.1016/j.cell.2006.05.049
    [87] Dormann D, Rodde R, Edbauer D, et al. (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29: 2841-2857. doi: 10.1038/emboj.2010.143
    [88] Dormann D, Madl T, Valori CF, et al. (2012) Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J 31: 4258-4275. doi: 10.1038/emboj.2012.261
    [89] Snowden JS, Hu Q, Rollinson S, et al. (2011) The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene. Acta Neuropathol 122: 99-110. doi: 10.1007/s00401-011-0816-0
    [90] Urwin H, Josephs KA, Rohrer JD, et al. (2010) FUS pathology defines the majority of tau-and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol 120: 33-41. doi: 10.1007/s00401-010-0698-6
    [91] Brelstaff J, Lashley T, Holton JL, et al. (2011) Transportin1: a marker of FTLD-FUS. Acta Neuropathol 122: 591-600. doi: 10.1007/s00401-011-0863-6
    [92] Davidson YS, Robinson AC, Hu Q, et al. (2013) Nuclear carrier and RNA-binding proteins in frontotemporal lobar degeneration associated with fused in sarcoma (FUS) pathological changes. Neuropathol Appl Neurobiol 39: 157-165. doi: 10.1111/j.1365-2990.2012.01274.x
    [93] Kuroda M, Sok J, Webb L, et al. (2000) Male sterility and enhanced radiation sensitivity in TLS(-/-) mice. EMBO J 19: 453-462. doi: 10.1093/emboj/19.3.453
    [94] Hicks GG, Singh N, Nashabi A, et al. (2000) Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet 24: 175-179. doi: 10.1038/72842
    [95] Kabashi E, Bercier V, Lissouba A, et al. (2011) FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLoS Genet 7: e1002214. doi: 10.1371/journal.pgen.1002214
    [96] Mitchell JC, McGoldrick P, Vance C, et al. (2013) Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol 125: 273-288. doi: 10.1007/s00401-012-1043-z
    [97] Levine TP, Daniels RD, Gatta AT, et al. (2013) The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29: 499-503. doi: 10.1093/bioinformatics/bts725
    [98] Farg MA, Sundaramoorthy V, Sultana JM, et al. (2014) C9ORF72, implicated in amytrophic lateral sclerosis and frontemporal dementia, regulates endosomal trafficking. Hum Mol Genet 23: 3579-3595. doi: 10.1093/hmg/ddu068
    [99] Donnelly CJ, Zhang PW, Pham JT, et al. (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80: 415-428. doi: 10.1016/j.neuron.2013.10.015
    [100] Therrien M, Rouleau GA, Dion PA, et al. (2013) Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One 8: 1-10. doi: 10.1371/journal.pone.0083450
    [101] Ciura S, Lattante S, Le Ber I, et al. (2013) Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 74: 180-187.
    [102] Koppers M, Blokhuis AM, Westeneng H-J, et al. (2015) C9orf72 ablation in mice does not cause motor neuron degenerateon or motor deficit. Ann Neurol 78: 426-438. doi: 10.1002/ana.24453
    [103] Ranum LPW, Cooper TA (2006) RNA-mediated neuromascular disorders. Annu Rev Neurosci 29: 259-77.
    [104] Xu Z, Poidevin M, Li X, et al. (2013) Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci U S A 110: 7778-7783. doi: 10.1073/pnas.1219643110
    [105] Haeusler AR, Donnelly CJ, Periz G, et al. (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507: 195-200.
    [106] Zu T, Gibbens B, Doty NS, et al. (2010) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108: 260-265.
    [107] Mori K, Weng S, Arzberger T, et al. (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339: 1335-1339. doi: 10.1126/science.1232927
    [108] Mori K, Lammich S, Mackenzie IR, et al. (2013) hnRNP A3 bind to GGGGCC repeats and is a constituent of p62-positive/TDP-43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta. Neuropathol 125: 413-423. doi: 10.1007/s00401-013-1088-7
    [109] Ash PEA, Bieniek KF, Gendron TF, et al. (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77: 639-646. doi: 10.1016/j.neuron.2013.02.004
    [110] Zhang YJ, Jansen-West K, Xu YF, et al. (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128: 505-524. doi: 10.1007/s00401-014-1336-5
    [111] Mizielinska S, Grönke S, Niccoli T, et al. (2014) C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345: 1192-1195. doi: 10.1126/science.1256800
    [112] Tran H, Almeida S, Moore J, et al. (2015) Differential toxicity of nuclear RNA foci versus dipeptide repeat proteins in a Drosophila model of C9ORF72 FTD/ALS. Neuron 87: 1207-1214 doi: 10.1016/j.neuron.2015.09.015
    [113] Chew J, Gendron TF, Prudencio M, et al. (2015) C9ORF72 repeat expansion in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348: 2-6.
    [114] O’Rourke JG, Bogdanik L, Muhammad AKMG, et al. (2015) C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD. Neuron 88: 892-901. doi: 10.1016/j.neuron.2015.10.027
    [115] Zhang K, Donnelly CJ, Haeusler AR, et al. (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525: 56-61. doi: 10.1038/nature14973
    [116] Freibaum BD, Lu Y, Lopez-gonzalez R, et al. (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525: 129-133. doi: 10.1038/nature14974
    [117] Jovičić A, Mertens J, Boeynaems S, et al. (2015) Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18: 1226-1229. doi: 10.1038/nn.4085
    [118] Rezaie T, Child A, Hitchings R, et al. (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295: 1077-1079. doi: 10.1126/science.1066901
    [119] Zhu G, Wu CJ, Zhao Y, et al. (2007) Optineurin negatively regulates TNFα- induced NF-κB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17: 1438-1443. doi: 10.1016/j.cub.2007.07.041
    [120] Wild P, Farhan H, McEwan DG, et al. (2011) Phosphorylation of the autophagy receptor Optineurin restricts salmonella growth. Science 333: 228-233.
    [121] Sahlender DA, Roberts RC, Arden SD, et al. (2005) Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169: 285-295. doi: 10.1083/jcb.200501162
    [122] Wild P, Farhan H, McEwan DG, et al. (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333: 228-233. doi: 10.1126/science.1205405
    [123] Deng HX, Bigio EH, Zhai H, et al. (2012) Differential involvement of Optineurin in amyotrophic lateral sclerosis with or without SOD1 mutations. Arch Neurol 68: 1057-1061.
    [124] Ito H, Fujita K, Nakamura M, et al. (2011) Optineurin is co-localized with FUS in basophilic inclusions of ALS with FUS mutation and in basophilic inclusion body disease. Acta Neuropathol 121: 555-557. doi: 10.1007/s00401-011-0809-z
    [125] Williams KL, Warraich ST, Yang S, et al. (2012) UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging 33: 2527.e3-10.
    [126] Seok Ko H, Uehara T, Tsuruma K, et al. (2004) Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett 566: 110-114. doi: 10.1016/j.febslet.2004.04.031
    [127] Ritson GP, Custer SK, Freibaum BD, et al. (2010) TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci 30: 7729-7739. doi: 10.1523/JNEUROSCI.5894-09.2010
    [128] Ye Y, Shibata Y, Yun C, et al. (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429: 841-847. doi: 10.1038/nature02656
    [129] Ye Y, Shibata Y, Kikkert M, et al. (2005) Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc Natl Acad Sci U S A 102: 14132-14138. doi: 10.1073/pnas.0505006102
    [130] Song C, Wang Q, Li CH (2003) ATPase Activity of p97-Valosin-containing Protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity. J Biol Chem 278: 3648-3655. doi: 10.1074/jbc.M208422200
    [131] Carvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143: 579-591. doi: 10.1016/j.cell.2010.10.028
    [132] Bilican B, Serio A, Barmada SJ, et al. (2012) Mutant induced plu- ripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci U S A 109: 5803-5808. doi: 10.1073/pnas.1202922109
    [133] Liu X, Chen J, Liu W, et al. (2015) The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics 16: 223-231. doi: 10.1007/s10048-015-0448-y
    [134] Mackenzie IR, Bigio EH, Ince PG, et al. (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61: 427-434. doi: 10.1002/ana.21147
    [135] Yamanaka K, Chun SJ, Boillee S, et al. (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11: 251-253. doi: 10.1038/nn2047
  • This article has been cited by:

    1. Bharani Thangavelu, Bernard S. Wilfred, David Johnson, Janice S. Gilsdorf, Deborah A. Shear, Angela M. Boutté, Penetrating Ballistic-Like Brain Injury Leads to MicroRNA Dysregulation, BACE1 Upregulation, and Amyloid Precursor Protein Loss in Lesioned Rat Brain Tissues, 2020, 14, 1662-453X, 10.3389/fnins.2020.00915
    2. Luisa Galla, Nelly Redolfi, Tullio Pozzan, Paola Pizzo, Elisa Greotti, Intracellular Calcium Dysregulation by the Alzheimer’s Disease-Linked Protein Presenilin 2, 2020, 21, 1422-0067, 770, 10.3390/ijms21030770
    3. Khue Vu Nguyen, Robert K. Naviaux, William L. Nyhan, Lesch-Nyhan disease: I. Construction of expression vectors for hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme and amyloid precursor protein (APP), 2020, 39, 1525-7770, 905, 10.1080/15257770.2020.1714653
    4. Jeanette A. M. Maier, Laura Locatelli, Giorgia Fedele, Alessandra Cazzaniga, André Mazur, Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration, 2022, 24, 1422-0067, 223, 10.3390/ijms24010223
    5. Sonia Podvin, Alexander Jones, Qing Liu, Brent Aulston, Charles Mosier, Janneca Ames, Charisse Winston, Christopher B. Lietz, Zhenze Jiang, Anthony J. O’Donoghue, Tsuneya Ikezu, Robert A. Rissman, Shauna H. Yuan, Vivian Hook, Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons, 2021, 6, 2470-1343, 13033, 10.1021/acsomega.1c00660
    6. Carmela Matrone, The paradigm of amyloid precursor protein in amyotrophic lateral sclerosis: The potential role of the 682YENPTY687 motif, 2023, 21, 20010370, 923, 10.1016/j.csbj.2023.01.008
    7. Anthony M Kyriakopoulos, Greg Nigh, Peter A McCullough, Stephanie Seneff, Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity, 2022, 2168-8184, 10.7759/cureus.32361
    8. Nourhan Mohammad Abd Abd El-Aziz, Mohamed Gamal Shehata, Tawfiq Alsulami, Ahmed Noah Badr, Marwa Ramadan Elbakatoshy, Hatem Salama Ali, Sobhy Ahmed El-Sohaimy, Characterization of Orange Peel Extract and Its Potential Protective Effect against Aluminum Chloride-Induced Alzheimer’s Disease, 2022, 16, 1424-8247, 12, 10.3390/ph16010012
    9. Kaoru Sato, Ken-ichi Takayama, Makoto Hashimoto, Satoshi Inoue, Transcriptional and Post-Transcriptional Regulations of Amyloid-β Precursor Protein (APP) mRNA, 2021, 2, 2673-6217, 10.3389/fragi.2021.721579
    10. Hari Shanker Sharma, Dafin F. Muresanu, Rudy J. Castellani, Ala Nozari, José Vicente Lafuente, Anca D. Buzoianu, Seaab Sahib, Z. Ryan Tian, Igor Bryukhovetskiy, Igor Manzhulo, Preeti K. Menon, Ranjana Patnaik, Lars Wiklund, Aruna Sharma, 2021, 265, 9780323901628, 1, 10.1016/bs.pbr.2021.04.008
    11. Khue Vu Nguyen, Potential molecular link between the β-amyloid precursor protein (APP) and hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme in Lesch-Nyhan disease and cancer, 2021, 8, 2373-7972, 548, 10.3934/Neuroscience.2021030
    12. Tamara Žigman, Danijela Petković Ramadža, Goran Šimić, Ivo Barić, Inborn Errors of Metabolism Associated With Autism Spectrum Disorders: Approaches to Intervention, 2021, 15, 1662-453X, 10.3389/fnins.2021.673600
    13. Olivier Dionne, François Corbin, An “Omic” Overview of Fragile X Syndrome, 2021, 10, 2079-7737, 433, 10.3390/biology10050433
    14. Xiao‐Ming Wang, Peng Zeng, Ying‐Yan Fang, Teng Zhang, Qing Tian, Progranulin in neurodegenerative dementia, 2021, 158, 0022-3042, 119, 10.1111/jnc.15378
    15. Zeba Firdaus, Xiaogang Li, Epigenetic Explorations of Neurological Disorders, the Identification Methods, and Therapeutic Avenues, 2024, 25, 1422-0067, 11658, 10.3390/ijms252111658
    16. Smita Jain, Ankita Murmu, Saraswati Patel, Elucidating the therapeutic mechanism of betanin in Alzheimer’s Disease treatment through network pharmacology and bioinformatics analysis, 2024, 39, 1573-7365, 1175, 10.1007/s11011-024-01385-w
    17. Yao-Bo Li, Qiang Fu, Mei Guo, Yang Du, Yuewen Chen, Yong Cheng, MicroRNAs: pioneering regulators in Alzheimer’s disease pathogenesis, diagnosis, and therapy, 2024, 14, 2158-3188, 10.1038/s41398-024-03075-8
    18. Salva Afshari, Mehdi Sarailoo, Vahid Asghariazar, Elham Safarzadeh, Masoomeh Dadkhah, Persistent diazinon induced neurotoxicity: The effect on inhibitory avoidance memory performance, amyloid precursor proteins, and TNF-α levels in the prefrontal cortex of rats, 2024, 43, 0960-3271, 10.1177/09603271241235408
    19. Siding Chen, Zhe Xu, Jinfeng Yin, Hongqiu Gu, Yanfeng Shi, Cang Guo, Xia Meng, Hao Li, Xinying Huang, Yong Jiang, Yongjun Wang, Predicting functional outcome in ischemic stroke patients using genetic, environmental, and clinical factors: a machine learning analysis of population-based prospective cohort study, 2024, 25, 1467-5463, 10.1093/bib/bbae487
    20. Ana Luiza Guimarães Reis, Jessica Ruivo Maximino, Luis Alberto de Padua Covas Lage, Hélio Rodrigues Gomes, Juliana Pereira, Paulo Roberto Slud Brofman, Alexandra Cristina Senegaglia, Carmen Lúcia Kuniyoshi Rebelatto, Debora Regina Daga, Wellingson Silva Paiva, Gerson Chadi, Proteomic analysis of cerebrospinal fluid of amyotrophic lateral sclerosis patients in the presence of autologous bone marrow derived mesenchymal stem cells, 2024, 15, 1757-6512, 10.1186/s13287-024-03820-2
    21. Hye Kyung Jeon, Hae Young Yoo, Ashish Verma, Single-nucleotide polymorphisms link gout with health-related lifestyle factors in Korean cohorts, 2023, 18, 1932-6203, e0295038, 10.1371/journal.pone.0295038
    22. Paras Mani Giri, Anurag Banerjee, Arpita Ghosal, Buddhadev Layek, Neuroinflammation in Neurodegenerative Disorders: Current Knowledge and Therapeutic Implications, 2024, 25, 1422-0067, 3995, 10.3390/ijms25073995
    23. Sungtaek Oh, Yura Jang, Chan Hyun Na, Discovery of Biomarkers for Amyotrophic Lateral Sclerosis from Human Cerebrospinal Fluid Using Mass-Spectrometry-Based Proteomics, 2023, 11, 2227-9059, 1250, 10.3390/biomedicines11051250
    24. Amirreza Gholami, Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches, 2023, 817, 03043940, 137532, 10.1016/j.neulet.2023.137532
    25. Angelika Buczyńska, Iwona Sidorkiewicz, Adam Jacek Krętowski, Monika Zbucka-Krętowska, The Role of Oxidative Stress in Trisomy 21 Phenotype, 2023, 43, 0272-4340, 3943, 10.1007/s10571-023-01417-6
    26. Yingchun Liu, Yuman Fan, Rongbin Gong, Moqin Qiu, Xiaoxia Wei, Qiuling Lin, Zihan Zhou, Ji Cao, Yanji Jiang, Peiqin Chen, Bowen Chen, Xiaobing Yang, Yuying Wei, RuoXin Zhang, Qiuping Wen, Hongping Yu, Novel genetic variants in the NLRP3 inflammasome-related PANX1 and APP genes predict survival of patients with hepatitis B virus-related hepatocellular carcinoma, 2024, 1699-3055, 10.1007/s12094-024-03634-x
    27. Sonali Sundram, Neerupma Dhiman, Rishabha Malviya, Rajendra Awasthi, Non-coding RNAs in Regulation of Protein Aggregation and Clearance Pathways: Current Perspectives Towards Alzheimer's Research and Therapy, 2024, 24, 15665232, 8, 10.2174/1566523223666230731093030
    28. Zhifang Wang, Jingpei Zhou, Bin Zhang, Zhanqiong Xu, Haoyu Wang, Quan Sun, Nanbu Wang, Inhibitory effects of β-asarone on lncRNA BACE1-mediated induction of autophagy in a model of Alzheimer’s disease, 2024, 463, 01664328, 114896, 10.1016/j.bbr.2024.114896
    29. Arezoo Mirzaie, Hassan Nasrollahpour, Balal Khalilzadeh, Ali Akbar Jamali, Raymond J. Spiteri, Hadi Yousefi, Ibrahim Isildak, Reza Rahbarghazi, Cerebrospinal fluid: A specific biofluid for the biosensing of Alzheimer's diseases biomarkers, 2023, 166, 01659936, 117174, 10.1016/j.trac.2023.117174
    30. Huda R. Kammona, Thair M. Farhan, Haider J. Mubarak, Bassim I. Mohammad, Najah R. Hadi, Hussein A. Abid, Anil K. Philip, Dina, A. Jamil, Hayder A. Al-Aubaidy, Impact of prenatal tramadol exposure on cerebral and cerebellar development and amyloid precursor protein expression in newborn mice, 2024, 31, 2576-5299, 310, 10.1080/25765299.2024.2355696
    31. Grażyna Pyka-Fościak, Ewa Jasek-Gajda, Bożena Wójcik, Grzegorz J. Lis, Jan A. Litwin, Tau Protein and β-Amyloid Associated with Neurodegeneration in Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis (EAE), a Mouse Model of Multiple Sclerosis, 2024, 12, 2227-9059, 2770, 10.3390/biomedicines12122770
    32. Catherine Zhu, Younghun Han, Jinyoung Byun, Xiangjun Xiao, Simon Rothwell, Frederick W. Miller, Ingrid E. Lundberg, Peter K. Gregersen, Jiri Vencovsky, Vikram R. Shaw, Neil McHugh, Vidya Limaye, Albert Selva‐O'Callaghan, Michael G. Hanna, Pedro M. Machado, Lauren M. Pachman, Ann M. Reed, Lisa G. Rider, Øyvind Molberg, Olivier Benveniste, Timothy Radstake, Andrea Doria, Jan L. De Bleecker, Boel De Paepe, Britta Maurer, William E. Ollier, Leonid Padyukov, Lucy R. Wedderburn, Hector Chinoy, Janine A. Lamb, Christopher I. Amos, Genetic Architecture of Idiopathic Inflammatory Myopathies From Meta‐Analyses, 2025, 2326-5191, 10.1002/art.43088
    33. Kashif Abbas, Mohd Mustafa, Mudassir Alam, Safia Habib, Waleem Ahmad, Mohd Adnan, Md. Imtaiyaz Hassan, Nazura Usmani, Multi-target approach to Alzheimer’s disease prevention and treatment: antioxidant, anti-inflammatory, and amyloid- modulating mechanisms, 2025, 26, 1364-6753, 10.1007/s10048-025-00821-y
    34. Vaghawan Prasad Ojha, Sheida Riahi, Richard Hunt Bobo, Seyedadel Moravveji, Lucien Meteumba, Shantia Yarahmadian, Analysis of cognitive status of Alzheimer’s disease’s subjects and its association with biomarkers (amyloid beta and tau proteins) using NACC data, 2025, 5, 2731-4537, 10.1007/s44202-025-00335-6
    35. Rui Wang, Juan Li, Xiaochen Li, Yan Guo, Pei Chen, Tian Peng, Exercise-induced modulation of miRNAs and gut microbiome: a holistic approach to neuroprotection in Alzheimer’s disease, 2025, 0334-1763, 10.1515/revneuro-2025-0013
    36. Pinar Peyvand, Pantea Allami, Nima Rezaei, From genetic roots to recent advancements in gene therapy targeting amyloid beta in Alzheimer’s disease, 2025, 0334-1763, 10.1515/revneuro-2025-0025
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8728) PDF downloads(1497) Cited by(2)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog