An extension of Gompertzian growth dynamics: Weibull and Fréchet models

  • Received: 01 February 2012 Accepted: 29 June 2018 Published: 01 January 2013
  • MSC : Primary: 92D25, 91B62, 62H10, 11S82; Secondary: 92B05, 37H20, 37B10, 37B40.

  • In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by $Beta^*(p,q)$, which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for $p = 2$, the investigation is extended to the extreme value models of Weibull and Fréchet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the $Beta^*(2,q)$ densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.

    Citation: J. Leonel Rocha, Sandra M. Aleixo. An extension of Gompertzian growth dynamics: Weibull and Fréchet models[J]. Mathematical Biosciences and Engineering, 2013, 10(2): 379-398. doi: 10.3934/mbe.2013.10.379

    Related Papers:

    [1] Jorge Duarte, Cristina Januário, Nuno Martins . A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis. Mathematical Biosciences and Engineering, 2017, 14(4): 821-842. doi: 10.3934/mbe.2017045
    [2] Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi . Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences and Engineering, 2018, 15(4): 883-904. doi: 10.3934/mbe.2018040
    [3] A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092
    [4] Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Mesoscopic model for tumor growth. Mathematical Biosciences and Engineering, 2007, 4(4): 687-698. doi: 10.3934/mbe.2007.4.687
    [5] Nada Almuallem, Dumitru Trucu, Raluca Eftimie . Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: A mathematical approach. Mathematical Biosciences and Engineering, 2021, 18(1): 764-799. doi: 10.3934/mbe.2021041
    [6] Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler . On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences and Engineering, 2013, 10(3): 787-802. doi: 10.3934/mbe.2013.10.787
    [7] Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska . Model of tumour angiogenesis -- analysis of stability with respect to delays. Mathematical Biosciences and Engineering, 2013, 10(1): 19-35. doi: 10.3934/mbe.2013.10.19
    [8] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions. Mathematical Biosciences and Engineering, 2021, 18(5): 5252-5284. doi: 10.3934/mbe.2021267
    [9] Christian Cortés García . Bifurcations in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and constant prey refuge at low density. Mathematical Biosciences and Engineering, 2022, 19(12): 14029-14055. doi: 10.3934/mbe.2022653
    [10] Qingfeng Tang, Guohong Zhang . Stability and Hopf bifurcations in a competitive tumour-immune system with intrinsic recruitment delay and chemotherapy. Mathematical Biosciences and Engineering, 2021, 18(3): 1941-1965. doi: 10.3934/mbe.2021101
  • In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by $Beta^*(p,q)$, which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for $p = 2$, the investigation is extended to the extreme value models of Weibull and Fréchet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the $Beta^*(2,q)$ densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.


    [1] AIP Conf. Proc. American Inst. of Physics, 1124 (2009), 3-12.
    [2] Proc. Int. Conf. on Information Technology Interfaces, (2009), 213-218.
    [3] in "Dynamics, Games and Science II" (eds. M. M. Peixoto, A. A. Pinto and D. A. J. Rand), Springer-Verlag (2011), 79-95.
    [4] J. of Theoret. Biol., 21 (1968), 42-44.
    [5] John Wiley $&$ Sons, Inc., New York, 1990.
    [6] Math. Biosci. Eng., 6 (2009), 573-583.
    [7] Math. Biosci., 185 (2003), 153-167.
    [8] Br. J. Cancer, 18 (1964), 490-502.
    [9] Growth, 29 (1965), 233-248.
    [10] Cambridge University Press, Cambridge, 1995.
    [11] Math. Biosci. Eng., 1 (2004), 307-324.
    [12] Chaos, Solitons $&$ Fractals, 41 (2009), 334-347.
    [13] Physica A, 387 (2008), 5679-5687.
    [14] J. Math. Anal. Appl., 179 (1993), 446-462.
    [15] Springer, New York, 1993.
    [16] Dynamical systems (College Park, MD, 1986–87), 465-563, Lecture Notes in Math., 1342, Springer, Berlin, 1988.
    [17] BioSystems, 92 (2008), 245-248.
    [18] Physica D, 208 (2005), 220-235.
    [19] Math. Biosciences, 230 (2011), 45-54.
    [20] Fundaçāo Calouste Gulbenkian, Lisboa, 2008.
    [21] in "Chaos Theory: Modeling, Simulation and Applications" (eds. C. H. Skiadas, Y. Dimotikalis and C. Skiadas), World Scientific Publishing Co, (2011), 309-316.
    [22] Int. J. Math. Math. Sci., 38 (2004), 2019-2038.
    [23] Discrete Contin. Dyn. Syst.-Ser.B, 18 (2013), 783-795.
    [24] Ecol. Model., 205 (2007), 159-168.
    [25] Math. Biosci. Eng., 8 (2011), 355-369.
    [26] SIAM J. Appl. Math., 35 (1978), 260-267.
    [27] Res. Lett. Inf. Math. Sci., 2 (2001), 23-46.
    [28] Math. Biosci., 29 (1976), 367-373.
    [29] Chaos Solitons $&$ Fractals, 16 (2003), 665-674.
    [30] in "Fractals in Biology and Medicine" (eds. G. A. Losa, T. F. Nonnenmacher and E. R. Weibel), Birkhäuser, Basel, (2005), 277-286.
    [31] Byosystems, 82 (2005), 61-73.
    [32] J. Control Eng. and Appl. Informatics, 4 (2009), 45-52.
  • This article has been cited by:

    1. J. Leonel Rocha, Abdel-Kaddous Taha, D. Fournier-Prunaret, 2015, Chapter 16, 978-3-319-12327-1, 253, 10.1007/978-3-319-12328-8_16
    2. Daniele Fournier-Prunaret, Abdel-Kaddous Taha, J. Leonel Rocha, Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models, 2015, 20, 1531-3492, 3131, 10.3934/dcdsb.2015.20.3131
    3. J. Leonel Rocha, Sandra M. Aleixo, Acilina Caneco, 2015, Chapter 30, 978-3-319-16117-4, 547, 10.1007/978-3-319-16118-1_30
    4. Paola M. V. Rancoita, Morten Valberg, Romano Demicheli, Elia Biganzoli, Clelia Di Serio, Tumor dormancy and frailty models: A novel approach, 2017, 73, 0006341X, 260, 10.1111/biom.12559
    5. J. Leonel Rocha, Abdel-Kaddous Taha, D. Fournier-Prunaret, Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz's Growth Functions, 2016, 26, 0218-1274, 1630030, 10.1142/S0218127416300305
    6. Bishal Gurung, K. N. Singh, Ravindra Singh Shekhawat, Md Yeasin, An insight into technology diffusion of tractor through Weibull growth model, 2018, 45, 0266-4763, 682, 10.1080/02664763.2017.1289504
    7. J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha, Big bang bifurcations and Allee effect in Blumberg’s dynamics, 2014, 77, 0924-090X, 1749, 10.1007/s11071-014-1415-0
    8. J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha, Strong and weak Allee effects and chaotic dynamics in Richards' growths, 2013, 18, 1553-524X, 2397, 10.3934/dcdsb.2013.18.2397
    9. J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret, Big bang bifurcations in von Bertalanffy’s dynamics with strong and weak Allee effects, 2016, 84, 0924-090X, 607, 10.1007/s11071-015-2510-6
    10. J. Leonel Rocha, Abdel-Kaddous Taha, D. Fournier-Prunaret, Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions, 2016, 26, 0218-1274, 1650108, 10.1142/S021812741650108X
    11. Kai Moriguchi, An approach for deriving growth equations for quantities exhibiting cumulative growth based on stochastic interpretation, 2018, 490, 03784371, 1150, 10.1016/j.physa.2017.08.142
    12. Wissame Selmani, Ilham Djellit, Attractors and commutation sets in Hénon-like diffeomorphisms, 2018, 36, 2175-1188, 9, 10.5269/bspm.v36i4.31139
    13. J. Leonel Rocha, Abdel-Kaddous Taha, D. Fournier-Prunaret, Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions, 2018, 990, 1742-6588, 012011, 10.1088/1742-6596/990/1/012011
    14. Naz Saud, Aqsa Rafique, Muhammad Ijaz, Naila Amjad, Mahmoud El-Morshedy, Syed Habib Shah, Bin Wang, Characterizations and Entropy Measures of the Exponentiated Generalized Frechet Geometric Distribution, 2022, 2022, 1687-9139, 1, 10.1155/2022/2717894
    15. Alison Ord, Bruce Hobbs, Orogenic gold deposits as nonlinear systems: Nonlinear analysis of data, 2022, 142, 01691368, 104699, 10.1016/j.oregeorev.2022.104699
    16. Bruce E. Hobbs, Alison Ord, Thomas Blenkinsop, The spatial distributions of mineralisation, 2022, 156, 01918141, 104529, 10.1016/j.jsg.2022.104529
    17. Matylda Odachowski, Robin Neven, Giuditta Perversi, Dario Romano, Cathryn A. Slabber, Mouna Hadiji, Maarten Honing, Yuandi Zhao, Orde Q. Munro, Burgert Blom, Ionic mononuclear [Fe] and heterodinuclear [Fe,Ru] bis(diphenylphosphino)alkane complexes: Synthesis, spectroscopy, DFT structures, cytotoxicity, and biomolecular interactions, 2023, 242, 01620134, 112156, 10.1016/j.jinorgbio.2023.112156
    18. Alison Ord, Thomas Blenkinsop, Bruce Hobbs, Fragment size distributions in brittle deformed rocks, 2022, 154, 01918141, 104496, 10.1016/j.jsg.2021.104496
    19. M. Fátima Brilhante, M. Ivette Gomes, Sandra Mendonça, Dinis Pestana, Pedro Pestana, Generalized Beta Models and Population Growth: So Many Routes to Chaos, 2023, 7, 2504-3110, 194, 10.3390/fractalfract7020194
    20. A. Ord, B. E. Hobbs, The growth and size of orogenic gold systems: probability and dynamical behaviour, 2023, 0812-0099, 1, 10.1080/08120099.2023.2207628
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3103) PDF downloads(659) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog