Research article Special Issues

A purely mechanical model with asymmetric features for early morphogenesis of rod-shaped bacteria micro-colony

  • Received: 11 June 2020 Accepted: 13 September 2020 Published: 12 October 2020
  • To model the morphogenesis of rod-shaped bacterial micro-colony, several individual-based models have been proposed in the biophysical literature. When studying the shape of micro-colonies, most models present interaction forces such as attraction or filial link. In this article, we propose a model where the bacteria interact only through non-overlapping constraints. We consider the asymmetry of the bacteria, and its influence on the friction with the substrate. Besides, we consider asymmetry in the mass distribution of the bacteria along their length. These two new modelling assumptions allow us to retrieve mechanical behaviours of micro-colony growth without the need of interaction such as attraction. We compare our model to various sets of experiments, discuss our results, and propose several quantifiers to compare model to data in a systematic way.

    Citation: Marie Doumic, Sophie Hecht, Diane Peurichard. A purely mechanical model with asymmetric features for early morphogenesis of rod-shaped bacteria micro-colony[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6873-6908. doi: 10.3934/mbe.2020356

    Related Papers:

    [1] Manuela Larguinho, José Carlos Dias, Carlos A. Braumann . Pricing and hedging bond options and sinking-fund bonds under the CIR model. Quantitative Finance and Economics, 2022, 6(1): 1-34. doi: 10.3934/QFE.2022001
    [2] Longfei Wei, Lu Liu, Jialong Hou . Pricing hybrid-triggered catastrophe bonds based on copula-EVT model. Quantitative Finance and Economics, 2022, 6(2): 223-243. doi: 10.3934/QFE.2022010
    [3] Sebastian Ferrando, Andrew Fleck, Alfredo Gonzalez, Alexey Rubtsov . Trajectorial asset models with operational assumptions. Quantitative Finance and Economics, 2019, 3(4): 661-708. doi: 10.3934/QFE.2019.4.661
    [4] Amir Ahmad Dar, N. Anuradha . Comparison: Binomial model and Black Scholes model. Quantitative Finance and Economics, 2018, 2(1): 230-245. doi: 10.3934/QFE.2018.1.230
    [5] Yunjae Nam, Changwoo Yoo, Hyundong Kim, Jaewon Hong, Minjoon Bang, Junseok Kim . Accurate computation of Greeks for equity-linked security (ELS) near early redemption dates. Quantitative Finance and Economics, 2025, 9(2): 300-316. doi: 10.3934/QFE.2025010
    [6] Lianzhang Bao, Guangliang Zhao, Zhuo Jin . A new equilibrium trading model with asymmetric information. Quantitative Finance and Economics, 2018, 2(1): 217-229. doi: 10.3934/QFE.2018.1.217
    [7] Wenyan Hao, Claude Lefèvre, Muhsin Tamturk, Sergey Utev . Quantum option pricing and data analysis. Quantitative Finance and Economics, 2019, 3(3): 490-507. doi: 10.3934/QFE.2019.3.490
    [8] Fabrizio Di Sciorio, Raffaele Mattera, Juan Evangelista Trinidad Segovia . Measuring conditional correlation between financial markets' inefficiency. Quantitative Finance and Economics, 2023, 7(3): 491-507. doi: 10.3934/QFE.2023025
    [9] Takashi Kanamura . Supply-side perspective for carbon pricing. Quantitative Finance and Economics, 2019, 3(1): 109-123. doi: 10.3934/QFE.2019.1.109
    [10] Jin Liang, Hong-Ming Yin, Xinfu Chen, Yuan Wu . On a Corporate Bond Pricing Model with Credit Rating Migration Risksand Stochastic Interest Rate. Quantitative Finance and Economics, 2017, 1(3): 300-319. doi: 10.3934/QFE.2017.3.300
  • To model the morphogenesis of rod-shaped bacterial micro-colony, several individual-based models have been proposed in the biophysical literature. When studying the shape of micro-colonies, most models present interaction forces such as attraction or filial link. In this article, we propose a model where the bacteria interact only through non-overlapping constraints. We consider the asymmetry of the bacteria, and its influence on the friction with the substrate. Besides, we consider asymmetry in the mass distribution of the bacteria along their length. These two new modelling assumptions allow us to retrieve mechanical behaviours of micro-colony growth without the need of interaction such as attraction. We compare our model to various sets of experiments, discuss our results, and propose several quantifiers to compare model to data in a systematic way.




    [1] M. C. Duvernoy, T. Mora, M. Ardré, V. Croquette, D. Bensimon, C. E. A. Quilliet, Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis, Nat. Commun., 9 (2018), 1120.
    [2] P. Ghosh, J. Mondal, E. Ben-Jacob, H. Levine, Mechanically-driven phase separation in a growing bacterial colony, PNAS, 112 (2015), E2166.
    [3] Z. You, D. J. G. Pearce, A. Sengupta, L. Giomi, Geometry and mechanics of microdomains in growing bacterial colonies, Phys. Rev. X, 8 (2018), 031065.
    [4] D. Boyer, W. Mather, O. Mondragón-Palomino, S. Orozco-Fuentes, T. Danino, J. Hasty, et al., Buckling instability in ordered bacterial colonies, Phys. Biol., 8 (2011), 026008.
    [5] D. Volfson, S. Cookson, J. Hasty, L. S. Tsimring, Biomechanical ordering of dense cell populations, PNAS, 105 (2008), 15346-15351.
    [6] H. Jönsson, A. Levchenko, An explicit spatial model of yeast microcolony growth, MMS, 3 (2005), 346-361.
    [7] M. A. A. Grant, B. Wacław, R. J. Allen, P. Cicuta, The role of mechanical forces in the planarto-bulk transition in growing escherichia coli microcolonies, J. R. Soc. Interface, 11 (2014), 20140400.
    [8] T. Storck, C. Picioreanu, B. Virdis, D. J. Batstone, Variable cell morphology approach for individual-based modeling of microbial communities, Biophys. J., 106 (2014), 2037-2048.
    [9] H. Cho, H. J?nsson, K. Campbell, P. Melke, J. W. Williams, B. Jedynak, et al., Self-organization in high-density bacterial colonies: Efficient crowd control, PLoS Biol., 5 (2007), e302.
    [10] D. Dell'Arciprete, M. L. Blow, A. T. Brown, F. D. C. Farrell, J. S. Lintuvuori, A. F. McVey, et al., A growing bacterial colony in two dimensions as an active nematic, Nat. Commun., 9 (2018), 4190.
    [11] A. Doostmohammadi, M. F. Adamer, S. P. Thampi, J. M. Yeomans, Stabilization of active matter by flow-vortex lattices and defect ordering, Nat. Commun., 7 (2016), 10557.
    [12] G. Ariel, A. Shklarsh, O. Kalisman, C. Ingham, E. Ben-Jacob, From organized internal traffic to collective navigation of bacterial swarms, New J. Phys., 15 (2013), 125019.
    [13] S. Park, P. M. Wolanin, E. A. Yuzbashyan, H. Lin, N. C. Darnton, J. B. Stock, et al., Influence of topology on bacterial social interaction, PNAS, 100 (2003), 13910.
    [14] E. B. Jacob, I. Becker, Y. Shapira, H. Levine, Bacterial linguistic communication and social intelligence, Trends Microbiol., 12 (2004), 366-372.
    [15] L. Giomi, N. Hawley-Weld, L. Mahadevan, Swarming, swirling and stasis in sequestered bristlebots, Proc. R. Soc. A, 469 (2013), 20120637.
    [16] E. J. Stewart, R. Madden, G. Paul, F. Taddei, Aging and death in an organism that reproduces by morphologically symmetric division, PLoS Biol., 3 (2005), e45.
    [17] J. A. Shapiro, C. Hsu, Escherichia coli k-12 cell-cell interactions seen by time-lapse video, J. Bacteriol. Res., 171 (1989), 5963-5974.
    [18] R. Acemel, F. Govantes, A. Cuetos, Computer simulation study of early bacterial biofilm development, Sci. Rep., 8 (2018), 5340.
    [19] P. T. Su, C. T. Liao, J. R. Roan, S. H. Wang, A. Chiou, W. J. Syu, Bacterial colony from twodimensional division to three-dimensional development, PLoS One, 7 (2012), e48098.
    [20] L. Hall-Stoodley, J. W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2 (2004), 95-108.
    [21] T. Shaw, M. Winston, C. J. Rupp, I. Klapper, P. Stoodley, Commonality of elastic relaxation times in biofilms, Phys. Rev. Lett., 93 (2004), 098102.
    [22] P. T. Su, P. W. Yen, S. H. Wang, C. H. Lin, A. Chiou, W. J. Syu, Factors affecting daughter cells' arrangement during the early bacterial divisions, PLoS One, 5 (2010), e9147.
    [23] F. D. C. Farrell, O. Hallatschek, D. Marenduzzo, B. Waclaw, Mechanically driven growth of quasi-two-dimensional microbial colonies, Phys. Rev. Lett., 111 (2013), 168101.
    [24] M. R. Warren, H. Sun, Y. Yan, J. Cremer, B. Li, T. Hwa, Spatiotemporal establishment of dense bacterial colonies growing on hard agar, ELife, 8 (2019), e41093.
    [25] P. Wang, L. Robert, J. Pelletier, W. L. Dang, F. Taddei, A. Wright, et al., Robust growth of escherichia coli, Curr. Biol., 20 (2010), 1099-1103.
    [26] B. Delyon, B. de Saporta, N. Krell, L. Robert, Investigation of asymmetry in E. coli growth rate, CSBIGS, 7 (2018), 1-13.
    [27] F. D. Farrell, M. Gralka, O. Hallatschek, B. Waclaw, Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations, J. R. Soc. Interface, 14 (2017), 20170073.
    [28] R. van Damme, J. Rodenburg, R. van Roij, M. Dijkstra, Interparticle torques suppress motilityinduced phase separation for rodlike particles, J. Chem. Phys., 150 (2019), 164501.
    [29] M. S. Kumar, P. Philominathan, The physics of flagellar motion of E. coli during chemotaxis, Biophys. Rev., 2 (2010), 13-20.
    [30] J. Shäfer, S. Dippel, D. E. Wolf, Force schemes in simulations of granular materials, J. Phys., 6 (1996), 5-20.
    [31] L. Robert, M. Hoffmann, N. Krell, S. Aymerich, J. Robert, M. Doumic, Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism, BMC Biol., 12 (2014), 17.
    [32] A. Amir, Cell size regulation in bacteria, Phys. Rev. Lett., 112 (2014), 20810.
    [33] S. Taheri-Araghi, S. Bradde, J. T. Sauls, N. S. Hill, P. A. Levin, J. Paulsson, et al., Cell-size control and homeostasis in bacteria, Curr. Biol., 25 (2015), 385-391.
    [34] J. T. Sauls, D. Li, S. Jun, Adder and a coarse-grained approach to cell size homeostasis in bacteria, Curr. Opin. Cell Biol., 38 (2016), 38-44.
    [35] G. F. Webb, Nonlinear Age-Dependent Population Dynamics in L1, Rocky Mountain Mathematics Consortium, 1983.
    [36] J. A. J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations, SpringerVerlag, Berlin, 1986.
    [37] M. C. Duvernoy, Growth Mechanics of a Bacterial Microcolony, Université Grenoble Alpes, 2015.
    [38] M. Hoffmann, A. Olivier, Nonparametric estimation of the division rate of an age dependent branching process, Stoch. Process. Their Appl., 126 (2016), 1433-1471.
    [39] M. Doumic, M. Hoffmann, N. Krell, L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree, Bernoulli, 21 (2015), 1760-1799.
    [40] P. Gabriel, H. Martin, Steady distribution of the incremental model for bacteria proliferation, Netw. Heterog. Media, 14 (2019), 149-171.
    [41] B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkh?user Verlag, Basel, 2007.
    [42] A. Olivier, How does variability in cells aging and growth rates influence the malthus parameter?, Kinet. Relat. Models, 10 (2017), 481-512.
    [43] M. Doumic, M. Hoffmann, P. Reynaud, V. Rivoirard, Nonparametric estimation of the division rate of a size-structured population, SIAM J. Numer. Anal., 50 (2012), 925-950.
    [44] C. Lacour, P. Massart, V. Rivoirard, Estimator selection: A new method with applications to kernel density estimation, Sankhya Ser A., 79 (2017), 298-335.
    [45] P. Van Liedekerke, M. M. Palm, N. Jagiella, D. Drasdo, Simulating tissue mechanics with agentbased models: concepts, perspectives and some novel results, Comp. Part. Mech., 2 (2015), 401–444.
  • This article has been cited by:

    1. Shuyun Jiao, Mingzhan Huang, An SIHR epidemic model of the COVID-19 with general population-size dependent contact rate, 2020, 5, 2473-6988, 6714, 10.3934/math.2020431
    2. Chaofan Qian, Yuhui Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson’s blowflies systems in asymptotically almost periodic environments, 2020, 2020, 1029-242X, 10.1186/s13660-019-2275-4
    3. Qian Cao, Xiaojin Guo, Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays, 2020, 5, 2473-6988, 5402, 10.3934/math.2020347
    4. Manickam Iswarya, Ramachandran Raja, Grienggrai Rajchakit, Jinde Cao, Jehad Alzabut, Chuangxia Huang, Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method, 2019, 7, 2227-7390, 1055, 10.3390/math7111055
    5. Yadan Zhang, Minghui Jiang, Xue Fang, A New Fixed-Time Stability Criterion and Its Application to Synchronization Control of Memristor-Based Fuzzy Inertial Neural Networks with Proportional Delay, 2020, 52, 1370-4621, 1291, 10.1007/s11063-020-10305-9
    6. Qian Cao, Guoqiu Wang, Chaofan Qian, New results on global exponential stability for a periodic Nicholson’s blowflies model involving time-varying delays, 2020, 2020, 1687-1847, 10.1186/s13662-020-2495-4
    7. Hong Zhang, Qian Cao, Hedi Yang, Asymptotically almost periodic dynamics on delayed Nicholson-type system involving patch structure, 2020, 2020, 1029-242X, 10.1186/s13660-020-02366-0
    8. Anbalagan Pratap, Ramachandran Raja, Jehad Alzabut, Jinde Cao, Grienggrai Rajchakit, Chuangxia Huang, Mittag‐Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, 2020, 43, 0170-4214, 6223, 10.1002/mma.6367
    9. Chaofan Qian, New periodic stability for a class of Nicholson's blowflies models with multiple different delays, 2020, 0020-7179, 1, 10.1080/00207179.2020.1766118
    10. Umesh Kumar, Subir Das, Chuangxia Huang, Jinde Cao, Fixed-time synchronization of quaternion-valued neural networks with time-varying delay, 2020, 476, 1364-5021, 20200324, 10.1098/rspa.2020.0324
    11. Chuangxia Huang, Luanshan Yang, Jinde Cao, Asymptotic behavior for a class of population dynamics, 2020, 5, 2473-6988, 3378, 10.3934/math.2020218
    12. M. Syed Ali, G. Narayanan, Sumit Saroha, Bandana Priya, Ganesh Kumar Thakur, Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term, 2021, 185, 03784754, 468, 10.1016/j.matcom.2020.12.035
    13. Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang, Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications, 2019, 7, 2227-7390, 967, 10.3390/math7100967
    14. M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, A perspective on graph theory-based stability analysis of impulsive stochastic recurrent neural networks with time-varying delays, 2019, 2019, 1687-1847, 10.1186/s13662-019-2443-3
    15. Xin Long, Novel stability criteria on a patch structure Nicholson’s blowflies model with multiple pairs of time-varying delays, 2020, 5, 2473-6988, 7387, 10.3934/math.2020473
    16. Lihong Huang, Huili Ma, Jiafu Wang, Chuangxia Huang, GLOBAL DYNAMICS OF A FILIPPOV PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD OF INFECTED-SUSCEPTIBLE RATIO, 2020, 10, 2156-907X, 2263, 10.11948/20190409
    17. Xin Yang, Shigang Wen, Xian Zhao, Chuangxia Huang, Systemic importance of financial institutions: A complex network perspective, 2020, 545, 03784371, 123448, 10.1016/j.physa.2019.123448
    18. Wentao Wang, Wei Chen, Persistence and extinction of Markov switched stochastic Nicholson’s blowflies delayed differential equation, 2020, 13, 1793-5245, 2050015, 10.1142/S1793524520500151
    19. Xin Yang, Shigang Wen, Zhifeng Liu, Cai Li, Chuangxia Huang, Dynamic Properties of Foreign Exchange Complex Network, 2019, 7, 2227-7390, 832, 10.3390/math7090832
    20. Qian Cao, Guoqiu Wang, Dynamic analysis on a delayed nonlinear density-dependent mortality Nicholson's blowflies model, 2020, 0020-7179, 1, 10.1080/00207179.2020.1725134
    21. Hong Zhang, Chaofan Qian, Convergence analysis on inertial proportional delayed neural networks, 2020, 2020, 1687-1847, 10.1186/s13662-020-02737-3
    22. Ajendra singh, Jitendra Nath Rai, Stability of Fractional Order Fuzzy Cellular Neural Networks with Distributed Delays via Hybrid Feedback Controllers, 2021, 1370-4621, 10.1007/s11063-021-10460-7
    23. Qian Cao, Xin Long, New convergence on inertial neural networks with time-varying delays and continuously distributed delays, 2020, 5, 2473-6988, 5955, 10.3934/math.2020381
    24. Chuangxia Huang, Xiaoguang Yang, Jinde Cao, Stability analysis of Nicholson’s blowflies equation with two different delays, 2020, 171, 03784754, 201, 10.1016/j.matcom.2019.09.023
    25. Jian Zhang, Chuangxia Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, 2020, 2020, 1687-1847, 10.1186/s13662-020-02566-4
    26. Qian Wang, Hui Wei, Zhiwen Long, A non-reduced order approach to stability analysis of delayed inertial genetic regulatory networks, 2021, 33, 0952-813X, 227, 10.1080/0952813X.2020.1735531
    27. Jiafu Wang, Su He, Lihong Huang, Limit Cycles Induced by Threshold Nonlinearity in Planar Piecewise Linear Systems of Node-Focus or Node-Center Type, 2020, 30, 0218-1274, 2050160, 10.1142/S0218127420501606
    28. Gang Yang, Qian Cao, Stability for patch structure Nicholson’s blowflies systems involving distinctive maturation and feedback delays, 2020, 0952-813X, 1, 10.1080/0952813X.2020.1836032
    29. Chuangxia Huang, Xin Long, Jinde Cao, Stability of antiperiodic recurrent neural networks with multiproportional delays, 2020, 43, 0170-4214, 6093, 10.1002/mma.6350
    30. Qian Cao, Guoqiu Wang, New findings on global exponential stability of inertial neural networks with both time-varying and distributed delays, 2021, 0952-813X, 1, 10.1080/0952813X.2021.1883744
    31. Ruihan Chen, Song Zhu, Yongqiang Qi, Yuxin Hou, Reachable set bounding for neural networks with mixed delays: Reciprocally convex approach, 2020, 125, 08936080, 165, 10.1016/j.neunet.2020.02.005
    32. Shigang Wen, Yu Tan, Mengge Li, Yunke Deng, Chuangxia Huang, Analysis of Global Remittance Based on Complex Networks, 2020, 8, 2296-424X, 10.3389/fphy.2020.00085
    33. Zhenhua Duan, Changjin Xu, Anti-periodic behavior for quaternion-valued delayed cellular neural networks, 2021, 2021, 1687-1847, 10.1186/s13662-021-03327-7
    34. Yi Wang, Jinde Cao, Gang Huang, Further dynamic analysis for a network sexually transmitted disease model with birth and death, 2019, 363, 00963003, 124635, 10.1016/j.amc.2019.124635
    35. Luogen Yao, Qian Cao, Anti-periodicity on high-order inertial Hopfield neural networks involving mixed delays, 2020, 2020, 1029-242X, 10.1186/s13660-020-02444-3
    36. Anbalagan Pratap, Ramachandran Raja, Jinde Cao, Chuangxia Huang, Michal Niezabitowski, Ovidiu Bagdasar, Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field, 2021, 44, 0170-4214, 419, 10.1002/mma.6745
    37. Luogen Yao, Global exponential stability on anti-periodic solutions in proportional delayed HIHNNs, 2021, 33, 0952-813X, 47, 10.1080/0952813X.2020.1721571
    38. Yanli Xu, Qian Cao, Xiaojin Guo, Stability on a patch structure Nicholson’s blowflies system involving distinctive delays, 2020, 105, 08939659, 106340, 10.1016/j.aml.2020.106340
    39. Yanli Xu, Qian Cao, Global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies system involving multiple pairs of time-varying delays, 2020, 2020, 1687-1847, 10.1186/s13662-020-02569-1
    40. Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang, On the construction, properties and Hausdorff dimension of random Cantor one pth set, 2020, 5, 2473-6988, 3138, 10.3934/math.2020202
    41. A. Pratap, R. Raja, Jinde Cao, J. Alzabut, Chuangxia Huang, Finite-time synchronization criterion of graph theory perspective fractional-order coupled discontinuous neural networks, 2020, 2020, 1687-1847, 10.1186/s13662-020-02551-x
    42. Qian Cao, Guoqiu Wang, Hong Zhang, Shuhua Gong, New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies model with multiple pairs of time-varying delays, 2020, 2020, 1029-242X, 10.1186/s13660-019-2277-2
    43. Rundong Zhao, Qiming Liu, Meici Sun, Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks, 2021, 1598-5865, 10.1007/s12190-021-01550-9
    44. Xianhui Zhang, Convergence analysis of a patch structure Nicholson’s blowflies system involving an oscillating death rate, 2021, 0952-813X, 1, 10.1080/0952813X.2021.1908433
    45. Roberto Galizia, Petri T. Piiroinen, Regions of Reduced Dynamics in Dynamic Networks, 2021, 31, 0218-1274, 2150080, 10.1142/S0218127421500802
    46. Jian Zhang, Ancheng Chang, Gang Yang, Periodicity on Neutral-Type Inertial Neural Networks Incorporating Multiple Delays, 2021, 13, 2073-8994, 2231, 10.3390/sym13112231
    47. Jiaying Zhou, Yi Zhao, Yong Ye, Yixin Bao, Bifurcation Analysis of a Fractional-Order Simplicial SIRS System Induced by Double Delays, 2022, 32, 0218-1274, 10.1142/S0218127422500687
    48. Shuping Li, Xiaorong Zhao, Ruixia Zhang, Site-bond percolation model of epidemic spreading with vaccination in complex networks, 2022, 85, 0303-6812, 10.1007/s00285-022-01816-1
    49. Lian Duan, Lihong Huang, Chuangxia Huang, Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment, 2021, 20, 1534-0392, 3539, 10.3934/cpaa.2021120
    50. Jie Li, Jiu Zhong, Yong-Mao Ji, Fang Yang, A new SEIAR model on small-world networks to assess the intervention measures in the COVID-19 pandemics, 2021, 25, 22113797, 104283, 10.1016/j.rinp.2021.104283
    51. Chaouki Aouiti, Mahjouba Ben Rezeg, Impulsive multidirectional associative memory neural networks: New results, 2021, 14, 1793-5245, 10.1142/S1793524521500601
    52. Hong Zhang, Qian Cao, Hedi Yang, Dynamics analysis of delayed Nicholson-type systems involving patch structure and asymptotically almost periodic environments, 2022, 34, 0952-813X, 725, 10.1080/0952813X.2021.1924869
    53. Reinhard Schlickeiser, Martin Kröger, Determination of a Key Pandemic Parameter of the SIR-Epidemic Model from Past COVID-19 Mutant Waves and Its Variation for the Validity of the Gaussian Evolution, 2023, 5, 2624-8174, 205, 10.3390/physics5010016
    54. Xiaojin Guo, Chuangxia Huang, Jinde Cao, Nonnegative periodicity on high-order proportional delayed cellular neural networks involving D operator, 2020, 6, 2473-6988, 2228, 10.3934/math.2021135
    55. Qian Cao, Attractivity analysis on a neoclassical growth system incorporating patch structure and multiple pairs of time-varying delays, 2021, 14173875, 1, 10.14232/ejqtde.2021.1.76
    56. Reinhard Schlickeiser, Martin Kröger, Key Epidemic Parameters of the SIRV Model Determined from Past COVID-19 Mutant Waves, 2023, 3, 2673-8112, 592, 10.3390/covid3040042
    57. Shixiang Han, Guanghui Yan, Huayan Pei, Wenwen Chang, Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network, 2024, 26, 1099-4300, 227, 10.3390/e26030227
    58. Guangyu Li, Haifeng Du, Jiarui Fan, Xiaochen He, Wenhua Wang, The Effect of Fangcang Shelter Hospitals under Resource Constraints on the Spread of Epidemics, 2023, 20, 1660-4601, 5802, 10.3390/ijerph20105802
    59. Chuangxia Huang, Jiafu Wang, Lihong Huang, Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, 2020, 2020, 1072-6691, 61, 10.58997/ejde.2020.61
    60. 德玉 郭, Construction and Dynamic Analysis of a Class of Hepatitis C Model with Population Heterogeneity, 2023, 12, 2324-7991, 4665, 10.12677/AAM.2023.1211458
    61. Guojin Wang, Wei Yao, An application of small-world network on predicting the behavior of infectious disease on campus, 2024, 9, 24680427, 177, 10.1016/j.idm.2023.12.007
    62. Bingjie Wu, Liang’an Huo, Studying the impact of individual emotional states on the co-evolution of information, behavior and disease in multiplex networks, 2025, 03784371, 130480, 10.1016/j.physa.2025.130480
    63. Samuel Lopez, Natalia L. Komarova, An optimal network that promotes the spread of an advantageous variant in an SIR epidemic, 2025, 00225193, 112095, 10.1016/j.jtbi.2025.112095
    64. Ruomu Miao, Qingxuan Wang, Cross-cultural communication and the micro-spread of internet rumors: mechanisms and predictions, 2025, 2197-4233, 10.1007/s40636-025-00340-3
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5140) PDF downloads(173) Cited by(10)

Article outline

Figures and Tables

Figures(21)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog