Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility

  • Received: 01 January 2012 Accepted: 29 June 2018 Published: 01 January 2013
  • MSC : Primary: 92D30; Secondary: 35F31, 34D23.

  • We consider global asymptotic properties for the SIR and SEIRage structured models for infectious diseases where the susceptibilitydepends on the age. Using the direct Lyapunov method with Volterratype Lyapunov functions, we establish conditions for the global stabilityof a unique endemic steady state and the infection-free steady state.

    Citation: Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369

    Related Papers:

  • We consider global asymptotic properties for the SIR and SEIRage structured models for infectious diseases where the susceptibilitydepends on the age. Using the direct Lyapunov method with Volterratype Lyapunov functions, we establish conditions for the global stabilityof a unique endemic steady state and the infection-free steady state.


    加载中
    [1] Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1-17.
    [2] Math. Model. Nat. Phenom., 2 (2007), 62-83.
    [3] SIAM J. Appl. Math., 2 (2006), 337-353.
    [4] Math. Biosci. Eng., 3 (2006), 513-525.
    [5] J. Biol. Dynamics, 2 (2008), 154-168.
    [6] SIAM Rev., 42 (2000), 599-653.
    [7] Appl. Math. Lett., 22 (2009), 1690-1693.
    [8] Appl. Math. Lett., 24 (2011), 1199-1203.
    [9] J. Math. Biol., 63 (2011), 129-139.
    [10] SIAM J. Appl. Math., 70 (2010), 2693-2708.
    [11] Bull. Math. Biol., 72 (2010), 1192-1207.
    [12] Math. Biosci., 209 (2007), 51-75.
    [13] J. Theor. Biol., 224 (2003), 269-275.
    [14] Bull. Math. Biol., 71 (2009), 75-83.
    [15] Bull. Math. Biol., 69 (2007), 1871-1886.
    [16] Math. Med. Biol., 26 (2009), 225-239.
    [17] Math. Med. Biol., 26 (2009), 309-321.
    [18] Discrete Cont. Dyn. Syst. Ser. B, 14 (2010), 1095-1103.
    [19] SIAM, Philadelphia, 1976.
    [20] J. Math. Anal. Appl., 361 (2010), 38-47.
    [21] Math. Biosci. Eng., 7 (2010), 675-685.
    [22] Taylor & Francis, Ltd., London, 1992.
    [23] Appl. Anal., 89 (2010), 1109-1140.
    [24] USSR Comput Maths Math. Phys., 23 (1983), 45-49.
    [25] Math. Biosci. Eng., 6 (2009), 603-610.
    [26] Nonlinear Anal. Real World Appl., 11 (2010), 55-59.
    [27] Appl. Math. Comput., 217 (2010), 3046-3049.
    [28] Nonlinear Anal. Real World Appl., 11 (2010), 3106-3109.
    [29] Math. Biosci. Eng., 8 (2011), 1019-1034.
    [30] J. Differ. Equations, 250 (2011), 3772-3801.
    [31] Princeton University Press, Princeton, 2003.
    [32] Nonlinear Anal., 47 (2001), 6181-6194.
    [33] Gauthier-Villars, Paris, 1931.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3630) PDF downloads(1186) Cited by(39)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog