Research article Special Issues

The Beverton–Hold model on isolated time scales

  • Received: 12 July 2022 Revised: 31 July 2022 Accepted: 10 August 2022 Published: 15 August 2022
  • In this work, we formulate the Beverton–Holt model on isolated time scales and extend existing results known in the discrete and quantum calculus cases. Applying a recently introduced definition of periodicity for arbitrary isolated time scales, we discuss the effects of periodicity onto a population modeled by a dynamic version of the Beverton–Holt equation. The first main theorem provides conditions for the existence of a unique $ \omega $ -periodic solution that is globally asymptotically stable, which addresses the first Cushing–Henson conjecture on isolated time scales. The second main theorem concerns the generalization of the second Cushing–Henson conjecture. It investigates the effects of periodicity by deriving an upper bound for the average of the unique periodic solution. The obtained upper bound reveals a dependence on the underlying time structure, not apparent in the classical case. This work also extends existing results for the Beverton–Holt model in the discrete and quantum cases, and it complements existing conclusions on periodic time scales. This work can furthermore guide other applications of the recently introduced periodicity on isolated time scales.

    Citation: Martin Bohner, Jaqueline Mesquita, Sabrina Streipert. The Beverton–Hold model on isolated time scales[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11693-11716. doi: 10.3934/mbe.2022544

    Related Papers:

  • In this work, we formulate the Beverton–Holt model on isolated time scales and extend existing results known in the discrete and quantum calculus cases. Applying a recently introduced definition of periodicity for arbitrary isolated time scales, we discuss the effects of periodicity onto a population modeled by a dynamic version of the Beverton–Holt equation. The first main theorem provides conditions for the existence of a unique $ \omega $ -periodic solution that is globally asymptotically stable, which addresses the first Cushing–Henson conjecture on isolated time scales. The second main theorem concerns the generalization of the second Cushing–Henson conjecture. It investigates the effects of periodicity by deriving an upper bound for the average of the unique periodic solution. The obtained upper bound reveals a dependence on the underlying time structure, not apparent in the classical case. This work also extends existing results for the Beverton–Holt model in the discrete and quantum cases, and it complements existing conclusions on periodic time scales. This work can furthermore guide other applications of the recently introduced periodicity on isolated time scales.



    加载中


    [1] R. J. H. Beverton, S. J. Holt, On the dynamics of exploited fish populations, volume 19 of Fishery investigations (Great Britain, Ministry of Agriculture, Fisheries, and Food), H. M. Stationery Off., London, 1957.
    [2] E. C. Pielou, An Introduction to Mathematical Ecology, Wiley-Interscience, 1969.
    [3] A. S. Al-Ghassani, Z. AlSharawi, The effect of maps permutation on the global attractor of a periodic Beverton–Holt model, Appl. Math. Comput., 370 (2018), 124905. https://doi.org/10.1016/j.amc.2019.124905 doi: 10.1016/j.amc.2019.124905
    [4] E. J. Bertrand, M. R. S. Kulenović, Global dynamics of higher-order transcendental-type generalized Beverton–Holt equations, Int. J. Difference Equ., 13 (2018), 71–84.
    [5] P. H. Bezandry, Almost periodic stochastic Beverton–Holt difference equation with higher delays and with competition between overlapping generations, Nonauton. Dyn. Syst., 7 (2020), 118–125. https://doi.org/10.1515/msds-2020-0105 doi: 10.1515/msds-2020-0105
    [6] J. A. Filar, Z. H. Qiao, S. Streipert, Risk sensitivity in Beverton–Holt fishery with multiplicative harvest, Nat. Resour. Model., 33 (2020), e12257. https://doi.org/10.1111/nrm.12257 doi: 10.1111/nrm.12257
    [7] T. Khyat, M. R. S. Kulenović, E, Pilav, The invariant curve caused by Neimark–Sacker bifurcation of a perturbed Beverton–Holt difference equation, Int. J. Difference Equ., 124 (2017), 267–280.
    [8] T. Khyat, M. R. S. Kulenović, Global dynamics of delayed sigmoid Beverton–Holt equation, Discrete Dyn. Nat. Soc., (2020), 1–15, Art. ID 1364282. https://doi.org/10.1155/2020/1364282
    [9] M. R. S. Kulenović, S. Moranjkić, Z. Nurkanović. Global dynamics and bifurcation of a perturbed sigmoid Beverton–Holt difference equation, Math. Methods Appl. Sci., 39 (2016), 2696–2715. https://doi.org/10.1002/mma.3722 doi: 10.1002/mma.3722
    [10] Y. Li, J. Li, Discrete-time models for releases of sterile mosquitoes with Beverton–Holt-type of survivability, Ric. Mat., 67 (2018), 141–162. https://doi.org/10.1007/s11587-018-0361-4 doi: 10.1007/s11587-018-0361-4
    [11] Y. Li, J. Li, Stage-structured discrete-time models for interacting wild and sterile mosquitoes with Beverton–Holt survivability. Math. Biosci. Eng., 16 (2019), 572–602. https://doi.org/10.3934/mbe.2019028 doi: 10.3934/mbe.2019028
    [12] T. Diagana, Almost automorphic solutions to a Beverton–Holt dynamic equation with survival rate, Appl. Math. Lett., 36 (2014), 19–24. https://doi.org/10.1016/j.aml.2014.04.011 doi: 10.1016/j.aml.2014.04.011
    [13] S. Frassu, T. X. Li, G. Viglialoro, Improvements and generalizations of results concerning attraction-repulsion chemotaxis models, Math. Methods Appl. Sci., Published online 1 June 2022. https://doi.org/10.1002/mma.8437
    [14] S. Frassu, G, Viglialoro, Boundedness criteria for a class of indirect (and direct) chemotaxis-consumption models in high dimensions, Appl. Math. Lett., 132 (2022), 108108. https://doi.org/10.1016/j.aml.2022.108108 doi: 10.1016/j.aml.2022.108108
    [15] T. X. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 1–18. https://doi.org/10.1007/s00033-018-1046-2 doi: 10.1007/s00033-018-1046-2
    [16] T. X. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ. Integral Equat., 34 (2021), 315–336.
    [17] J. M. Cushing, S. M. Henson, Global dynamics of some periodically forced, monotone difference equations, J. Differ. Equ. Appl., 7 (2001), 859–872. On the occasion of the 60th birthday of Calvin Ahlbrandt. https://doi.org/10.1080/10236190108808308 doi: 10.1080/10236190108808308
    [18] J. M. Cushing, S. M. Henson, A periodically forced Beverton–Holt equation, J. Difference Equ. Appl., 8 (2002), 1119–1120. https://doi.org/10.1080/1023619021000053980 doi: 10.1080/1023619021000053980
    [19] S. Stević, A short proof of the Cushing–Henson conjecture, Discrete Dyn. Nat. Soc., (2006), pages 1–5, Art. ID 37264. https://doi.org/10.1155/DDNS/2006/37264
    [20] S. Elaydi, R. J. Sacker, Periodic difference equations, population biology and the Cushing-Henson conjectures, Math. Biosci., 201 (2006), 195–207. https://doi.org/10.1016/j.mbs.2005.12.021 doi: 10.1016/j.mbs.2005.12.021
    [21] M. Bohner, S. Streipert, The Beverton-Holt equation with periodic growth rate, Int. J. Math. Comput., 26 (2015), 1–10. https://doi.org/10.1007/978-3-319-24747-2_1 doi: 10.1007/978-3-319-24747-2_1
    [22] M. Bohner, H. Warth, The Beverton–Holt dynamic equation, Appl. Anal., 86 (2007), 1007–1015. https://doi.org/10.1080/00036810701474140 doi: 10.1080/00036810701474140
    [23] M. Bohner, R. Chieochan, The Beverton–Holt $ q $ -difference equation, J. Biol. Dyn., 7 (2013), 86–95. https://doi.org/10.1080/17513758.2013.804599 doi: 10.1080/17513758.2013.804599
    [24] M. Bohner, S. Streipert, The Beverton–Holt $ q $ -difference equation with periodic growth rate, In Difference equations, discrete dynamical systems, and applications, Springer-Verlag, Berlin-Heidelberg-New York, 2015, 3–14. https://doi.org/10.1007/978-3-319-24747-2_1
    [25] M. Bohner, A. Peterson, Dynamic equations on time scales. Birkhäuser Boston, Inc., Boston, MA, 2001, An introduction with applications. https://doi.org/10.1007/978-1-4612-0201-1
    [26] M. Bohner, J. G. Mesquita, S, Streipert, Periodicity on isolated time scales, Math. Nachr., 295 (2022), 259–280. https://doi.org/10.1002/mana.201900360 doi: 10.1002/mana.201900360
    [27] M. Bohner, T. Cuchta, S. Streipert, Delay dynamic equations on isolated time scales and the relevance of one-periodic coefficients, Math. Methods Appl. Sci., 45 (2022), 5821–5838. https://doi.org/10.1002/mma.8141 doi: 10.1002/mma.8141
    [28] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [29] B. Jackson, The time scale logarithm, Appl. Math. Lett., 21 (2008), 215–221. https://doi.org/10.1016/j.aml.2007.02.020 doi: 10.1016/j.aml.2007.02.020
    [30] M. Bohner, The logarithm on time scales, J. Difference Equ. Appl., 11 (2005), 1305–1306. https://doi.org/10.1080/10236190500376284 doi: 10.1080/10236190500376284
    [31] M. Bohner, Some oscillation criteria for first order delay dynamic equations, Far East J. Appl. Math., 18 (2005), 289–304.
    [32] F. H. Wong, C. C. Yeh, W. C. Lian, An extension of Jensen's inequality on time scales, Adv. Dyn. Syst. Appl., 1 (2006), 113–120.
    [33] M. Bohner, F. M. Dannan, S. Streipert, A nonautonomous Beverton–Holt equation of higher order, J. Math. Anal. Appl., 457 (2018), 114–133. https://doi.org/10.1016/j.jmaa.2017.07.051 doi: 10.1016/j.jmaa.2017.07.051
    [34] V. L. Kocic, A note on the nonautonomous delay Beverton–Holt model, J. Biol. Dyn., 4 (2010), 131–139. https://doi.org/10.1080/17513750902803588 doi: 10.1080/17513750902803588
    [35] E. Braverman, S. H. Saker, On the Cushing–Henson conjecture, delay difference equations and attenuant cycles, J. Difference Equ. Appl., 14 (2008), 275–286. https://doi.org/10.1080/10236190701565511 doi: 10.1080/10236190701565511
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1686) PDF downloads(89) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog