Citation: Zhichao Jiang, Xiaohua Bi, Tongqian Zhang, B.G. Sampath Aruna Pradeep. Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3807-3829. doi: 10.3934/mbe.2019188
[1] | A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny . Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525 |
[4] | Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250 |
[5] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[6] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
[7] | Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675 |
[8] | A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593 |
[9] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[10] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
[1] | S. Jang, J. Baglama and L. Wu, Dynamics of phytoplankton-zooplankton systems with toxin producing phytoplankton, Appl. Math. Comput., 227 (2014), 717–740. |
[2] | F. Rao, The complex dynamics of a stochastic toxic-phytoplankton-zooplankton model, Adv. Difference. Equ., 2014 (2014), 22. |
[3] | A. Sharma, A. Kumar Sharma and K. Agnihotri, Analysis of a toxin producing phytoplanktonzooplankton interaction with Holling IV type scheme and time delay, Nonlinear Dynam., 81 (2015), 13–25. |
[4] | B. Ghanbari and J. Gómez-Aguilar, Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives, Chaos Solitons Fractals, 116 (2018), 114–120. |
[5] | T. Liao, H. Yu and M. Zhao, Dynamics of a delayed phytoplankton-zooplankton system with Crowley-Martin functional response, Adv. Difference. Equ., 2017 (2017), 5. |
[6] | J. Li, Y. Song and H. Wan, Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge, Math. Biosci. Eng., 14 (2017), 529–557. |
[7] | Z. Jiang and T. Zhang, Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay, Chaos Solitons Fractals, 104 (2017), 693–704. |
[8] | T. Zhang, X. Liu, X. Meng, et al., Spatio-temporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 75 (2018), 4490–4504. |
[9] | T. Zhang, Y. Xing, H. Zang, et al., Spatio-temporal patterns in a predator-prey model with hyperbolic mortality, Nonlinear Dynam., 78 (2014), 265–277. |
[10] | X. Yu, S. Yuan and T. Zhang, The effects of toxin producing phytoplankton and environmental fluctuations on the planktonic blooms, Nonlinear Dynam., 91 (2018), 1653–1668. |
[11] | Y. Zhao, S. Yuan and T. Zhang, Stochastic periodic solution of a non-autonomous toxic-producing phytoplankton allelopathy model with environmental fluctuation, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 266– 276. |
[12] | Y. Zhao, S. Yuan and T. Zhang, The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching, Commun. Nonlinear Sci. Numer. Simul., 37 (2016), 131–142. |
[13] | Z. Jiang, W. Zhang, J. Zhang, et al., Dynamical analysis of a phytoplankton-zooplankton system with harvesting term and Holling III functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850162. |
[14] | J. Chattopadhayay, R. Sarkar and S. Mandal, Toxcin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modeling, J. Theoret. Biol., 215 (2002), 333–344. |
[15] | J. Dhar, A. Sharma and S. Tegar, The role of delay in digestion of plankton by fish population: A fishery model, J. Nonlinear Sci. Appl., 1 (2008), 13–19. |
[16] | J. Chattopadhyay, R. Sarkar and A. El Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Math. Appl. Med. Biol., 19 (2002), 137– 161. |
[17] | T. Zhang, W. Ma and X. Meng, Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input, Adv. Difference. Equ., 2017 (2017), 115. |
[18] | Y. Tang and L. Zhou, Great time delay in a system with material cycling and delayed biomass growth, IMA J. Appl. Math., 70 (2005), 191–200. |
[19] | Y. Tang and L. Zhou, Stability switch and Hopf bifurcation for a diffusive prey-predator system with delay, J. Math. Anal. Appl., 334 (2007), 1290–1307. |
[20] | T. Saha and M. Bandyopadhyay, Dynamical analysis of toxin producing phytoplanktonzooplankton interactions, Nonlinear Anal. Real World Appl., 10 (2009), 314–332. |
[21] | M. Rehim and M. Imran, Dynamical analysis of a delay model of phytoplankton-zooplankton interaction, Appl. Math. Model., 36 (2012), 638–647. |
[22] | Y. Wang, W. Jiang and H. Wang, Stability and global Hopf bifurcation in toxic phytoplanktonzooplankton model with delay and selective harvesting, Nonlinear Dynam., 73 (2013), 881–896. |
[23] | Z. Jiang, W. Ma and D. Li, Dynamical behavior of a delay differential equation system on toxin producing phytoplankton and zooplankton interaction, Japan J. Indust. Appl. Math., 31 (2014), 583–609. |
[24] | X. Fan, Y. Song and W. Zhao, Modeling cell-to-cell spread of hiv-1 with nonlocal infections, Complexity, 2018 (2018), 2139290. |
[25] | M. Chi and W. Zhao, Dynamical analysis of two-microorganism and single nutrient stochastic chemostat model with monod-haldane response Function, Complexity, 2019 (2019), 8719067. |
[26] | N. Gao, Y. Song, X. Wang, et al., Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates, Adv. Difference. Equ., 2019 (2019), 41. |
[27] | J. Ivlev, Experimental ecology of the feeding of fishes, Yale University Press, New Haven, 1961. |
[28] | B. Hassard, N. Kazarinoff and Y. Wan, Theory and Application of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981. |
[29] | Z. Wang, X. Wang, Y. Li, et al., Stability and Hopf bifurcation of fractional-order complexvalued single neuron model with time delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750209. |
[30] | L. Li, Z. Wang, Y. Li, et al., Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays, Appl. Math. Comput, 330 (2018), 152–169. |
[31] | Z. Jiang and L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750108. |
[32] | Y. Dai, Y. Jia, H. Zhao, et al., Global Hopf bifurcation for three-species ratio-dependent predatorprey system with two delays, Adv. Difference. Equ., 2016 (2016), 13. |
[33] | J.Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 35 (1998), 4799–4838. |
[34] | J. Hale and S. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. |
[35] | V. Lakshmikantham and S. Leela, Differential and Integral Inequalities (Theory and Application): Ordinary Differential Equations, Academic Press, New York, 1969. |
[36] | E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. |
[37] | Y. Qu, J. Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays, Phys. D, 23 (2010), 2011–2024. |
1. | Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, 2016, 291, 00963003, 149, 10.1016/j.amc.2016.06.032 | |
2. | Yu Yang, Stability and Hopf bifurcation of a delayed virus infection model with Beddington-DeAngelis infection function and cytotoxic T-lymphocyte immune response, 2015, 38, 01704214, 5253, 10.1002/mma.3455 | |
3. | Hongquan Sun, Jin Li, A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2020, 545, 03784371, 123477, 10.1016/j.physa.2019.123477 | |
4. | A. M. Elaiw, N. H. AlShamrani, Dynamics of viral infection models with antibodies and general nonlinear incidence and neutralize rates, 2016, 4, 2195-268X, 303, 10.1007/s40435-015-0181-2 | |
5. | Zhiting Xu, Youqing Xu, Stability of a CD4+ T cell viral infection model with diffusion, 2018, 11, 1793-5245, 1850071, 10.1142/S1793524518500717 | |
6. | Jinliang Wang, Jiying Lang, Xianning Liu, Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells, 2015, 20, 1531-3492, 3215, 10.3934/dcdsb.2015.20.3215 | |
7. | A. M. Elaiw, A. S. Alsheri, Global Dynamics of HIV Infection of CD4+T Cells and Macrophages, 2013, 2013, 1026-0226, 1, 10.1155/2013/264759 | |
8. | Jia Liu, Qunying Zhang, Canrong Tian, EFFECT OF TIME DELAY ON SPATIAL PATTERNS IN A AIRAL INFECTION MODEL WITH DIFFUSION, 2016, 21, 1392-6292, 143, 10.3846/13926292.2016.1137503 | |
9. | A. M. Shehata, A. M. Elaiw, E. Kh. Elnahary, M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, 2017, 5, 2195-268X, 811, 10.1007/s40435-016-0235-0 | |
10. | M.L. Mann Manyombe, J. Mbang, G. Chendjou, Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays, 2021, 144, 09600779, 110695, 10.1016/j.chaos.2021.110695 | |
11. | A. M. Elaiw, N. H. AlShamrani, Global Properties of General Viral Infection Models with Humoral Immune Response, 2017, 25, 0971-3514, 453, 10.1007/s12591-015-0247-9 | |
12. | Adrianne Jenner, Chae-Ok Yun, Arum Yoon, Peter S. Kim, Adelle C.F. Coster, Modelling heterogeneity in viral-tumour dynamics: The effects of gene-attenuation on viral characteristics, 2018, 454, 00225193, 41, 10.1016/j.jtbi.2018.05.030 | |
13. | Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan, Dynamics of a Delayed HIV-1 Infection Model with Saturation Incidence Rate and CTL Immune Response, 2016, 26, 0218-1274, 1650234, 10.1142/S0218127416502345 | |
14. | Xiulan Lai, Xingfu Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, 2014, 74, 0036-1399, 898, 10.1137/130930145 | |
15. | A. M. Elaiw, N. A. Alghamdi, Global Stability of Humoral Immunity HIV Infection Models with Chronically Infected Cells and Discrete Delays, 2015, 2015, 1026-0226, 1, 10.1155/2015/370968 | |
16. | Hai-Feng Huo, Rui Chen, Stability of an HIV/AIDS Treatment Model with Different Stages, 2015, 2015, 1026-0226, 1, 10.1155/2015/630503 | |
17. | Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Stability and Hopf bifurcation for a five-dimensional virus infection model with Beddington–DeAngelis incidence and three delays, 2018, 12, 1751-3758, 146, 10.1080/17513758.2017.1408861 | |
18. | Chengjun Kang, Hui Miao, Xing Chen, Jiabo Xu, Da Huang, Global stability of a diffusive and delayed virus dynamics model with Crowley-Martin incidence function and CTL immune response, 2017, 2017, 1687-1847, 10.1186/s13662-017-1332-x | |
19. | Hui Miao, Zhidong Teng, Zhiming Li, Global Stability of Delayed Viral Infection Models with Nonlinear Antibody and CTL Immune Responses and General Incidence Rate, 2016, 2016, 1748-670X, 1, 10.1155/2016/3903726 | |
20. | Hui Miao, Zhidong Teng, Xamxinur Abdurahman, Zhiming Li, Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response, 2018, 37, 0101-8205, 3780, 10.1007/s40314-017-0543-9 | |
21. | Jinliang Wang, Xinxin Tian, Xia Wang, Stability analysis for delayed viral infection model with multitarget cells and general incidence rate, 2016, 09, 1793-5245, 1650007, 10.1142/S1793524516500078 | |
22. | A. M. Ełaiw, N. H. AlShamrani, Global stability of a delayed virus dynamics model with multi-staged infected progression and humoral immunity, 2016, 09, 1793-5245, 1650060, 10.1142/S1793524516500601 | |
23. | A. M. Elaiw, N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, 2016, 39, 01704214, 4, 10.1002/mma.3453 | |
24. | A. M. Elaiw, N. H. AlShamrani, Global stability of a delayed humoral immunity virus dynamics model with nonlinear incidence and infected cells removal rates, 2017, 5, 2195-268X, 381, 10.1007/s40435-015-0200-3 | |
25. | Hongquan Sun, Jinliang Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2019, 77, 08981221, 284, 10.1016/j.camwa.2018.09.032 | |
26. | Liang Zhan, Jiayu Zhou, Yalin Wang, Yan Jin, Neda Jahanshad, Gautam Prasad, Talia M. Nir, Cassandra D. Leonardo, Jieping Ye, Paul M. Thompson, , Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease, 2015, 7, 1663-4365, 10.3389/fnagi.2015.00048 | |
27. | Yan Geng, Jinhu Xu, Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation, 2020, 13, 1793-5245, 2050033, 10.1142/S1793524520500333 | |
28. | Jinliang Wang, Jingmei Pang, Toshikazu Kuniya, Yoichi Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, 2014, 241, 00963003, 298, 10.1016/j.amc.2014.05.015 | |
29. | A.M. Elaiw, N.H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, 2015, 26, 14681218, 161, 10.1016/j.nonrwa.2015.05.007 | |
30. | A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, 2015, 08, 1793-5245, 1550058, 10.1142/S1793524515500588 | |
31. | Zhijun Liu, Lianwen Wang, Ronghua Tan, Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response, 2022, 27, 1531-3492, 2767, 10.3934/dcdsb.2021159 | |
32. | Ke Guo, Songbai Guo, Lyapunov functionals for a general time-delayed virus dynamic model with different CTL responses, 2024, 34, 1054-1500, 10.1063/5.0204169 | |
33. | Hui Miao, Global stability of a diffusive humoral immunity viral infection model with time delays and two modes of transmission, 2025, 10, 2473-6988, 14122, 10.3934/math.2025636 |