Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Stage-structured discrete-time models for interacting wild and sterile mosquitoes with beverton-holt survivability

1 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
2 Center for Applied Mathematics, Guangzhou University, Guangzhou 51006, China
3 Department of Mathematical Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA

The sterile insect technique (SIT) is an effective weapon to prevent transmission of mosquito-borne diseases, in which sterile mosquitoes are released to reduce or eradicate the wild mosquito population. To study the impact of the sterile insect technique on the disease transmission, we formulate stage-structured discrete-time models for the interactive dynamics of the wild and sterile mosquitoes using Beverton-Holt type of survivability, based on difference equations. We incorporate different strategies for releasing sterile mosquitoes, and investigate the model dynamics. Numerical simulations are also provided to demonstrate dynamical features of the models.
  Article Metrics

Keywords mathematical modeling; beverton-holt survivability; discrete-time models; sterile mosquitoes; vector-borne diseases; numerical simulations

Citation: Yang Li, Jia Li. Stage-structured discrete-time models for interacting wild and sterile mosquitoes with beverton-holt survivability. Mathematical Biosciences and Engineering, 2019, 16(2): 572-602. doi: 10.3934/mbe.2019028


  • 1. L. Alphey, M. Benedict, R. Bellini, G. G. Clark, D. A. Dame, M. W. Service and S. L. Dobson, Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector-Borne Zoonot., 10 (2010), 295–311.
  • 2. AMCA, Life Cycle. Available from: http://www.mosquito.org/page/lifecycle.
  • 3. B. Anderson, J. Jackson and M. Sitharam, Descartes's rule of signs revisited, Amer. Math. Monthly 105 (1998), 447–451.
  • 4. H. J. Barclay, The sterile insect release method for species with two-stage life cycles, Res. Popul. Ecol., 21 (1980), 165–180.
  • 5. H. J. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol., 24 (1982), 405– 416.
  • 6. H. J. Barclay, Mathematical models for the use of sterile insects, in Sterile Insect Technique, Principles and Practice in Area-Wide Integrated Pest Management, V. A. Dyck, J. Hendrichs, and A. S. Robinson , (Eds. Springer, Heidelberg), (2005), 147–174.
  • 7. H. J. Barclay and M. Mackuer, The sterile insect release method for pest control: a density dependent model, Environ. Entomol., 9 (1980), 810–817.
  • 8. A. C. Bartlett and R. T. Staten, Sterile Insect Release Method and other Genetic Control Strategies, Radcliffe's IPM World Textbook, 1996, available from: http://ipmworld.umn.edu/chapters/bartlett.htm.
  • 9. N. Becker, Mosquitoes and Their Control, Kluwer Academic/Plenum, New York, 2003.
  • 10. M. Q. Benedict and A. S. Robinson, The first releases of transgenic mosquitoes: an argument for the sterile insect technique, Trends Parasitol., 19 (2003), 349–55.
  • 11. R. J. H. Beverton and S. J. Holt, On the Dynamics of Exploited Fish Populations, Springer Science and Business Media, Jun 30, 1993.
  • 12. M. Bohner and H. Warth, The Beverton-Holt dynamic equation, Appl. Anal., 86 (2007), 1007– 1015.
  • 13. L. M. Cai, S. B. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM, J. Appl. Math., 74 (2014), 1786–1809.
  • 14. J. M. Cushing and J. Li, On Ebenman's model for the dynamics of a population with competing juveniles and adults, Bull. Math. Biol., 51 (1989), 687–713.
  • 15. C. Dye, Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference, Ecol. Entomol., 7 (1982), 39–46.
  • 16. S. Elaydi, Discrete Chaos: With Applications in Science and Engineering, 2nd edition, Boca Raton, CRC Press, 2007.
  • 17. K. R. Fister, M. L. McCarthy, S. F. Oppenheimer and Craig Collins, Optimal control of insects through sterile insect release and habitat modification, Math. Biosci., 244 (2013), 201–212.
  • 18. J. C. Floresa, A mathematical model for wild and sterile species in competition: immigration, Physica A, 328 (2003), 214–224.
  • 19. R. M. Gleiser, J. Urrutia and D. E. Gorla, Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions, Entomol. Exp. Appl., 95 (2000), 135–140.
  • 20. D. J. Grabiner, Descartes's rule of signs: Another construction, Amer. Math. Monthly, 106 (1999), 854–855.
  • 21. C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 45 (1965), 5–60.
  • 22. E. I. Jury, The inners approach to some problems of system theory, IEEE, Trans. Automatic Contr., AC-16 (1971), 233–240.
  • 23. E. S. Krafsur, Sterile insect technique for suppressing and eradicating insect populations: 55 years and counting, J. Agr. Entomol., 15 (1998), 303–317.
  • 24. J. Li, Simple stage-structured models for wild and transgenic mosquito populations, J. Diff. Eqns. Appl., 17 (2009), 327–347.
  • 25. J. Li, Modeling of mosquitoes with dominant or recessive transgenes and Allee effects, Math. Biosci. Eng., 7 (2010), 101–123.
  • 26. J. Li, Malaria model with stage-structured mosquitoes, Math. Biol. Eng., 8 (2011), 753–768.
  • 27. J. Li, Stage-structured models for interacting wild and sterile mosquitoes, Journal of Shanghai Normal University, 43 (2014), 511–522.
  • 28. J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dynam., 11(S2) (2017). 316–333.
  • 29. J. Li and Z. L. Yuan, Modeling releases of sterile mosquitoes with different strategies, J. Biol. Dynam., 9 (2015), 1–14.
  • 30. Y. Li, Discrete-time Structured Models and their Dynamics for Interactive Wild and Sterile Mosquitoes and Malaria Transmissions, Ph.D thesis, The University of Alabama in Huntsville, 2017.
  • 31. Y. Li and J. Li, Discrete-time models for releases of sterile mosquitoes with Beverton-Holt-type of survivability, Ricerche di Matematica, 67 (2018), 141–162.
  • 32. Y. Li and J. Li, Discrete-time model for malaria transmission with constant releases of sterile mosquitoes, preprint, 2018.
  • 33. R. M. May, G. R. Conway, M. P. Hassell and T. R. E. Southwood, Time delays, density-dependence and single-species oscillations, J. Anim. Ecol., 43 (1974), 747–770.
  • 34. Mosquito Facts, 33 Things You Didn't Know About Mosquitoes, https://www.megacatch. com/mosquito-faqs/mosquito-facts/.
  • 35. M. Otero, H. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate, Bull. Math. Biol., 68 (2006), 1945–1974.
  • 36. D. Ruiz, G. Poveda, I. D. Velez, M. L. Quinones, G. L. Rua, L. E.Velasquesz and J. S. Zuluage, Modeling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System, Malaria J., 5 (2006), 66.
  • 37. Wikipedia, Mosquito-borne disease. Available from: https://en.wikipedia.org/wiki/ Mosquito-borne_disease.
  • 38. Wikipedia, Sterile insect technique. Available from: https://en.wikipedia.org/wiki/ Sterile_insect_technique.


Reader Comments

your name: *   your email: *  

Copyright Info: 2019, Yang Li, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved