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Abstract: To model the morphogenesis of rod-shaped bacterial micro-colony, several individual-
based models have been proposed in the biophysical literature. When studying the shape of micro-
colonies, most models present interaction forces such as attraction or filial link. In this article, we
propose a model where the bacteria interact only through non-overlapping constraints. We consider
the asymmetry of the bacteria, and its influence on the friction with the substrate. Besides, we consider
asymmetry in the mass distribution of the bacteria along their length. These two new modelling
assumptions allow us to retrieve mechanical behaviours of micro-colony growth without the need of
interaction such as attraction. We compare our model to various sets of experiments, discuss our
results, and propose several quantifiers to compare model to data in a systematic way.
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1. Introduction

Bacteria are ubiquitous unicellular organisms, whose biomass exceeds that of all other living
organisms, and on which our survival is dependent. From a single organism, they quickly develop into
organised micro-colonies and biofilm structures. The self-organisation of the colony into a dense
aggregate is the result of the interplay of various chemical and biological signalling as well as
mechanical interactions. These interplays, while increasingly studied in the past decade, are still only
partly understood. In particular, the influence of the mechanical or chemical interactions between the
particles such as attraction, repulsion or alignment on the global shape of the colony is not clear.

To model mathematically and simulate the self-organisation of bacteria, scientists have used
microscopic and macroscopic models. On the one hand, microscopic models consider each particle
individually and interactions are represented by forces or constraints. These models give a high level
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of description but also result in computationally costly numerical results. In the context of bacterial
growth, microscopic models mainly take the form of individual-based models (IBM) where each
rod-shaped bacterium is described by a spherocylinder [1, 2]. In [3–5], the non-overlapping constraint
on neighbouring bacteria is achieved via a repulsive force based on Hertzian theory. Some other
models represent bacteria as hard-spheres [6] or spring-mass systems [7, 8] and consider volume
exclusion potential [9]. On the other hand, macroscopic models consider local averages such as
densities and describe the evolution of a system through partial differential equations (PDE). This
description reduces the computational cost but is less precise than the one of a microscopic model.
The macroscopic models found in the literature are based on nematodynamic equations [1, 10, 11].
These have been developed in the context of liquid crystals. The crystal being rod-shaped, similarly to
E. coli and pseudomonas bacteria, the nematic model can be adapted to bacteria development by the
addition of growth. However, these macroscopic models are often complex and rely on empirical
laws, so that they are difficult to relate to the reality of a biological system.

In this study, our aim is to understand how the mechanical interactions between the bacteria drive
the growth of micro-colonies, which forces are necessary to take into account and which are not, and
to propose quantifiers to estimate the model parameters. Moreover, we focus on the early steps of the
micro-colony morphogenesis, which is the phase where a continuous approximation would be the less
accurate. We therefore chose to develop an IBM model, which allows us a finer investigation of the
influence of each modeling ingredient than a continuous averaging model.

Models have been used to study the different steps of a biofilm formation. Studies have shown that
free-swimming bacteria migrate on surfaces rich in nutrient and transit to a sessile state before starting
the formation of micro-colonies [12–15]. Once immobile, a given bacterium grows and divides, giving
birth to a small cluster of cells called a micro-colony [16, 17]. The micro-colony first grows in a
two-dimensional organisation before developing into a three-dimensional structure [7, 18, 19]. Later
on, the micro-colony transforms into a mature biofilm. The morphology (filamentous or mushroom
structures [20]) of these biofilms, as well as their physiology (visco-elastic, viscous [21]), have been
widely studied.

The process which is the focus of our study is the formation of a micro-colony from a single
individual. In particular we consider the situation of a non-motile 2D growing colony on a controlled
non-restrictive-space substrate environment [16, 22]. A wide range of models has been developed to
study this situation. Among them we found models considering the extracellular matrix [2],
nutrient [2, 23], substrate adhesion [1, 8], bacteria attraction [1, 8], fillial link [8], diffusion forces [24].
These models are, however, up to our knowledge, unable to reproduce some spatial characteristics of
micro-colonies. In particular, most models fail to recover the elongated shape of the micro-colony at
an early stage [2, 3, 7, 23]. In [1], the authors show how an asymmetric adhesion can control the shape
of the micro-colony, by a comparison of their model with several types of bacteria and more or less
adhesive substrates. Building on their study, we aim at considering the simplest possible model able
to recover spatial specificity of the micro-colony growth, questioning whether an attractive potential
as proposed in [1] is mandatory or not, and whether asymmetric adhesion may be taken into account
in a simpler way. To compare simulation results to experimental data, we focus mostly on two
characteristics: (C1) the arrangement of colonies composed of four bacteria; (C2) the elongated shape
of micro-colonies. The first point (C1) is supported by biological experiments [17] which have shown
that the first two daughter cells slide side-by-side after the first division, giving rise to a four-cell array
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organisation. This configuration is however dependent on the substrate adhesion [22]. The second
characteristic we want to study (C2) is the elongation of the micro-colony, which have up to now
failed to be reproduced without considering interaction forces other than non overlapping [1], filial
link [8] or diffusion forces [24]. In addition of these two characteristics we consider the organisation
of the bacteria inside the colony, the density of bacteria and the angle observed at division.

Our approach relies on the consideration that the bacterium may present asymetric features. The
asymmetry can be considered on different levels during the development. In [16], experiments
showed that a bacterium divides into two daughter cells with slightly different growth rates. In
particular, the growth of the daughter cell keeping the original pole of its mother is slown down with
the development of the micro-colony. On the opposite, in [25] the growth rate is stable for the
different generations of bacteria. These contradictory results have been discussed in [26]. The study
concluded that the different observations where likely due to the fact that depending of the study the
bacteria were in transient or stationary phase. For the sake of simplicity, in our model, the division is
considered symmetrical and the growth rate of the daughters independent of the growth rate of the
mother. Nevertheless, the paper [16] has brought out the question of the asymmetry of the pole of
adhesion of the bacterium. A recent study [1] has confirmed this possibility by computing the
adhesion force of the pole on different substrates. The difference of adhesion of the pole is also
suspected to be an explanation for the four-cell array organisation (C1). In this paper, we model this
feature with a different approach, where instead of adhesion, we consider a non-uniform distribution
of the mass along the length of the bacteria. Besides, we also consider the influence of the shape of
the bacteria on their movement. This is modelled by the choice of asymmetric friction. It translates
the fact that it is easier for a spherocylinder to slide along its longitudinal axis than to slide
transversally. If this type of model has already been considered in [27], the study has however not
been developed in our case, i.e., during the early stage of morphogenesis, where nutrient and space
are unlimited.

These new model assumptions allow us to retrieve the spatial configurations (C1) and (C2) and to
investigate the influence of each parameter of the system. To validate our approach, we compare our
model with two sets of experimental data, respectively published in the two articles [1,10]. The model
parameters are tuned to fit some characteristics of the experimental micro-colony such as length
distribution and growth rate distribution. Then we compare our model with the experimental data for
a variety of quantifiers. The strength of the model we propose relies on its ability to reproduce
mechanical properties of colony growth observed. An especially interesting feature is the fact that it
did not require the implementation of active attraction or alignment between the
bacteria—interactions which could only be explained by chemical signalling—and solely relies on the
asymmetry of the bacteria and mechanical laws.

This paper is divided in the following four sections. In Section 2 we introduce the IBM developed
to study the growth of a micro-colony. The influence of the parameters of the model as well as their
choice is studied in Section 3. Section 4 contains the comparison between the IBM presented in this
paper and experimental data. Finally in Section 5 a conclusion is presented, together with a discussion
of possible improvements and use for further investigation.
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2. The Individual-based model

The Individual-based model we propose is based on models found in the literature [3–5, 28, 45].
We consider a population of nonmotile rod-shaped bacteria growing and dividing on a 2D medium,
and interacting via steric forces with their neighbours. Bacterium motion is supposed to be essentially
passive: bacteria repulse each other to avoid overlapping as they grow in length and divide. As the
Reynolds number of the bacteria is very small [29], we suppose that inertial forces can be neglected
and we consider an over-damped regime for bacterial motion.

More specifically, each bacterium is modelled by a spherocylinder described by its centre (Xi)i∈[1,N]

and orientation vector pi = (cos θi, sin θi). The diameter of a bacterium i ∈ [1,N] is supposed to be fixed
and denoted by d0 while its time-dependent length is denoted by li. Each bacterium has an associated
time-dependent mass mi (further described). A representation of the bacterium is provided in Figure 1.
In the following, we detail each component of the model.

Figure 1. Representation of a bacterium i.

Computation of steric forces. The force between two spherocylinders i and j is approximated by
the force between two spheres of diameter d0, placed along the major axis of the rods at such positions
that their distance is minimal (Figure 2). Denoting by Xo, j

i (resp. Xo,i
j ) the point on the spherocylinder i

centre line segment (resp. of the spherocylinder j) closest to the spherocylinder j centre line segment
(resp. i), the pairwise interaction force between the spherocylinders i and j is set to, using Hertzian
theory [30]:

Fi, j = Yd1/2
0 h3/2

i, j ni, j, (2.1)

where Y is the Young’s modulus, hi, j = |Xo, j
i − Xo,i

j | − 2d0 is the overlap distance between the two
spherocylinders, and ni, j is their common unit normal vector given by

ni, j =
Xo, j

i − Xo,i
j

|Xo, j
i − Xo,i

j |
.

This steric force between the spherocylinders i and j generates a torque acting on the centre of the
spherocylinder i of the form:

Ti, j =
(
(Xo, j

i − Xi) ∧ Fi, j

)
· z, (2.2)

where z is the unit vector perpendicular to the plane of the bacterium.
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The total force F s
i and torque T s

i sensed by bacterium i due to non-overlapping with its contact
neighbours are then supposed to be the sum of all these elementary pairwise forces (2.1) and
torques (2.2):

F s
i =

∑
j

Fi, j,

T s
i =

∑
j

Ti, j,

where the sum runs over all spherocylinders in contact with the spherocylinder i.

Figure 2. Representation of the interaction between two bacteria i and j with an overlapping
hi, j. The bacteria are represented by grey spherocylinders. The two balls by which we
approximate the bacteria for the repulsive force are drawn in blue.

Computation of asymmetric friction forces. In addition to the non-overlapping forces between the
bacteria, we consider the friction force on the substrate. This force is usually of the form F f

i = −miζ
dXi
dt

with ζ the friction coefficient, i.e the drag per unit length originating from the substrate adhesion.
However, in this study, we consider an asymmetric friction, in order to take into account the influence of
the shape of the bacteria on the movement [1,27]. For a given bacterium i, let ζ ||i and ζ⊥i be the respective
coefficients in the directions parallel and perpendicular to the axis of the cell. In the particular case
of rod-shaped bacteria, we consider ζ ||i ≤ ζ⊥i . Then the friction matrix in the repository of a given

bacterium is given by
(
ζ ||i 0
0 ζ⊥i

)
. Therefore with a change of basis, we get that the friction matrix in the

general basis is

Ki =

(
ζ ||i cos(θi)2 + ζ⊥i sin(θi)2 (ζ ||i − ζ

⊥
i ) cos(θi) sin(θi)

(ζ ||i − ζ
⊥
i ) cos(θi) sin(θi) ζ⊥i cos(θi)2 + ζ ||i sin(θi)2

)
.

Then the friction force of a bacterium i is given by

F f
i = −miKi

dXi

dt
. (2.3)

Equations of motion. Altogether, using Newton’s equations in the over-damped regime, the
evolution of the position Xi and the orientation angle θi of the bacterium i is governed by:

dXi

dt
= K−1

i
1
mi

F s
i , (2.4)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6873–6908.



6878

dθi

dt
=

1
ζ⊥Ii

T s
i , (2.5)

where Ii denotes the inertia momentum of bacterium i [27].
The second Eq (2.5) has been obtained by considering the angular momentum L∆(M) of a point M

of the bacterium i with respect to the axis of rotation (∆) passing by Xi orientated by the unit vector z
(perpendicular to the plane of the bacterium). We have

L∆(M) = ((M − Xi) ∧ mi
dXi

dt
) · z,

with ∧ the two dimensional vector product. It is well know that L∆(M) ≈ Ii
dθi
dt with Ii the inertia

momentum of the bacterium from the axis of rotation (∆). Then, inserting (2.3) gives

((M − Xi) ∧ F f
i ) · z = ζ⊥Ii

dθi

dt
.

Using the law of conservation of angular momentum gives (2.5).

Exponential growth. The cell cycle followed by the bacteria is composed of two steps: (i) first the
elongation of the cell with an exponential growth rate, and (ii) the division of the bacterium into two
symmetric daughter bacteria. The length growth is supposed to be exponential, as proved in many
studies [31], which is translated by

dli

dt
= gili, (2.6)

with gi the growth rate respective to the bacterium i. When the increment of length of a bacterium i
reaches a given threshold ε i

l , the bacterium divides, giving birth to two daughter cells of length 0.5 li−d0.
At division, we consider a small noise on the orientation dθi in order to break the alignment of the
bacterium. A representation of the division is presented in Figure 3.

Figure 3. Representation of the division of a bacterium i into two daughter bacteria i and j.
The mother cell is of length li and the two daughter cells are of length l′i = l′j = 0.5 li − d0.
The angle of the daughters are disrupted by dθi and dθ j.

Distribution of mass. As the friction force is proportional to the bacterium mass, we consider
asymmetric mass distribution as a way to change the friction or substrate adhesion coefficient along
the bacterium [1]. In order to model the redistribution of material during cell division, we suppose
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that the mass mi of a bacterium i is not necessarily uniform, but rather pole-dependent. To this aim,
given a bacterium i daughter of a bacterium m, we denote by Xpo

i the old pole, i.e the extremity of the
spherocylinder that was already a pole for the bacterium m, and by Xpn

i the new pole. We suppose that
the masses mpo

i and mpn
i associated to these two poles are not necessarily equal but distributed such

that mpo
i = αimi and mpn

i = (1 − αi)mi, with αi ∈ [0, 1]. In order to take into account mass variation for
cell division, αi is chosen to be time-dependent. The centre of mass of a bacterium is then given by

Xi =
1
mi

(mpo
i Xpo

i + mpn
i Xpn

i ) = αiX
p0
i + (1 − αi)X

pn
i .

Let us denote lpo
i = |Xpo

i −Xi| and lpn
i = |Xpn

i −Xi| the length associated to the two poles of the bacterium
i. Then li = lpo

i + lpn
i and

lpo
i = αli and lpn

i = (1 − α)li.

In the numerical simulations the system is always initialised with one bacterium at position X1 =

(0, 0), with orientation angle θ1 = 0, mass m1 = mini and length l1 = lini. The algorithm implemented to
simulate the model is presented in Appendix A.

3. Numerical simulations

In this section, we present some numerical simulations of the model introduced in Section 2. We
first explain the choice of the model parameters to fit a set of experiments. We then study the influence
of the asymmetric friction and the mass distribution on the growth of the micro-colony.

3.1. Choice of the model parameters

The model parameters are listed below:

• The parameters related to the initialisation: lini, d0,

• The parameters related to the division of the bacteria: The threshold of division (εi)i, the noise of
the angle at division (dθi)i, the growth rate (gi)i.

• The parameters related to the mass distribution: The (possibly time-dependent) mass ratio (αi)i,

• The parameters related to the non-overlapping force: The Young’s modulus Y ,

• The parameters related to the friction force: (ζi)i, (ζ ||i )i, (ζ⊥i )i.

• The parameters related to the algorithm: The time step dt and the final time Tmax.

The length and diameter of the bacterium are initialised depending on the set of experiments we
aim to fit. This is also the case for the parameters related to the division of the bacteria. In this paper,
we compare our numerical simulations to three sets of experimental data. The first two sets of data
originated from [1]. In the following of the paper, we denote by Dataset 1 the data corresponding to
colonies of E. coli and Dataset 2 the data corresponding to colonies of pseudomonas. The third set
of data corresponding to E. coli colonies originates from [10]. All data have been extracted by image
segmentation of pictures taken at fixed time intervals from growing micro-colonies, and have been
kindly provided by the authors of [1, 10].
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Dataset 1 Data of 7 colonies of E. coli bacteria taken every 3 minutes for final times varying between
138 and 204 minutes. The first data of each colony contains 2 bacteria.

Dataset 2 Data of 10 colonies of pseudomonas bacteria taken every 5 minutes for final times varying
between 312 and 417 minutes. The first data for each colony contains 2 to 4 bacteria.

Dataset 3 Data of 32 colonies of E. coli bacteria taken growing every minute for final times varying
between 180 and 341 minutes. The first data for each colony contains 1 to 2 bacteria. Note that the
data do not give access to the width of the bacteria. This set of data, while being more significant
than the other two, presents some mistakes in the segmentation and is therefore more delicate to deal
with. For the sake of the study we thus did not consider any data corresponding to bacteria observable
for less than 15 minutes: We found out that these cases, when observed in more detail, correspond to
segmentation errors leading to a bacterium dividing into two and after a short time merging again into
one.

For each set of experiments, the parameters are defined as follow:

• The diameter of the bacteria d0 is defined according to the average width of the bacteria available
in the dataset. In the case of Dataset 3, the diameter of the bacteria has been estimated from the
images of [10] by linking the length of the bacteria and an image available in the paper [10].

• The threshold of division εi: A bacterium divides when its increment of length reaches the
threshold εi. This threshold is randomly chosen according to the law of at-division increments
estimated from the experimental data available, see Appendix B for more details. In this way, we
have data-driven parameters, and the modelling assumptions which are currently the most
widely accepted ones for bacterial division [32, 33].

• The noise in the angle at division dθi is chosen from a uniform distribution U(−Θ/2,Θ/2). The
choice of Θ is made to fit the angle at division of the experimental data. However given the fact
that data are available every 1 or 3 minutes, we do not have access to the real angle at division.
The choice of this parameter is further discussed in Section 3.3.3.

• The growth rate gi: After cell division, each daughter cell is assigned a growth rate gi which is
supposed to be constant all along the bacterium lifetime. This hypothesis is supported by the
observation of the evolution of the growth rate in time in the experimental data and previous
studies [31]. The value gi is chosen according to the growth rate law estimated from the
experimental data available. The growth rate of a bacterium j is computed with the formula

g j =
1

td
j − tn

j

ln(
ld

j

ln
j
),

with tn
j , td

j the time at birth and death respectively and ln
j , ld

j the length at birth and death
respectively.

• The value of the Young’s modulus is fixed to Y = 4MPa according to the paper [3].
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• The friction coefficients ζ = 200Pah according to the paper [3]. For the sake of simplicity, the
longitudinal and normal friction are chosen of the form ζ ||i = Aiζi and ζ⊥i =

ζi
Ai

. The value of Ai

is chosen such that 0 < Ai < 1 to represent the fact that it is easier for the bacteria to slide in its
direction than perpendicular to it. The choice of the value of Ai is discussed in Section 3.3.1.

• The mass ratio verifies 0 < αi < 1 for all bacteria and its choice is discussed in Section 3.3.2.

• The time parameters: the time step is initially chosen to dt = 10−2 and then adapted to ensure that
the maximal displacement of the bacteria does not exceed a given threshold. The final time Tmax

is chosen to ensure that the simulation-produced colonies reach similar area as the experimental
data.

The values of the parameters for the different experiments are summarised in Table 1. The values
in bold are subject to change along the paper.

Table 1. Parameter values taken in the absence of specification.

Parameter values
Parameter Dataset 1 Dataset 2 Dataset 3
lini 4.45 µm 2.41 µm 3.378 µm
d0 1.40 µm 0.89 µm 1 µm
εi to fit the experimental distribution
Θ 10−5 10−5 10−5

gi to fit the experimental distribution
Y 4 MPa 4 MPa 4 MPa
ζi 200 Pah 200 Pah 200 Pah
Ai 1 1 1
αi 0.5 0.5 0.5
dt such that the movement stays small
Tmax 280 min 500 min 400 min

In Figures 4–6, we show the distributions of the increment length (left figures), length of the bacteria
(middle figures), and growth rate (right figures), computed from the simulations (blue curves) and from
the experimental data of Experiments 1–3 respectively (red curves).

On Figures 4–6 we observe a very good agreement between the simulation values and the
experimental data for the growth rate. Indeed, the red distribution (experimental data) and the blue
distribution (numerical simulations) are almost similar. This is expected as the experimental
distribution is given as an input of the code. However, it is noteworthy that we observe a small shift
between the two distributions for the increment at division. This is due to the sampling noise: The
more events are sampled, the closest the numerical distribution is going to be to the experimental one.
Therefore the difference is due to the fact that the number of event sample is not high enough for a
perfect fit.

Considering the distribution of the lengths for both experiments we observe a shift between the
experimental and the numerical distribution. This shift is also observed when looking at the
experimental and simulated distributions of the lengths at birth and of the lengths at division (data not
shown). These differences are due to the incremental model we use to model the growth and the
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Figure 4. Dataset 1: From left to right: Distributions of the increment length, lenght, and
growth rate for 10 initial configurations. The experimental distribution are plotted in red and
the numerical simulation distributions are plotted in blue.

Figure 5. Dataset 2: From left to right: Distributions of the increment length, lenght and
growth rate for 10 initial configurations. The experimental distribution are plotted in red and
the numerical simulation distributions are plotted in blue.

Figure 6. Dataset 3: From left to right: Distributions of the increment length, length and
growth rate for 10 initial configurations. The experimental distributions are plotted in red
and the numerical simulation distributions are plotted in blue.

division of the bacteria. While the literature indicates that the incremental (also called adder)
model [32–34] gives better results to predict the cell distributions than the models based solely on the
length [35, 36] or on the age, the incremental model remains based on a simplifying assumption, and
we believe that it could still be improved, as shown by our not-so-perfect fits. However, because
solving this issue is not the main objective of this paper, we consider the incremental model to be
good enough for our purpose. Nevertheless, we need to be careful about how this affects the results of
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our numerical simulations. In particular, we noticed that the evolution of the number of bacteria in
time in the colony was slower than the ones of the experimental data. This results in smaller colonies.
Therefore in the next sections, instead of comparing the experimental and simulated colonies as
functions of time, it will be as functions of the colonies area. Because the area of a colony might
change from a simulation to another the area are averaged on intervals of size 100 µm2 for Dataset 1
and 50 µm2 for Dataset 2 and 3.

3.2. The quantifiers

In this section, we define the quantifiers used to perform the comparison between the numerical and
experimental data and discuss their meaning. Some quantifiers refer to the characteristics (C1) and
(C2) of the colonies presented in the introduction; we recall that (C1) is the four-cell array observed
in early stages of development, and (C2) is the elongated shape of the colony. In Figure 7 we plot the
colonies resulting from the segmentation of Datasets 1–3. Each segmented bacterium is represented
by a spherocylinder, its colour indicating its directional angle from 0 (red) to π. Figure 7(1) present the
colonies in the four-cell array organisation corresponding to the characteristic (C1) while Figure 7(3)
show the colonies at a later stage of development. Dataset 1 gives access to data for a smaller duration
and therefore is plotted at an earlier time.

Remark 1. We noticed that using the values of the bacteria diameters extracted from the segmented
data of [1] led to very dense colonies composed of overlapping bacteria. This phenomenon is
however not observed in the microscopy images of the colonies before segmentation - we refer, e.g., to
the Figure 1 of [10], to the Figure 1b,c of [3], or yet to the supplementary movies 6 and 7 of [1]. It
can be due (i) to the flexibility of the real bacteria that is not taken into account in a spherocylinder
representation and (ii) to the choice of the parameters for representing the segmented bacteria by
spherocylinders (namely their width, length). From real images, we estimated that the actual
overlapping amount in the cell colonies from the microscopy images was better fitted by reducing the
width of the bacteria of 20% compared to the value provided in the referenced papers. In the
remaining of this paper, we therefore use this reduced value for generating the images (for instance
Figure 7) as well as computing the statistical quantifiers.

While Panels (a) and (c) clearly show that E. coli colonies tend to organise into elongated
structures (characteristic (C2)), this observation is not so clear for the pseudonomas colonies
(Panels (b)). Moreover, we observe the emergence of locally aligned clusters inside the colonies, with
high anisotropy in orientation for Dataset 1 (Panels (a) of Figure 7). In this case, we observe a
correlation between the orientation of the bacteria and that of the whole colony, while this correlation
becomes less clear for larger colonies (Figure 7(3), Panels (b) and (c)). Therefore, in the following,
we will quantify the shape of the overall colony as well as its local anisotropy. Finally, we observe
that bacteria seem to be tightly packed. We will therefore take an interest in the density of the
micro-colonies.

Among the quantities we consider we find:

• The aspect ratio αR which quantifies the shape of a micro-colony. This measure requires to
determine two characteristic lengths for the shape, that we denote l and L. There exist various
ways to determine two characteristic lengths of a colony. In our study, following the observation

Mathematical Biosciences and Engineering Volume 17, Issue 6, 6873–6908.



6884

(1) Four cell array organisation

(2) Early stages N ≈ 40

(3) Late stage

Figure 7. Plot of a colony from the experimental datasets: Dataset 1 (a), Dataset 2 (b) and
Dataset 3 (c), at times corresponding to: four cell colonies (1), colony composed of N = 40
cells (2), colony at time t = 250 min. All the colonies are in the four-cell array organisation.
The colours of the bacteria are determined by their orientations.

made in [37], we define the lengths l and L as the semi-minor and semi-major axis of the ellipse
fitted with the same normalised second central moments as the convex envelop of the colony. For
a domain A of centroid (x̄, ȳ), the normalised second central moments is defined by the

covariance matrix 1
µ00

(
µ20 µ11

µ11 µ02

)
with µpq =

∫
A
(x − x̄)p(y − ȳ)qdxdy. Therefore αR = l

L with l and

L the respective minor an major axis of the ellipse such that the previous covariance matrix is
equal for the ellipse and the convex envelop of the colony.

• The local order parameter λ which quantifies the local anisotropy of the bacteria orientations. For
each bacterium i, we compute the mean of the projection matrices on the orientation vectors of
the neighbouring bacteria:

Oi =
1

Card{ j ∈ [1,N], |Xi − X j| ≤ 3/2Ri}

∑
j∈[1,N]

|Xi−X j |≤3/2Ri

(
cos θ j

2 cos θ j sin θ j

cos θ j sin θ j sin θ j
2

)
.
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Note that the local anisotropy is computed for bacteria whose centres are located in a ball centred
at the bacterium i position and of radius 3Ri

2 . Then, we define λi as the largest eigenvalue of the
matrix Oi, which gives a measure of the local anisotropy in orientations around the bacterium i.
Notice that when all the bacteria are locally aligned around bacterium i, λi = 1, while λi tends
to 1

2 when the neighbours of the bacterium i are randomly oriented. The local order parameter is
defined as the average of all these eigenvalues:

λ =
1
N

N∑
i=1

λi.

• The density parameter δ: This parameter is computed via image analysis tools, by computing the
surface area of the envelope of the colony and dividing it by the surface area of the filled colony.

• The distance d2 which characterizes the structure of the two-cell colony. This quantifier aims to
characterize the four-cell array organisation of a colony (C2). However because it is not trivial
to quantify the arrangement of four bacteria, we focus of the structure of two-cell colonies, right
before the division. Indeed, to be into a four-cell structure indicates that, before division, the two
bacteria of the colony were side by side longitudinally. Then, in the case of a colony composed
of two bacteria, d2 is defined by

d2 = |
(Xi − X j) · (Xi − Xpo

i )
|Xi − X j||Xi − Xpo

i |
|,

for two bacteria i and j. We recall that Xpo
i denotes the old pole of the bacterium i. The value

of d2 is between 0 and 1, where d2 = 0 when the four cells are side-by-side in a four-cell array
configuration and d2 = 1 when the two bacteria are aligned.

• The distribution of the angle dθ between the two daughter cells at division. This parameter is
observed using the same time intervals as in the experiments (further explained in Section 3.3.3).

3.3. Influence of some of the model parameters

In this section, we discuss the influence of the asymmetric friction and of the distribution of mass
which are the two new key components of our model. We also study the influence of the parameter Θ

which parametrizes the angle at division. In this section, the parameters used are the ones
corresponding to Dataset 1 in Table 1. The results are averaged over 10 simulations.

3.3.1. The asymmetric friction

We first discuss the influence of the asymmetric friction on the colony growth by varying the value
of the friction anisotropy Ai. For the sake of simplicity, we will consider that this ratio is the same for
all bacteria and we denote it by A. Therefore, the parallel friction ζ || and the perpendicular friction ζ⊥

are defined by

ζ || = Aζ and ζ⊥ =
ζ

A
.
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Note that A = 1 corresponds to an isotropic friction while A , 1 supposes a directional dependence of
friction. In this paper, we will focus on the case A ≤ 1 which expresses the fact that it is more difficult
for a bacterium to slide in its perpendicular direction than in its direction.

In Figure 8 we show the two colonies at time t = 250 min for A = 1 (Panel (a)) and A = 0.4
(Panel (b)). From Figure 8, we observe that the friction anisotropy parameter A has a strong influence
on the shape of the colony: Anisotropic friction (A < 1, Panel (b)) leads to the emergence of elongated
bacterial structures coupled with a large anisotropic orientation of the bacteria, while isotropic friction
(case A = 1, Panel (a)) promotes the formation of round colonies with more variability in the bacteria
orientations.

Figure 8. Plot of the colony for A = 1 (a) and A = 0.4 (b) at t = 250 min. The color of the
bacteria are given by their angle from the horizontal axis.

To quantify these observations, we show in Figure 9 the evolution of the aspect ratio αR (Panel (a)),
the local order quantifier λ (Panel (b)) and the colony density (Panel (c)), as functions of the area of
the colony. Panel (d) shows the distribution of the angles at division all along the simulation and for
all bacteria. For each figure, we used different values of A: A = 1 (blue curves), A = 0.8 (red curves),
A = 0.6 (yellow curves), A = 0.4 (purple curves) and A = 0.2 (green curves).

Figure 9a shows that the aspect ratio αR of the colony increases as the colony grows, with rates
depending on the anisotropic friction A: We observe a fast convergence towards a spherical shape for
A = 1 (isotropic friction, blue curve), while for smaller values of A the colony remains elongated
and converges slower towards a spherical shape. For the extreme case A = 0.2, the colony remains
elongated all along the simulation (green curve). Together with these observations, Panel (c) shows
that as the anisotropic friction A decreases, the local organisation of the bacteria λ increases (compare
blue and green curves of Panel (c)). We also note however that in all cases the local alignment of the
bacteria decreases as the colony grows. These results show that by making it less costly for a bacteria to
slide in its longitudinal direction than perpendicular to it, an anisotropic friction favours the alignment
of the bacteria and consequently creates anisotropy in their orientation. This results in more elongated
overall structures. From Panel (b), we note that anisotropic friction seems to have little influence on the
overall density of the colony, although a slight increase of the density when A decreases is observed at
early times of the colony, showing once again that anisotropic friction favours the emergence of more
organized and therefore slightly denser colonies. Finally, Panel (d) shows that anisotropic friction
favours slightly more concentrated distributions of angles at division, which shows that the bacterial
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Figure 9. Evolution of the aspect ratio αR (a), the density (b) and the local order quantifier λ
(c) as functions of the area of the colony, and of the distribution of the angle at division (d),
for different values of A: A = 1 , A = 0.8, A = 0.6, A = 0.4, A = 0.2.

orientation remains closer to the orientation given at division (since in these simulations we have a
very small Θ = 10−5): They tend to have more difficulty for rotational movement. In Table 2, we show
the values of the quantifier d2 which characterizes the type of structure obtained when the system is
composed of 4 cells (recall that d2 = 1 when the cells are aligned, d2 = 0 when they are organized in
a 4-cell array structure). As one can observe in Table 2, anisotropic friction has no influence on the
initial organisation of the micro-colony. These are expected results because at a very early stage (when
only two bacteria are present), there is no reason for a bacterium to turn, since turning would spend
energy while no external force requests this action.

Table 2. Influence of asymmetric friction on the four-cell array quantifier d2.

A average of d2 minimum of d2 maximum of d2

A = 1 0.999999891665219 0.999999459667383 0.999999999972967
A = 0.8 0.999999996374091 0.999999987537210 0.999999999995483
A = 0.6 0.999999999713114 0.999999998770278 0.999999999999658
A = 0.4 0.999999999932987 0.999999999655075 0.999999999999919
A = 0.2 0.999999999962652 0.999999999823866 0.999999999999236
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3.3.2. The mass distribution

In this section, we consider the distribution of the mass along the length of the bacteria. The most
classical approach is to consider that mass is distributed uniformly along the length, however in this
paper we explore the possibility of an asymmetric distribution. During the division of the bacteria, the
genetic material has to split into two parts which locate at each side of the bacteria. Therefore it is
acceptable to consider that the distribution of the weight of the bacteria is not uniform. In particular,
we consider that the mass located near the old pole is more important than the one located near the new
pole, i.e., αi >= 0.5 (recall that Lαi is the distance between the center of mass of bacterium i and its
newest pole, and αi = 0.5 when the center of mass corresponds to the geometric center). Note that this
distribution of mass could be compared to the existence of asymmetric adhesion force to the substrate
which has been studied in [1]. However, despite the asymmetric friction and some attraction, this study
seems not able to recover the four-cell array structure of bacteria micro-colony (see Supplementary
Movie 9 of [1]). To make our approach more realistic we consider that the parameter αi may be time-
dependent. We will now consider that the value of αi returns linearly to 0.5 (uniform mass distribution)
in Tαi minutes. We will consider two cases: either Tαi = +∞, i.e., the mass distribution remains
constant during all the lifetime of the bacterium (but is however equally shared at division), or Tαi is
equal to half the average lifespan of the bacteria of the experimental colonies. For simplicity we will
denote this value Tα without the index i.

In Figure 10 we show two colonies right after the second division for α = 0.5 and α = 0.9 with
Tα = +∞. The parameters used are the ones of Experiment 1 and the results of Table 3 are averaged
over 10 simulations. We observe that for α = 0.5 the four bacteria are almost arranged in a line, while
for α = 0.9 some of the bacteria are side by side. Although cells are still not perfectly arranged in
a four-cell array structure, introducing an asymmetric mass distribution enables to get closer to the
experimental results.

Figure 10. Plot of the colony for α = 0.5 (left) and α = 0.9 (right) at t = 70 min (which
correspond to the moment where the colony is composed of four cells). The color of the
bacteria are given by their angle from the horizontal axis.

In Table 3 we show the value of the distance d2 for different values of (α,Tα): (α,Tα) = (0.5,∞),
(α,Tα) = (0.6,∞), (α,Tα) = (0.75,∞), (α,Tα) = (0.9,∞) and (α,Tα) = (0.9, 12). We recall that d2 is a
quantifier for the organisation of two-cell colonies. When d2 is close to 0, the two bacteria are side by
side and give rise to the four-cell array organisation. The values in Table 3 show that d2 decreases as α
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increases, showing that the increase of the asymmetry of the mass allows bacteria to slide side by side.
This effect is expected since the asymmetry of mass decreases the moment of inertia, as one of the
poles becomes very light and the other one very heavy. In addition, the value of Tα = T div/2 = 12 min
reduces the impact of α > 1 compared to the case Tα = +∞, while maintaining the sliding of the
bacteria.

Table 3. Combined influence of asymmetric mass α and relaxation time to symetric mass Tα

on the four-cell array quantifier d2

α,Tα average of d2 minimum of d2 maximum of d2

α = 0.5, Tα = ∞ 0.99 0.99 0.99
α = 0.6, Tα = ∞ 0.99 0.99 0.99
α = 0.75, Tα = ∞ 0.98 0.93 0.99
α = 0.9, Tα = ∞ 0.95 0.82 0.99
α = 0.9, Tα = T div/2 = 12 min 0.98 0.91 0.99

The distribution of the mass along the length of the bacteria also influences the shape of the colony
and its organisation. Indeed when the mass of a bacterium is located near its old pole, the centre of
mass of the cell is shifted to one side and the bacterium is more likely to turn. This observation is
illustrated in Figure 11 where we present the evolution of the aspect ratio αR, the local order quantifier
λ, the density δ as functions of the area of the colony and the angle at division distribution for different
values of α. From Panels (a) and (b), it is clear that the increase of α makes the colony more spherical
and less organised. However colonies are better organised with asymmetric mass distribution when
Tα < ∞ (compare the green and purple curves of Figure 11c). The density is slightly impacted by the
decrease of the change of the value of α but the modification is relatively small, given the amplitude of
the confidence intervals. Finally, Panel (d) shows that the increase of α reduces the angle at division,
as we already saw for a decrease of A: The more the cells are asymmetric, the less they turn during the
very early stage of the morphogenesis. On the long range however, their effects appear to be opposite:
Asymmetric friction continues to inhibit rotation, whereas mass asymmetry seems to favour it.

3.3.3. The angle at division

Let us now discuss the influence of the noise parameter Θ on the organisation of the colony. In
Figure 12 we present the evolution of the four previously-seen quantifiers: the aspect ratio αR, the local
order quantifier λ, the density δ as functions of the area of the colony as well as the observable angle
at division distribution, for different values of Θ. In Table 4 the average distance d2 for the different
values of Θ is presented. Figure 12 and Table 4 show that the quantifiers have similar behaviour for
Θ = 10−5 and Θ = 10−3. However, we observe that the increase of Θ to 10−1 slightly disorganises
the colonies while making them more spherical. It also flattens the angle at division distribution and
decreases the value of d2. Therefore, to a certain extent, an important increase of Θ has an effect similar
to the increase of the mass asymmetry at the very early stage (four cell) of the micro-colony, but an
opposite—though moderate—effect on the long term.

The meaning of the noise at division can be discussed. It was first introduced to break the symmetry
in the division and avoid the growth of one-line colonies. However, as we model biological systems, it
is reasonable to suppose that they are subject to random fluctuations (from the environment), and that
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Figure 11. Evolution of the aspect ratio αR (a), the local order quantifier λ (b) and the density
(c) as functions of the area of the colony, and of the distribution of the angle at division
(d) for different values of α: (α,Tα) = (0.5,∞), (α,Tα) = (0.6,∞), (α,Tα) = (0.75,∞),
(α,Tα) = (0.9,∞) and (α,Tα) = (0.9, 12).

Table 4. Influence of Θ on the four-cell array quantifier d2.

Θ average of d2 minimum of d2 maximum of d2

Θ = 10−5 0.99 0.99 0.99
Θ = 10−3 0.99 0.99 0.99
Θ = 10−1 0.95 0.86 0.99

cell division is not perfectly symmetric but has a random component. Then comes the question of the
amplitude of this noise. A small noise can be easily identified to the division of the bacteria, whereas a
large noise is more difficult to justify. It could then be considered as the result of a hidden phenomenon
unknown to this date. Throughout the paper we do not restrict the noise at division amplitude.

4. Comparison of experimental data and numerical simulations

In this section, we compare the numerical simulations with experimental data, in order to quantify
as much as possible to which extent the model is suitable to study the two-dimensional evolution
of sessile bacteria on a substrate. The comparison is made via the use of the quantifiers presented
in Section 3.2 to describe the characteristics of the micro-colonies. The comparisons are done for
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Figure 12. Evolution of the aspect ratio αR (a), the local order quantifier λ (b) and the density
(c) as functions of the area of the colony, and of the distribution of the angle at division (d)
for different values of Θ: Θ = 10−5, Θ = 10−3, Θ = 10−1.

the 3 sets of experimental data we presented in Section 3.1. When the parameters are not explicitly
mentioned they are defined according to Table 1. The study made in Section 3 shows that asymmetric
friction results in a more elongated micro-colony while an asymmetric distribution of the mass along
the length of the bacteria provides the four-cell array organisation in the early stage of the colony
growth. However, the asymmetric mass distribution tends to disorganise the colony and to make it more
spherical. Thus, to fit at best the experimental data, we aim to find a ratio between the influence of both
parameters. For each experiment, we compare the experimental data with numerical simulations with
four sets of parameters. We restrict the number of simulations to 4 to simplify the comprehension of the
paper, given the high number of parameters in the model. The four cases of the numerical simulations
are the following:

(I) Symmetric friction A = 1, uniform mass distribution α = 0.5 and a small angle at division
parameter Θ = 10−5. Blue curves in Figures 13, 16 and 19; Panels (a) in Figures 14, 15, 17, 18,
20 and 21.

(II) Asymmetric friction A < 1 and uniform mass distribution α = 0.5. Red curves in Figures 13, 16
and 19; Panels (b) in Figures 14, 15, 17, 18, 20 and 21.

(III) Symmetric friction A = 1 and asymmetric mass distribution α > 0.5. Honey yellow curves in
Figures 13, 16 and 19; Panels (c) in Figures 14, 15, 17, 18, 20 and 21.
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(IV) Asymmetric friction A < 1 and asymmetric mass distribution α > 0.5. Purple curves in
Figures 13, 16 and 19; Panels (d) in Figures 14, 15, 17, 18, 20 and 21.

For the first set of parameters we aim to reproduce the general model found in the literature [3–5, 28]
for the spatial forces, combined with the most up-to-date model for growth and division. For the three
other sets of parameters, the choice of the parameters A, α and Θ is made in order to fit qualitatively as
best as possible the experimental data.

4.1. Dataset 1

The parameters which have been chosen to fit the experimental data are listed below:

(I) Symmetric friction A = 1 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−5,

(II) Asymmetric friction A = 0.4 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−1,

(III) Symmetric friction A = 1, asymmetric mass distribution α = 0.9 with Tα = 12 min, angle at
division parameter Θ = 10−5,

(IV) Asymmetric friction A = 0.5 and asymmetric mass distribution α = 0.9 with Tα = 12 min, angle
at division parameter Θ = 10−1.

In Figure 13 we show the evolution of the aspect ratio αR, the local organisation parameter λ, and
the density quantifier δ as functions of the colony area as well as the distribution of the observable
angle at division. The grey curves correspond to the evolution of the quantifiers computed on the
experimental data. Note that these are not averages over the number of experimental colonies, due to
the high variability in the values of the quantifiers. Table 5 presents the average values of d2 for the
experimental data and numerical simulations.

Table 5. Four-cell array quantifier d2: Comparison of the four parameter choice cases with
the experimental dataset 1.

Dataset 1 average of d2 minimum of d2 maximum of d2

Experimental data 0.74 0.49 0.97
Case 1 0.99 0.99 0.99
Case 2 0.98 0.94 0.99
Case 3 0.98 0.91 0.99
Case 4 0.95 0.84 0.99

As stated previously, the variability of the quantifiers for the experimental data in Figure 13,
Panel (a) and (b) makes the comparison with numerical simulations difficult. The observation of
Panel (a) shows that the best fit for the aspect ratio are the cases 2 and 4. The case 1 could also be
considered even though the large colonies tend to be too spherical, but we can exclude the case 3 on
the basis of the aspect ratio. This is also observed for the case 1 for colonies bigger than 600 µm2.
Concerning the local organisation in the colony (Panel (c) Figure 13), because the range of values
taken by the experimental data is wide, we can conclude that the four cases are acceptable choices.
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Figure 13. Dataset 1: plots of the aspect ratio αR (a), the local order quantifier λ (b) and
the density (c) as functions of the area of the colony, and of the distribution of the angle at
division (d) for the experimental data (grey dashed curve), and numerical simulations for the
case 1 (blue curve), case 2 (red curve), case 3 (yellow curve) and case 4 (purple curve). The
plots of the numerical data are averaged over 10 simulations.

For the cases 2 and 4 in particular, the quantifier λ follows rather well one of the experimental colony.
Panel (c) shows that the densities of the numerical colonies is systematically smaller than the one of
the simulated colonies. An exception can be made for the case 3 which is denser than the other cases
for areas smaller than 500 µm2. The angle at division of the experimental colonies (Panel (d)) is
composed of a peak centred in zero and has then an almost uniform distribution spread from −0.5 to
0.5. The distributions observed numerically take the form of normal distributions, which makes the
comparison with the experimental data difficult. We distinguish two cases: For the cases 1 and 3, the
peak of the experimental angle is reached; for the cases 2 and 4, the distribution, similarly to the
experimental one, spreads up to −0.4 and 0.4. Finally concerning the organisation of the colony at
early stages of development, Table 5 shows that the distance d2 is not as small for the numerical data
as for the experimental data. However, the closest values are taken for the case 4, which is also
confirmed by visual comparison in Figure 14. Therefore, given these observations, we can conclude
that the best choice of parameters is first the case 4 and second the case 2, whereas the cases 1 and 3
may be excluded.

In Figures 14 and 15 we present plots of the colonies for cases 1–4 at after 53 and 176 minutes
respectively. The first time is the first occurrence where the colony is composed of four cells and the
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second time has been chosen so that the number of bacteria in the colonies is equal to 40, which is
similar to the number of bacteria present in the plots 7 (2). Figure 14 shows that the best four-cell
array configuration is obtained in Panel (d) corresponding to the case 4. Besides, by comparing
Figures 15 and 7(1,2) Panels (a) we visually observe that the colonies which are the most similar to
the experimental colony are the cases 2 and 4. This supports our previous statement. Therefore for
this set of data, our model suggests that the overall anisotropy of the colony could be mainly due to
asymmetric friction of the bacteria, and that cell division could be accompanied by an asymmetric
mass distribution.

Figure 14. Dataset 1: Plot of simulation at time t = 53min for Case 1 (a), Case 2 (b), Case 3
(c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figure can
be compare to Figure 7(1) Panels (a).

Figure 15. Dataset 1: Plot of simulation at time t = 200min for Case 1 (a), Case 2 (b),
Case 3 (c) and Case 4 (d). The colors of the bacteria are given by their orientation. These
figure can be compare to Figure 7(2) Panel (a).
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4.2. Dataset 2

The parameters which have been chosen to fit the experimental data are listed below:

(I) Symmetric friction A = 1 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−5,

(II) Asymmetric friction A = 0.8 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−1,

(III) Symmetric friction A = 1 and asymmetric mass distribution α = 0.9 with Tα = 19 min, angle at
division parameter Θ = 10−5,

(IV) Asymmetric friction A = 0.8 and asymmetric mass distribution α = 0.9 with Tα = 19 min, angle
at division parameter Θ = 10−3,

In Figure 16 we show the evolution of the aspect ratio αR, the local organisation quantifier λ, the density
δ as functions of the colony area and the distribution of the angle at division. In addition, Table 6
presents the average values of d2 for the experimental data and numerical simulations. Similarly as for
Dataset 1, we observe a large variability in the values of the aspect ratio αR and the local organisation
quantifier λ for the experimental data (see the grey curves of Figure 16 Panels (a) and (b)). Moreover,
Panel (a) shows that the colony of pseudomonas (Dataset 2) are less elongated than the one of E. coli
(Datasets 1 and 3). Indeed on Figure 16 the aspect ratio αR takes values between 0.2 and 0.8 while in
Figure 13 its values are between 0.2 and 0.5. The pseudomonas colonies are also less organised, with
the local order parameter λ taking values down to 0.65 (compared to 0.75 for Dataset 1). Note that the
difference of shape between the pseudomonas colonies and the E. coli colonies explains why the value
of A considered for this dataset is closer to 1 than for Dataset 1: The colonies being less elongated, we
do not need to consider a strong asymmetry in the friction.

Table 6. Four-cell array quantifier d2: Comparison of the experimental dataset 2 with the
four parameter choice cases.

Dataset 2 average of d2 minimum of d2 maximum of d2

Experimental data 0.42 0.00 0.80
Case 1 0.99 0.99 0.99
Case 2 0.90 0.63 0.99
Case 3 0.92 0.65 0.99
Case 4 0.87 0.54 0.95

Figure 16a shows that, except for colonies of area smaller than 50 µm2, the numerical colonies
aspect ratio for the four cases are between the bounds of the experimental data. The difference at early
stage might be due to the averages made. Panel (c) also shows that the local organisation of the four
cases is acceptable. The density of the experimental colony observed in Panel (b) of Figure 16 takes
values higher than for Dataset 1 (Figure 13c). This might be due to the different bacteria considered in
the two datasets. Also, Figure 16c shows that the numerical colonies are not as dense as the
experimental ones; as discussed earlier, this might also be an artefact of segmentation. Looking at the
angle at division Θ in Panel (d), we observe that none of the numerical distributions reaches the peak
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Figure 16. Dataset 2: plots of the aspect ratio αR (a), the local order quantifier λ (b) and
the density (c) as functions of the area of the colony, and of the distribution of the angle at
division (d) for the experimental data (grey dashed curve), and numerical simulations for the
case 1 (blue curve), case 2 (red curve), case 3 (yellow curve) and case 4 (purple curve). The
plots of the numerical data are average over 10 simulations.

of the experimental one. However their spread is qualitatively alike the experimental one. Finally
Table 6 shows that the values of d2 taken by the experimental colonies is much smaller than for
Dataset 1 (Table 5). Likewise, the values taken by the numerical colonies is smaller for Dataset 2,
going down to 0.87 (compared to 0.95 for Dataset 1). Therefore these differences might be due to the
shape of the bacteria. Nevertheless the diminution of d2 observed in the numerical data is not enough
to reach the experimental value 0.42. The smallest values of d2 are taken for the case 4, followed by
the case 3. We conclude that the best fit for Dataset 2 is obtained for the case 4 where an asymmetric
distribution of mass is considered along with a small asymmetry in the friction. Nonetheless, the
case 2 with only asymmetry for the friction can be considered as a good fit.

In Figures 17 and 18 we present plots of the colonies for the cases 1–4 at after 111 and 429
minutes respectively. Figsure 17 shows the four-cell arrangement of the colony and can be compare to
Figure 7(1) Panel (b). We observe that in the numerical colony the best case is for Panel (d) (case 4)
and is not as good as for the experimental colony. This supports the results presented in Table 6. In
Figure 18 the time has been chosen so that the number of bacteria in the colonies is close to 130,
which is similar to the number of bacteria present in the plots Figure 7(3) Panel (b). The experimental
colony in Figure 7(3) Panel (b) presents some triangular features. The only colony in Figure 18 which
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could have a similar shapes is in Panel (b). It corresponds to the case 2, which contradicts the
observations made with the quantifiers previously. Therefore, these plots show that there might be
missing features in the model combining the asymmetric friction and mass distribution without
counteracting each other effect.

Figure 17. Dataset 2: Plot of simulation at time t = 111min for Case 1 (a), Case 2 (b), Case
3 (c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figures
can be compare to Figure 7(1) Panel (b).

Figure 18. Dataset 2: Plot of simulation at time t = 200min for Case 1 (a), Case 2 (b), Case
3 (c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figure
can be compared to Figure 7(3) Panel (b).

4.3. Dataset 3

The parameters which have been chosen to fit the experimental data are listed below:
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(I) Symmetric friction A = 1 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−5,

(II) Asymmetric friction A = 0.4 and uniform mass distribution α = 0.5, angle at division parameter
Θ = 10−1,

(III) Symmetric friction A = 1 and asymmetric mass distribution α > 0.9 with Tα = 13 min, angle at
division parameter Θ = 10−5,

(IV) Asymmetric friction A = 0.6 and asymmetric mass distribution α > 0.9 with Tα = 13 min, angle
at division parameter Θ = 10−3,

As for Dataset 1, Dataset 3 corresponds to E. coli colonies but in different experimental conditions. We
recall that in this dataset, the segmentation of the bacterial colonies presented some issue and therefore
some data have been ignored. In addition, the data do not give access to the mother/daughter link and
therefore it is not possible to consider the angle at division. Therefore, in Figure 19 we only show the
evolution of the aspect ratio αR, the local organisation quantifier λ,and the density δ as functions of
the colony area. The grey curves correspond again to the values of the quantifiers computed on the
experimental data. Besides, Table 7 presents the average values of d2 for the experimental data and
numerical simulations.

Table 7. Four-cell array quantifier d2: comparison of the experimental dataset 3 with the four
parameter choice cases.

Dataset 3 average of d2 minimum of d2 maximum of d2

Experimental data 0.54 0.03 0.99
Case 1 0.99 0.99 0.99
Case 2 0.99 0.98 0.99
Case 3 0.83 0.70 0.91
Case 4 0.93 0.84 0.98

Figure 19a shows that the values of the aspect ratio αR in cases 1 and 3 is largely above the
experimental ones, showing that for these cases the colonies are way more spherical than in the
experiments. On the contrary, the case 2 seems to be a reasonably good fit of the experiments in terms
of aspect ratio of the colonies, while case 4 is slightly above the real data. However, we consider the
case 4 to be also an acceptable set of parameters as the aspect ratio follows one of the experimental
curves. The local organisation quantifier presented in Panel (b) indicates that the four cases can be
good fits. Additionally, Panel (c) shows that the the density of the numerical simulations is smaller
than the one of the experimental data, in line with the two previous datasets. Indeed, colonies larger
than 100 µm2 have density below 0.9 for the numerical data compared to 0.95 for the experimental
one. Finally, Table 7 shows that values taken by d2 are closest to the experimental values 0.4 for the
case 3 with 0.83, followed by the case 4 with 0.93. However the gap between the experimental and
the numerical values is important. It indicates that the model is not yet good enough to produce a
consistent four-cell array organisation. Considering the four quantifiers we can conclude that the
case 4 is the best fit for Dataset 3. Yet, the fit can be improved, in particular for the shape of the
micro-colony and the four-cell organisation.
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Figure 19. Dataset 3: Plots of the aspect ratio αR (a), the local order quantifier λ (b) and
the density (c) as functions of the area of the colony for the experimental data (grey dashed
curve), and numerical simulations for the case 1 (blue curve), case 2 (red curve), case 3
(yellow curve) and case 4 (purple curve). The plots of the numerical data are averaged over
5 simulations.

Figure 20. Dataset 3: Plot of simulation at time t = 111min for Case 1 (a), Case 2 (b), Case
3 (c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figure
can be compare to Figure 7 Panel (c).

We note that we reach the same conclusion for the colonies of Dataset 3 and for the colonies of
Dataset 1: Even though they are not in the same experimental conditions, the main mechanism at play
for E. coli colonies seems to be the asymmetric friction of the bacteria. Indeed, for both systems we
have seen that asymmetric friction was necessary to obtain the elongated shape of the growing colony,
and that this mechanism alone enables to recover reasonably good colony shape characteristics. Our
results also suggest that an asymmetric mass distribution during cell division could also be at play in
these systems, particularly in the early stages of development of the colony.
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Figure 21. Dataset 3: Plot of simulation at time t = 200min for Case 1 (a), Case 2 (b), Case
3 (c) and Case 4 (d). The colors of the bacteria are given by their orientation. These figures
can be compared to Figure 7(1) Panel (c).

5. Conclusions

This paper presented a model for the development of rod-shaped bacteria colony based on some
key components which are the asymmetric friction, the distribution of mass along the length of the
bacteria and the noise of the angle at division. We aimed to compare our numerical simulations with
experimental data and therefore developed a systematic approach to characterise a colony. Different
quantifiers have already been developed in the literature, such as the aspect ratio αR, however we did
not find in the literature a clear way to compare rod-shaped bacteria colony with different modelling
assumption. The quantifiers we considered characterise the shape, the organisation and the density
of the colony. We first studied the influence of these different modelling assumptions. It showed
that an asymmetric friction results in elongated colonies while an asymmetric mass distribution or a
large angle at division parameters is necessary to recover the four-cell array organisation of a four-
cell colony. Then, we compared the numerical simulations with experimental data. We had access to
experimental data for the E. coli (7 and 32 colonies) and the pseudomonas bacteria (10 colonies). In
the case of E. coli colonies, the quantifiers show that the fitting of the experimental data is improved in
two cases:

• An asymmetric friction and a high noise at division,

• An asymmetric friction and an asymmetric distribution of the mass along the length of the
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bacteria.

These results show that taking into account the shape of the bacteria and its effect on the friction
improves significantly the fitting of the model on experimental data. To confirm this hypothesis and
exclude alternative explanations, more experiments should be performed and more models simulated
and compared to experiments. Besides, the results do not establish the need of a non-uniform
distribution of the mass if there exists a force creating an important angle at division between two
daughter cells. Therefore this hypothesis, to be confirmed, would need to be justified by biological
evidence of such a phenomenon. In the case of pseudomonas bacteria, the colony are not as elongated
as for E. coli bacteria, therefore the need of an asymmetric friction is not confirmed. Nevertheless, our
study highlights that colonies with an asymmetric distribution of mass are a good fit for the
experimental data. This result can be improved with a slight asymmetric friction. Overall our results
have showed that asymmetric friction and asymmetric mass distribution are good model assumptions
to describe the growth of a rod-shaped micro-colony.

As stated previously, the shape and local organisation quantifiers take a wide range of value, even
for colonies coming from the same datasets. This suggests that better quantifiers could be found to
improve our study. In the case of the shape, observation of the colonies shows that while being
elongated, they are also starred shaped (with two or more tips). A better quantifier could therefore
take into consideration the tips of the shape. Considering the local organisation, other quantifiers can
be found in the literature, especially looking at liquid crystal studies. Improving the choice of the
quantifiers is left for further works. For a still more comprehensive study, we shall also introduce
other quantifiers, e.g., the orientation of the cells at the boundary of the micro-colony (Figure 3
of [10]), or the position of the oldest bacteria (Supplementary Figure 2 of [1]). An important research
direction is then to evaluate accurately the relevance of each quantifier and to use them to build
adequate distances between calibrated models and data.

Improvement in the model can still be made. Our model did not succeed in reproducing the
evolution of the density and d2 in the colony. One of the features which is commonly added to models
to improve the colony density and allows to recover a four-cell array organisation is the attraction
between the bacteria. Because it is unclear from biological experiments that attraction between
particles does exist, our approach consisted in showing that attraction was not essential to recover
features of colony growth such as colony elongation and (at least partially) four-cell array structure.
Besides, attraction between non-spherical particles can be implemented in various ways and would,
therefore, need to be carefully considered. Note that attraction would also have an impact on the
shape of the colony. Along with attraction, the interactions between particles which are usually
considered are repulsion and alignment. One can question whether these interactions should be
considered. In a broader sense, the system considered in this paper is a simplification of the reality as
it neglects phenomena such as the substrate force, the nutrient consumption and other external forces.
In the literature, models have taken different approaches, such as considering adherence with the
substrate [1], the extracellular matrix [2], nutrient consumption [23], bacteria attraction [1]. Models of
the literature have also consider the formation of 3D colonies [7, 18, 19] and it would be interesting to
consider the effect of anisotropic friction and mass distribution on 3D colon. A perspective of this
work would be to compare a wider range of models from the literature. Additionally, a larger choice
of experimental data would ideally be considered.
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Appendix

A. The algorithm

We describe the algorithm used to simulate the model described in Section 2.

1. Initialisation: N=1

(a) t0 = 0, k = 0, dt = 10−2,

(b) X0
1 = (0, 0), θ0

1 = 0, l0
1 = lini and lb

1 = l0
1 (the size at birth of the bacterium),

(c) Draw the increment at division ε1 and the growth rate g1 according to the law of the at-
division increment and growth rate respectively (see Appendix B),

(d) Compute Ai, K0
i and αi for all i ∈ [1,N].

2. Time loop : while tk ≤ Tmax
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(a) Compute the force Fo
i, j

k by checking the interaction between the bacteria i and j for (i, j) ∈
[1,N]2,

(b) Update dt: dt = dt/2h with h ≥ 0 such that ‖ dX
dt ‖ ≤ 0.1d0 and ‖dθ

dt ‖ ≤ 0.1π,

(c) Update Xi, θi and li for all i ∈ [1,N] according to

Xk+1
i = Xk

i + dt Kk
i
−1 1

lk
i

N∑
j=1

Fo
i, j

k,

θk+1
i = θk

i +
dt
ζ⊥Ii

N∑
j=1

(
(Xo, j

i
k
− Xk

i ) ∧ Fo
i, j

k
)
· z.

lk+1
i = lk+1

i + dt gi lk
i .

(d) Division: for all i ∈ [1,N], if li − lb
i ≥ εi the bacterium divides into two daughter cells i1 and

i2 which are initialised as follows: for j ∈ {i1, i2}

i. Define A j, Kk+1
j , αk+1

j and θ j

ii. lk+1
i = (lk+1

i − d0)/2,
θk+1

j = θk+1
i + dθ j with dθ j drawn according to a uniform lawU(−Θ,Θ),

Xk+1
j = Xk+1

i +
(3

4 (1 + 2αk+1
i ) (lk+1

i − d0)± (lk+1
i + d0)/4

)
pk+1

j with pk+1
j = (cos θk+1

j , sin θk+1
j )

iii. Draw the increment at division ε j and the growth rate g j according to the law of the
at-division increment and growth rate respectively (see Appendix B),

(e) Update Kk+1
i , αk+1

i , tk+1 = tk + dt, k = k + 1 for all i ∈ [1,N].

B. Estimating the distribution of at-division increments

As explained in the main text, we use the incremental model for the cell division cycle, i.e., the
increment of size triggers the division, as proposed in [32,33] and now widely accepted in the biological
community. Denoting β(a)da the instantaneous probability of a cell of increment of size a to divide in
the increment interval [a, a + da], this means that to simulate the instant of division of a cell being born
at time t, growth rate g and length l, we first pick up a random variable εd according to the probability
distribution fβ(a) defined by

εd ∼ fβ(a) := β(a)e
−

a∫
0
β(s)ds

,

which is independent of both g and l. This provides the increment at division of the cell. From this
value, we easily deduce its time td and length ld of division, defined by

ld = leg(t−td) = l + εd =⇒ td = t +
1
g

log(l + εd).

When simulating a given cell, its instant and length of division is thus fully determined by the law fβ, its
growth rate g,and its size at birth l. The question is now to estimate the law fβ from the experimental
data, which, due to the fact that they are given by the dynamics of a full population of cells till a
certain time and not till a certain generation, present a bias, lineages of fast-dividing cells being over-
represented compared to lineages of slowly-dividing cells, see e.g., [38]. We propose here two methods
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to estimate this law: One in the simpler case where we assume that all cells grow exponentially with
the same rate g, one in the general case. As a preliminary step, let us recall the equation satisfied in
large time by the cell distribution.

Asymptotic cell distribution. Considering that the growth-and-division processes are
space-independent, let us denote nk(t, a, l, g) the expectation of the empirical measure of cells at time t
of increment a, length l and growth rate g. We take k = 1 for the case where only one daughter cell is
kept at each division, as in microfluidic devices [16], and k = 2 for the case where the two daughter
cells remain in the micro-colony, as is our case. We have the following equation, see e.g., [39]

∂
∂t nk(t, a, l, g) + ∂

∂a (glnk(t, a, l, g)) + ∂
∂x (glnk(t, a, l, g)) + β(a)glnk(t, a, l, g) = 0,

nk(t, 0, l, g) = 4kρ(g)
∞∫
0

∫
E

g′lβ(a)nk(t, 0, 2l, g′)dadg′,

nk(0, a, l, g) = nin
k (a, l, g),

#
nin

k (a, l, g)dadldg = 1.

We have assumed here that at birth, a newborn cell has a probability ρ(g) to get the growth rate g,
independently of its mother growth rate.

We know by previous studies on similar equations [40–42] that, under fairly general assumptions,
there exists a unique eigencouple (λk,Nk), with λ1 = 0 and λ2 > 0, such that nke−λkt converges
exponentially fast towards cNk, with some normalisation constant c > 0, and Nk ≥ 0 solution of the
following equation:

λkNk(a, l, g) + ∂
∂a (glNk(a, l, g)) + ∂

∂x (glNk(a, l, g)) + β(a)glNk(a, l, g) = 0,

Nk(0, l, g) = 4kρ(g)
∞∫
0

∫
E

g′lβ(a)Nk(0, 2l, g′)dadg′,
#

Nk(a, l, g) = 1.

Let us denote fk(a) :=
!
β(a)glNk(a,l,g)dldg#
β(a)glNk(a,l,g)dadldg

: It represents the distribution of dividing cells, observed
either along a genealogical line for k = 1 or for the whole population till a given time for k = 2.
This is made obvious in the case k = 1 : Integrating the equation in l and g, and denoting Nk(a) :=!

Nk(a, l, g)gldldg the marginal probability of the increment, we obtain

∂

∂a
N1(a) + β(a)N1(a) = 0,N1(0) =

∞∫
0

β(a)N1(a)da,

so that we haveN1(a) = N1(0)e
−

a∫
0
β(s)ds

, thus fk(a) = Cβ(a)N1(a) with C > 0 a normalisation constant:

All this leads us to re-obtain the already-known equality f1(a) = β(a)e
−

a∫
0
β(s)ds

.

The difficulty comes from the fact that to simulate the stochastic branching tree described above, we
want to estimate f1(a), whereas we have experimental (noisy) measurements for f2(a),N2(a), and more
generally to the all-cell distribution N2(a, l, g) or yet to the at-division distribution β(a)glN2(a,l,g)#

β(a)glN2(a,l,g)dadldg
.
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Simpler case: All cells grow with the same exponential rate. In the case where all cells grow
exponentially with the same growth rate g, i.e., we have ρ(ḡ) = δḡ=g, the above equations simplify, we
have λ2 = g and a quick computation shows that N1(a, l, g) = ClN2(a, l, g) with C > 0 a normalisation
constant. In this case, as seen above, we may define f1 by

f1(a) :=

!
β(a)gl2N2(a, l, g)dldg#
β(a)gl2N2(a, l, g)dadldg

=

!
l fd2(a, l, g)dldg#
lfd2(a, l, g)dadldg

,

where fd
k
(a, l, g) denotes the at-division distribution of cells. Assuming that we have a sample

(ai, li)1≤i≤n of increments and lengths at division of cells taken at random in a whole population issued
from one single cell and living during a time interval [0,T ], we make the assumption (justified
asymptotically in [38]) that this sample is the realization of n random variables (Ai, Li)1≤i≤n,
independent, identically distributed, of law the marginal

∫
fd2(a, l, g)dg, so that we have the empirical

distribution f n
1 defined by

f n
1 (a) =

1
n∑

i=1
li

n∑
i=1

liδa=ai .

We thus propose an estimate f̂ n
1 of f1 by a kernel density estimation approach: Let K ∈ C∞0 (R) be a

smooth fast decaying function with
∫

K(a)da = 1 and
∫

amK(a)da = 0 for 1 ≤ m ≤ m0, m0 ∈ N, we
denote Kh(a) = 1

h K( a
h ) so that (Kh)h∈(0,1] is a mollifier sequence, we define f̂ n

1 by

f̂ n
1 (a) := Kh ∗ f n

1 (a) =
1

n∑
i=1

li

n∑
i=1

liKh(a − ai),

and we choose h by a data-driven bandwidth selection method, such as Goldenschluger and Lepski’s
or the recent Penalized Comparison to Overfitting (PCO) method [43, 44].

General case: Distributed growth rates. In the general case, we have no simple relation between

N1 and N2, so that we need to first estimate β(a) and then compute the distribution f1(a) = β(a)e
−

a∫
0
β(s)ds

.

A possibility among others is to write

β(a) =
β(a)
!

glN2(a, l, g)dldg!
glN2(a, l, g)dldg

=
f2(a)
#

β(a)glN2(a, l, g)dadldg!
glN2(a, l, g)dldg

,

that is, we have identified the numerator with the at-division distribution of increments f2(a) up to the
constant

!
glN2(a, l, g)dldg = λ, that we can measure with the time evolution of the total length for

instance, and the denominator with increment-dependent average of gl taken over the distribution N2 of
all cells at all times. Finally, assuming two samples: a first sample at division, denoted (ad

i , l
d
i , g

d
i )1≤i≤nd ,

and a second sample taken in the distribution at any time, denoted (ai, li, gi), we propose the following
estimator for β :

β̂n,nd (a) := λ̂

1
nd

nd∑
i=1

Khd (a − ad
i )

max
( 1
√

n ,
1
n

n∑
j=1

g jl jKh(a − ai)
) .
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To estimate λ, we can either follow the total size of the population and fit it as being its exponential
growth rate—other said, its Malthus parameter—or use again the properties of the equation, multiply
it by l to obtain

λ =

#
glN2(a, l, g)dadldg#
lN2(a, l, g)dadldg

,

so that we propose the following estimator

λ̂ =

n∑
i=1

gili

n∑
i=1

li

.
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