Research article Special Issues

Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: A mathematical approach

  • Received: 18 October 2020 Accepted: 06 December 2020 Published: 18 December 2020
  • The success of oncolytic virotherapies depends on the tumour microenvironment, which contains a large number of infiltrating immune cells. In this theoretical study, we derive an ODE model to investigate the interactions between breast cancer tumour cells, an oncolytic virus (Vesicular Stomatitis Virus), and tumour-infiltrating macrophages with different phenotypes which can impact the dynamics of oncolytic viruses. The complexity of the model requires a combined analytical-numerical approach to understand the transient and asymptotic dynamics of this model. We use this model to propose new biological hypotheses regarding the impact on tumour elimination/relapse/persistence of: (i) different macrophage polarisation/re-polarisation rates; (ii) different infection rates of macrophages and tumour cells with the oncolytic virus; (iii) different viral burst sizes for macrophages and tumour cells. We show that increasing the rate at which the oncolytic virus infects the tumour cells can delay tumour relapse and even eliminate tumour. Increasing the rate at which the oncolytic virus particles infect the macrophages can trigger transitions between steady-state dynamics and oscillatory dynamics, but it does not lead to tumour elimination unless the tumour infection rate is also very large. Moreover, we confirm numerically that a large tumour-induced M1$\to$M2 polarisation leads to fast tumour growth and fast relapse (if the tumour was reduced before by a strong anti-tumour immune and viral response). The increase in viral-induced M2$\to$M1 re-polarisation reduces temporarily the tumour size, but does not lead to tumour elimination. Finally, we show numerically that the tumour size is more sensitive to the production of viruses by the infected macrophages.

    Citation: Nada Almuallem, Dumitru Trucu, Raluca Eftimie. Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: A mathematical approach[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 764-799. doi: 10.3934/mbe.2021041

    Related Papers:

  • The success of oncolytic virotherapies depends on the tumour microenvironment, which contains a large number of infiltrating immune cells. In this theoretical study, we derive an ODE model to investigate the interactions between breast cancer tumour cells, an oncolytic virus (Vesicular Stomatitis Virus), and tumour-infiltrating macrophages with different phenotypes which can impact the dynamics of oncolytic viruses. The complexity of the model requires a combined analytical-numerical approach to understand the transient and asymptotic dynamics of this model. We use this model to propose new biological hypotheses regarding the impact on tumour elimination/relapse/persistence of: (i) different macrophage polarisation/re-polarisation rates; (ii) different infection rates of macrophages and tumour cells with the oncolytic virus; (iii) different viral burst sizes for macrophages and tumour cells. We show that increasing the rate at which the oncolytic virus infects the tumour cells can delay tumour relapse and even eliminate tumour. Increasing the rate at which the oncolytic virus particles infect the macrophages can trigger transitions between steady-state dynamics and oscillatory dynamics, but it does not lead to tumour elimination unless the tumour infection rate is also very large. Moreover, we confirm numerically that a large tumour-induced M1$\to$M2 polarisation leads to fast tumour growth and fast relapse (if the tumour was reduced before by a strong anti-tumour immune and viral response). The increase in viral-induced M2$\to$M1 re-polarisation reduces temporarily the tumour size, but does not lead to tumour elimination. Finally, we show numerically that the tumour size is more sensitive to the production of viruses by the infected macrophages.


    加载中


    [1] M. Ahmed, S. Cramer, D. Lyles, Sensitivity of prostate tumours to wild type and m protein mutant vesicular stomatitis viruses, Virology, 330 (2004), 34–49. doi: 10.1016/j.virol.2004.08.039
    [2] P. Allavena, A. Mantovani, Immunology in the clinic review series; focus on cancer: tumourassociated macrophages: undisputed stars of the inflammatory tumour microenvironment, Clin. Exp. Immunol., 167 (2012), 195–205. doi: 10.1111/j.1365-2249.2011.04515.x
    [3] P. Allavena, A. Sica, C. Garlanda, A. Mantovani, The yin-yang of tumour-associated macrophages in neoplastic progression and immune surveillance, Immunol. Rev., 222 (2008), 155–161. doi: 10.1111/j.1600-065X.2008.00607.x
    [4] N. Almuallem, R. Eftimie, A mathematical model for the role of macrophages in the persistence and elimination of oncolytic viruses, Math. Appl. Sci. Eng., 1 (2020), 126–149.
    [5] S. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Stat. Rev., 62 (1994), 229–243. doi: 10.2307/1403510
    [6] M. Boemo, H. Byrne, Mathematical modelling of hypoxia-regulated oncolytic virus delivered by tumour-associated macrophages, J. Theor. Biol., 461 (2019), 102–116. doi: 10.1016/j.jtbi.2018.10.044
    [7] B. Bridle, J. Boudreau, B. Lichty, J. Brunelliére, K. Stephenson, S. Koshy, et al., Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumour immunity amenable to rapid boosting with adenovirus, Mol. Ther., 17 (2009), 1814–1821. doi: 10.1038/mt.2009.154
    [8] M. J. Brown, S. Bahsoun, M. Morris, E. Akam, Determining conditions for successful culture of multi-cellular 3D tumour spheroids to investigate the effect of mesenchymal stem cells on breast cancer cell invasiveness, Bioengineering, 6 (2019), 101. doi: 10.3390/bioengineering6040101
    [9] X. Y. Chen, A. Thike, N. Nasir, V. Koh, B. Bay, P. Tan, Higher density of stromal M2 macrophages in breast ductal carcinoma in situ predicts recurrence, Virchows Archiv., 476 (2020), 825–833. doi: 10.1007/s00428-019-02735-1
    [10] R. Y. S. Cheng, N. L. Patel, T. Back, D. Basudhar, V. Somasundaram, J. D. Kalen, et al., Studying triple negative breast cancer using orthotopic breast cancer model, J. Vis. Exp., 157 (2020), e60316.
    [11] V. Chitu, Y. G. Yeung, W. Yu, S. Nandi, E. R. Stanley, Measurement of macrophage growth and differentiation, Curr. Protoc. Immunol., 92, (2011), 14–20.
    [12] M. Cobleigh, C. Bradfield, Y. Liu, A. Mehta, M. Robek, The immune response to a Vesicular Stomatitis Virus vaccine vector is independent of particulate antigen secretion and protein turnover rate, J. Virology, 86, (2012), 4253–4261.
    [13] E. Corbin, O. Adeniba, O. Cangellaris, W. King, R. Bashir, Evidence of differential mass change rates betwen human breast cancer cell lines in culture, Biomed. Microdevices, 19, (2017), 10.
    [14] N. De Silva, H. Atkins, D. H. Kirn, J. C. Bell, C. J. Breitbach, Double trouble for tumours: exploiting the tumour microenvironment to enhance anticancer effect of oncolytic viruses, Cytokine Growth Factor Rev., 21, (2010), 135–141.
    [15] N. Denton, C. Y. Chen, T. Scott, T. Cripe, Tumour-associated macrophages in oncolytic virotherapy: friend or foe? Biomedicines, 4 (2016), 13.
    [16] N. DePolo, J. Holland, The intracellular half-lives of nonreplicating nucleocapsids of DI particles of wild type and mutant strains of vesicular stomatitis virus, Virology, 151 (1986), 371–378. doi: 10.1016/0042-6822(86)90057-7
    [17] R. Eftimie, J. Dushoff, B. W. Bridle, J. L. Bramson, D. J. Earn, Multi-stability and multi-instability phenomena in a mathematical model of tumor-immune-virus interactions, Bull. Math. Biol., 73 (2011), 2932–2961. doi: 10.1007/s11538-011-9653-5
    [18] R. Eftimie, G. Eftimie, Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics, Lett. Biomath., 5 (2018), S6–S35. doi: 10.30707/LiB5.2Eftimiea
    [19] R. Eftimie, G. Eftimie, Investigating macrophages plasticity following tumour–immune interactions during oncolytic therapies, Acta Biotheor., 67 (2019), 321–359. doi: 10.1007/s10441-019-09357-9
    [20] R. Eftimie, H. Hamam, Modelling and investigation of the CD4+ T cells–macrophages paradox in melanoma immunotherapies, J. Theor. Biol., 420 (2017), 82–104. doi: 10.1016/j.jtbi.2017.02.022
    [21] R. Eftimie, C. K. Macnamara, J. Dushoff, J. L. Bramson, D. J. Earn, Bifurcations and chaotic dynamics in a tumour-immune-virus system. Math. Model. Nat. Phenom., 11 (2016), 65–85.
    [22] R. van Furth, I. Elzenga-Claasen, M. van Schdewijk-Nieuwstad, M. M. Diesselhoff-den, H. Toivonen, T. Rytömaa, Cell kinetic analysis of a murine macrophage cell line, Eur. J. Cell Biol., 44 (1987), 93–96.
    [23] J. Fournier, O. Robain, I. Cerutti, I. Tardivel, F. Chany-Fournier, C. Chany, Detection of vesicular stomatitis virus (VSV) RNA in the central nervous system of infected mice by in situ hybridization, Acta Neuropathol., 75 (1988), 554–556. doi: 10.1007/BF00686199
    [24] S. Friberg, S. Mattson, On the growth rates of human malignant tumours: implications for medical decision making, J. Surg. Oncol., 65 (1997), 284–297. doi: 10.1002/(SICI)1096-9098(199708)65:4<284::AID-JSO11>3.0.CO;2-2
    [25] R. Fuller, Response of M2 Macrophages in a Simulated Tumor Microenvironment to Infection with Vesicular Stomatitis Virus, Master's thesis, Appalachian State University, 2018.
    [26] Y. Gao, P. Whitaker-Dowling, S. Watkins, J. Griffin, I. Bergman, Rapid adaptation of a recombinant vesicular stomatitis virus to a targeted cell line, J. Virol., 80 (2006), 8603–8612. doi: 10.1128/JVI.00142-06
    [27] D. Gong, W. Shi, S. Yi, H. Chen, J. Groffen, N. Heisterkamp, TGFβ signalling plays a critical role in promoting alternative macrophage activation, BMC Immunol., 13 (2012), 31. doi: 10.1186/1471-2172-13-31
    [28] C. Guiducci, A. P. Vicari, S. Sangaletti, G. Trinchieri, M. P. Colombo, Redirecting in vivo elicited tumour infiltrating macrophages and dendritic cells towards tumour rejection, Cancer Res., 65 (2005), 3437–3446. doi: 10.1158/0008-5472.CAN-04-4262
    [29] C. Guiot, P. G. Degiorgis, P. P. Delsanto, P. Gabriele, T. S. Deisboeck, Does tumor growth follow a "universal law"? J. Theor. Biol., 225 (2003), 147–151.
    [30] M. Hollmén, F. Roudnicky, S. Karaman, M. Detmar, Characterization of macrophage-cancer cell crosstalk in estrogen positive and triple-negative breast cancer, Sci. Rep., 5 (2015), 9188. doi: 10.1038/srep10793
    [31] P. Italiani, D. Boraschi, From monocytes to m1/m2 macrophages: phenotypical vs. functional differentiation, Front. Immunol., 5 (2014), 514.
    [32] A. Jenner, P. Kim, F. Frascoli, Oncolytic virotherapy for tumours following a Gompertz growth law, J. Theor. Biol., 480 (2019), 129–140. doi: 10.1016/j.jtbi.2019.08.002
    [33] A. Jenner, C. O. Yun, A. Yoon, A. Coster, P. Kim, Modelling combined virotherapy and immunotherapy, Lett. Biomath., 5 (2018), S99–S116. doi: 10.30707/LiB5.2Jennera
    [34] H. L. Kaufman, F. J. Kohlhapp, A. Zloza, Oncolytic viruses: a new class of immunotherapy drugs, Nat. Rev. Drug Discovery, 14 (2015), 642–662. doi: 10.1038/nrd4663
    [35] K. S. Kim, S. Kim, I. H. Jung, Hopf bifurcation analysis and optimal control of treatment in a delayed oncolytic virus dynamics, Math. Comput. Simul., 149 (2018), 1–16. doi: 10.1016/j.matcom.2018.01.003
    [36] P. Kim, J. Crivelli, I. K. Choi, C. O. Yun, J. Wares, Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics, Math. Biosci. Eng., 12 (2015), 841– 858. doi: 10.3934/mbe.2015.12.841
    [37] A. Klepper, A. Branch, Macrophages and the viral dissemination super highway, EC Microbiol., 2 (2015), 328–336.
    [38] A. Labonte, A. C. Tosello-Trampont, Y. Hahn, The role of macrophage polarisation in infectious and inflammatory diseases, Mol. Cells, 37 (2014), 275–285. doi: 10.14348/molcells.2014.2374
    [39] A. K. Laird, Dynamics of tumour growth: comparison of growth rates and extrapolation of growth curve to one cell, Br. J. Cancer, 19 (1965), 278. doi: 10.1038/bjc.1965.32
    [40] P. Lang, M. Recher, N. Honke, S. Scheu, S. Borkens, N. Gailus, et al., Tissue macrophages suppress viral replication and prevent severe immunopathology in an Interferon-I-dependent manner in mice, Hepatology, 52 (2010), 25–32.
    [41] T. Lee, A. Jenner, P. S. Kim, J. Lee, Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy, Math. Biosci. Eng., 17 (2020), 2361–2383. doi: 10.3934/mbe.2020126
    [42] S. Leveille, M. L. Goulet, B. D. Lichty, J. Hiscott, Vesicular stomatitis virus oncolytic treatment interferes with tumour-associated dendritic cell functions and abrogates tumour antigen presentation, J. Virol., 85 (2011), 12160–12169. doi: 10.1128/JVI.05703-11
    [43] Y. P. Liu, L. Suksanpaisan, M. B. Steele, S. J. Russell, K. W. Peng, Induction of antiviral genes by the tumour microenvironment confers resistance to virotherapy, Sci. Rep., 3 (2013), 2375. doi: 10.1038/srep02375
    [44] X. Lu, R. Yang, L. Zhang, Y. Xi, J. Zhao, F. Wang, et al., Macrophage colony-stimulating factor mediates the recruitment of macrophages in triple negative breast cancer, Int. J. Biol. Sci., 15 (2019), 2859–2871. doi: 10.7150/ijbs.39063
    [45] E. G. Lucero, The Cytotoxic Effects of Vesicular Stomatitis Virus on the THP-1 Macrophages, PhD thesis, Appalachian State University, 2018.
    [46] C. Macnamara, R. Eftimie, Memory versus effector immune responses in oncolytic virotherapies, J. Theor. Biol., 377 (2015), 1–9. doi: 10.1016/j.jtbi.2015.04.004
    [47] G. Magombedze, S. Eda, V. V. Ganusov, Competition for antigen between Th1 and Th2 responses determines the timing of the immune response switch during mycobaterium avium subspecies paratuberulosis infection in ruminants, PLoS Comput. Biol., 10 (2014), e1003414. doi: 10.1371/journal.pcbi.1003414
    [48] J. Malinzi, R. Ouifki, A. Eladdadi, D. F. Torres, K. White, Enhancement of chemotherapy using oncolytic virotherapy: mathematical and optimal control analysis, Math. Biosci. Eng., 15 (2018), 1435–1463. doi: 10.3934/mbe.2018066
    [49] A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, M. Locati, The chemokine system in diverse forms of macrophage activation and polarisation, Trends Immunol., 25 (2004), 677–686. doi: 10.1016/j.it.2004.09.015
    [50] G. Marelli, A. Howells, N. R. Lemoine, Y. Wang, Oncolytic viral therapy and the immune system: a double-edged sword against cancer, Front. Immunol., 9 (2018), 866. doi: 10.3389/fimmu.2018.00866
    [51] S. Marino, I. Hogue, C. Ray, D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. doi: 10.1016/j.jtbi.2008.04.011
    [52] S. Morgensen, Macrophages and natural resistance to virus infections, in Infection (eds. M.R. Escobar and J.P. Utz), Springer, Boston, MA, (1988), 207–223.
    [53] M. Muthana, A. Giannoudis, S. Scott, H. Y. Fang, S. Coffelt, F. Morrow, et al., Use of macrophages to target therapeutic adenovirus to human prostate tumours, Cancer Res., 71 (2011), 1805–1815. doi: 10.1158/0008-5472.CAN-10-2349
    [54] E. Nikitina, I. Larionova, E. Choinzonov, J. Kzhyshkowska, Monocytes and macrophages as viral targets and reservoirs, Int. J. Mol. Sci., 19 (2018), 2821. doi: 10.3390/ijms19092821
    [55] A. Nikonova, M. Khaitov, D. Jackson, S. Taub, M. B. Tujillo-Torralbo, D. Kudlay, M1-like macrophages are potent producers of anti-viral interferons and M1-associated marker-positive lung macrophages are decreased during rhinovirus-induced asthma exacerbations, EBioMedicine, 54 (2020), 102734. doi: 10.1016/j.ebiom.2020.102734
    [56] M. Nowak, R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology, Oxford University Press, UK, 2000.
    [57] M. A. Nowak, C. R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. doi: 10.1126/science.272.5258.74
    [58] S. Owen, The type I interferon anti-viral pathway contributes to macrophage polarisation following infection with oncolytic vesicular stomatitis virus, Master's thesis, Appalachian State University, 2020.
    [59] A. S. Perelson, Modelling viral and immune system dynamics. Nat. Rev. Immunol., 2 (2002), 28.
    [60] M. Polzin, J. McCanless, S. Owen, D. Sizemore, E., R. Lucero, H. N. Fuller, et al., Oncolytic vesicular stomatitis viruses selectively target M2 macrophages, Virus Res., 284 (2020), 197991. doi: 10.1016/j.virusres.2020.197991
    [61] M. A. Polzin, Therapeutic targeting of macrophage populations by oncolytic vesicular stomatitis virus, Master's thesis, Appalachian State University, 2017.
    [62] M. Ponzoni, F. Pastorino, D. Di Paolo, P. Perri, C. Brignole, Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer, Int. J. Mol. Sci., 19 (2018), 1953. doi: 10.3390/ijms19071953
    [63] B. Rager-Zisman, M. Kunkel, Y. Tanaka, B. R. Bloom, Role of macrophage oxidative metabolism in resistance to vesicular stomatitis virus infection, Infect. Immun., 36 (1982), 1229–1237. doi: 10.1128/iai.36.3.1229-1237.1982
    [64] A. Risinger, N. Dybdal-Hargreaves, S. Mooberry, Breast cancer cell lines exhibit differential sensitivities to microtubule-targeting drugs independent of doubling time, Anticancer Res., 35 (2015), 5845–5850.
    [65] H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, Comput. J., 5 (1963), 329–330. doi: 10.1093/comjnl/5.4.329
    [66] Y. Sang, L. C. Miller, F. Blecha, Macrophage polarisation in virus-host interactions, J. Clin. Cell. Immunol., 6 (2015), 311.
    [67] A. Sica, P. Larghi, A. Mancino, L. Rubino, C. Porta, M. G. Totaro, et al., Macrophage polarisation in tumour progression, Seminars in Cancer Biology, 18 (2008), 349–355. doi: 10.1016/j.semcancer.2008.03.004
    [68] I. Simon, N. van Rooijen, J. Rose, Vesicular stomatitis virus genomic RNA persists in vivo in the absence of viral replication, J. Virol., 84 (2010), 3280–3286. doi: 10.1128/JVI.02052-09
    [69] S. Sousa, R. Brion, M. Lintunen, P. Kronqvist, J. Sandholm, J. Mönkkönen, et al., Human breast cancer cells educate macrophages toward the M2 activation status, Breast Cancer Res., 17 (2015), 101. doi: 10.1186/s13058-015-0621-0
    [70] J. Sur, R. Allende, A. Doster, Vesicular stomatitis virus infection and neuropathogenesis in the murine model are associated with apoptosis, Vet. Pathol., 40 (2003), 512–520. doi: 10.1354/vp.40-5-512
    [71] T. Theodossiou, M. Ali, M. Grigalavicius, B. Grallert, P. Dillard, K. Schink, et al., Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT–tamoxifen hybrid therapy, npj Breast Cancer, 5 (2019), 13. doi: 10.1038/s41523-019-0108-8
    [72] B. Vincenzi, M. Fioramonti, M. Iuliani, F. Pantano, G. Ribelli, D. Santini, et al., M1-polarized macrophages as predictor of poor response to trabectedin treatment in myxoid liposarcoma, J. Clin. Oncol., 34 (2016), e22537–e22537. doi: 10.1200/JCO.2016.34.15_suppl.e22537
    [73] S. Vinogradov, G. Warren, X. Wei, Macrophages associated with tumours as potential targets and therapeutic intermediates, Nanomedicine, 9 (2014), 695–707. doi: 10.2217/nnm.14.13
    [74] S. Waggoner, S. Reighard, I. Gyurova, S. Cranert, S. Mahl, E. Karmele, et al., Roles of natural killer cells in antiviral immunity, Curr. Opin. Virol., 16 (2016), 15–23. doi: 10.1016/j.coviro.2015.10.008
    [75] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, et al., Mathematical modelling and stability analysis of macrophage activation in left ventricular remodelling post-myocardial infarction, BMC Genomics, 13 (2012), S21.
    [76] D. Wang, N. G. Naydenov, M. G. Dozmorov, J. E. Koblinski, A. I. Ivanov, Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation, Breast Cancer Res., 22 (2020), 3. doi: 10.1186/s13058-019-1241-x
    [77] D. Wodarz, Computational modelling approaches to the dynamics of oncolytic viruses, Wiley Interdiscip. Rev.: Syst. Biol. Med., 8 (2016), 242–252. doi: 10.1002/wsbm.1332
    [78] S. Yona, K. W. Kim, Y. Wolf, A. Mildner, D. Varol, M. Breker, et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, Immunity, 38 (2013), 79–91. doi: 10.1016/j.immuni.2012.12.001
    [79] M. Zhang, Y. He, X. Sun, Q. Li, W. Wang, A. Zhao, et al., A high m1/m2 ratio of tumour-associated macrophages is associated with extended survival in ovarian cancer patients, J. Ovarian Res., 7 (2014), 19. doi: 10.1186/1757-2215-7-19
    [80] Y. Zhu, A. Yongky, J. Yin, Growth of an RNA virus in single cells reveals a broad fitness distribution, Virology, 385 (2009), 39–46. doi: 10.1016/j.virol.2008.10.031
    [81] J. C. Zhuang, G. N. Wogan, Growth and viability of macrophages continuously stimulated to produce nitric oxide, Proc. Natl. Acad. Sci. USA, 94 (1997), 11875–11880. doi: 10.1073/pnas.94.22.11875
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3457) PDF downloads(388) Cited by(7)

Article outline

Figures and Tables

Figures(16)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog