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Abstract: The success of oncolytic virotherapies depends on the tumour microenvironment, which
contains a large number of infiltrating immune cells. In this theoretical study, we derive an ODE
model to investigate the interactions between breast cancer tumour cells, an oncolytic virus (Vesicular
Stomatitis Virus), and tumour-infiltrating macrophages with different phenotypes which can impact the
dynamics of oncolytic viruses. The complexity of the model requires a combined analytical-numerical
approach to understand the transient and asymptotic dynamics of this model. We use this model to
propose new biological hypotheses regarding the impact on tumour elimination/relapse/persistence of:
(i) different macrophage polarisation/re-polarisation rates; (ii) different infection rates of macrophages
and tumour cells with the oncolytic virus; (iii) different viral burst sizes for macrophages and tumour
cells. We show that increasing the rate at which the oncolytic virus infects the tumour cells can delay
tumour relapse and even eliminate tumour. Increasing the rate at which the oncolytic virus particles
infect the macrophages can trigger transitions between steady-state dynamics and oscillatory dynamics,
but it does not lead to tumour elimination unless the tumour infection rate is also very large. Moreover,
we confirm numerically that a large tumour-induced M1→M2 polarisation leads to fast tumour growth
and fast relapse (if the tumour was reduced before by a strong anti-tumour immune and viral response).
The increase in viral-induced M2→M1 re-polarisation reduces temporarily the tumour size, but does
not lead to tumour elimination. Finally, we show numerically that the tumour size is more sensitive to
the production of viruses by the infected macrophages.

Keywords: mathematical model; Vesicular Stomatitis Virus (VSV); breast cancer cells; M1
macrophages; M2 macrophages; asymptotic dynamics

1. Introduction

Oncolytic viral therapies have become one of the most promising therapies for cancer, due to the
ability of some viruses (i.e., oncolytic viruses) to replicate inside tumour cells without damaging
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normal tissue cells [50]. In addition to their ability to selectively replicate inside cancer cells, which
leads to the destruction of these cells, oncolytic viruses can also trigger anti-tumour immune
responses [34]. However, these anti-tumour immune responses are counterbalanced by anti-viral
immune responses which eliminate the virus particles from the body [14]. Therefore, the success of
these oncolytic therapies depends on a better understanding of the interactions between immune cells
(and in particular cells of innate immunity) and oncolytic viruses.

Macrophages represent the first line of defence against pathogens, and they have been shown to
eliminate viruses in an interferon-dependent manner [40, 50, 52]. However, macrophages can also be
infected by viruses, and thus enhance viral dissemination and persistence [37]. The different roles
of macrophages on virus elimination and/or persistence might be explained by the heterogeneity of
macrophage population. These immune cells can have a variety of polarisation phenotypes, depending
on the microenvironment they are in, and on the activation stimuli. The two extreme macrophage
phenotypes are represented by the classically-activated anti-tumour and anti-viral M1 cells, and the
alternatively-activated pro-tumour and anti-inflammatory M2 cells [31,49]. The M1-like macrophages
have been shown to produce anti-viral interferons [49, 55]. While many viral pathogens have been
shown to activate a M1 polarisation, some viruses benefit from skewing macrophages towards an M2-
like phenotype [38]. The M2-like macrophages seem to act as reservoirs of replication for many
viruses: from the human immunodeficiency virus (HIV) to the human cytomegalovirus (HCMV) [38].
Recent studies have shown that a promising oncolytic virus, the Vesicular Stomatitis Virus (VSV), can
infect and replicate inside M2 cells but not inside M1 cells [60].

In addition to macrophages importance in anti-viral immune responses, these innate immune cells
have also been found to infiltrate many types of solid tumours, and can represent between 5%–50%
of tumour mass [69, 73]. The tumour-associated macrophages usually have a M2-like phenotype, as
tumour cells educate macrophages towards a phenotype that supports their growth. Since these tumour-
associated M2-like cells can be infected by some oncolytic viruses [60, 61], a better understanding of
the interactions between M1 cells, M2 cells, oncolytic viruses and tumour cells is necessary to improve
current treatment approaches [15].

In this theoretical study we focus on one of the most promising oncolytic viruses currently
undergoing research, the oncolytic Vesicular Stomatitis Virus (VSV), which naturally infects and
replicates inside cancer cells with defects in their antiviral responses (e.g., defects in the IFNγ
pathway) [1]. Very recently, this oncolytic virus has been shown to replicate inside M2 macrophages
but not inside M1 macrophages [60]. Moreover, the VSV seems to re-program the pro-tumour M2
macrophages towards the anti-tumour M1 phenotype [60], and this re-programming is triggered by
the activation of the type-I IFN anti-viral response [58]. In regard to the cancer cell line, the
experiments in [25] on VSV-macrophages-cancer interactions focused on a breast cancer cell line:
MDA-MB-231. In [30] it was shown that this MDA-MB-131 cell line activates macrophages towards
an M2 phenotype. Moreover, this particular cancer cell line is infiltrated by large numbers of
macrophages [44]. For all these reasons, in this theoretical study we decided to focus on the same
cancer cell line: the MDA-MB-231 cells.

The main goal of this study is to derive and investigate a mathematical model that could help us
better understand the complex interactions between macrophages and oncolytic viruses that lead to
the elimination/growth of tumours, by tacking into account also the infection of macrophages with
oncolytic virus particles. To this end we generalises the model in [4] (which focused only on
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macrophage-virus interactions) by incorporating also tumour interactions with viruses and with M1
and M2 macrophages. To emphasise the novelty of our model, we note that the majority of
mathematical models in the literature focus only on the interactions between tumour cells, oncolytic
viruses and anti-tumour/anti-viral immune cells; see for example, [17, 19, 21, 32, 33, 36, 41, 46, 48] and
references therein. Only a very small number of recent mathematical models investigate the infection
of macrophages with oncolytic viruses, which can lead to the delivery of these viruses to specific
areas of the tumour (e.g. necrotic region) [6].

Given the complexity of the new mathematical model that we propose in this study, it is impossible
to focus exclusively on analytical results. Thus, here we combine some analytical results such as the
identification of steady states and their linear stability analysis, with computational results, to gain a
better understanding of overall model dynamics (e.g., the correlations between different model steady
states that cannot be calculated analytically; the changes in these complex steady states as we vary
model parameters). We also consider computational approaches to answer the following biological
questions:

(i) What could be the effect of macrophage polarisation/re-polarisation on tumour-oncolytic virus
dynamics?

(ii) What could be the effect of VSV infection of M2 cells vs. infection of tumour cells on overall
tumour growth/decay?

(iii) What could be the effect of VSV replication inside macrophages vs. replication inside tumour
cells on overall tumour growth/decay?

Note that the last two questions refer to slightly different aspects of viral cycle: virus entry into the
cells (i.e., infection rate, which can be reduced due to physical barriers inside solid tumours) and virus
proliferation inside the cells which culminates with cell burst and the release of new virus particles.

The paper is structured as follows. Section 2 focuses on the description of a mathematical models
for the interactions between tumour cells, M1 and M2 macrophages and oncolytic VSV particles. In
section 3 we present some numerical results for the baseline dynamics of this model, as well model
dynamics when we vary the infection rates of macrophages and tumour cells with the VSV particles, as
well as the tumour-induced macrophage polarisation rate. We also investigate analytically the steady
states and their stability (to get a better understanding of the long-term behaviour of this model), and
use numerical approaches to shed some light on the analytical results that are difficult to obtain. We
conclude with a summary and discussion in section 4.

2. Model description

To investigate the innate immune responses generated by macrophages roles on the anti-tumour
oncolytic viral therapies (with VSV), we extend the mathematical model derived in [4], by considering
the presence of a tumour population. Thus we focus on the following interacting cell populations: the
density of uninfected tumour cells (Tu), the density of virus-infected tumour cells (Ti), the density of
virions (V), the density of M1 macrophages (which are resistant to VSV infection [61]), the densities
of uninfected M2 macrophages (M2u) and the VSV-infected M2 macrophages (M2i) [61]); see also
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Figure 1. The time evolution of these variables is described by the following equations:
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Equations (2.1a)–(2.1f) incorporate the following biological mechanisms:

• The uninfected tumour cells (see Eq (2.1a)), grow at a rate r up to a carrying capacity K1. We
choose logistic growth since experimental studies have shown that tumour growth slows down as
the tumour becomes very large and it depletes the nutrients [29, 39]. We assume that the virus
particles can infect the tumour cells at a rate β1, and the infection term is bilinear (i.e., the infection
rate per virus and per uninfected cell is constant; for similar assumptions see [56,57,59,77]). The
uninfected tumour cells can be eliminated by M1 macrophages at a rate du [79]. At the same time,
the anti-tumour immune response generated by these M1 cells can be inhibited by the presence of
M2 macrophages [67]. Finally, tumour proliferation can be enhanced, at a rate dm, by the presence
of M2 macrophages in the tumour microenvironment [2].
• The infected tumour cells (see Eq (2.1b)) are lysed at rate δi1 following viral replication and cell

burst. As for the uninfected cells, we assume that these infected cells can be eliminated by the M1

Mathematical Biosciences and Engineering Volume 18, Issue 1, 764–799.



768

Figure 1. Graphical description of the possible non-spatial interactions between the tumour
cells, oncolytic viruses and M1/M2 macrophages, as given by Eqs (2.1a)–(2.1f). The model
was inspired by the experimental studies in [25, 45, 62], which showed that the VSV infects
macrophages (but only the M2 cells, and not the M1 cells) in addition to the tumour cells, and
the mathematical modelling studies in [18,19], which focused only on the anti-viral effect of
M1 cells and did not consider the infection of macrophages.

macrophages at a rate di. Again, we assume that the presence of M2 cells can inhibit the anti-viral
effect of M1 cells [66].
• The M1 macrophages (see Eq (2.1c)), are activated by uninfected tumour cells at a rate au

1, by
viral antigens at a rate av

1 and by virus-infected tumour cells at a rate ai
1. We assume that the M1

cells can proliferate logistically at a rate pm1 through a self renewal process [31], up to a
maximum carrying capacity K2. This type of growth depicts experimentally observed cell
kinetics [11]. The M1 cells (which resist to VSV infections [61]) can polarise towards a M2
phenotype at a very small constant rate r0

m1 (in response to cytokines such as IL-4, IL-10 [3] that
can be produced by different healthy and immune cells in the microenvironment). We also
assume that the presence of the tumour leads to an enhanced M1→M2 polarisation at a rate ru

m1
(since tumour cells produce large amounts of TGF-β, which is known to induce a M2
polarisation [27]). The M2→M1 re-polarisation of macrophages is assumed to occur at a very
small constant rate r0

m2 due to cytokines such as IFN-γ, IL-2 [3] produced by different types of
healthy and immune cells in the environment. Moreover, it has been experimentally shown
in [25] that matrix (M) protein mutant (rM51R-M) VSV could modulate the switch M2→M1
(probably through the induction of IFN-γ response [58]). Furthermore, engineering oncolytic
viruses which carry specific cytokines can trigger a macrophages re-polarisation to a M1-like
phenotype [28]. Thus, we assume that this enhanced M2→M1 re-polarisation occurs at a rate rv

m2
in the presence of the virus. The re-polarisation of M2 cells upon contact with VSV particles is
described by a Michaelis-Menten term with constant hv to account for the saturated re-polarising
response induced by viruses. Finally, the M1 macrophages have a natural mortality rate de1.
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• The uninfected M2 macrophages (see Eq (2.1d)) are activated at a rate au
2 by the tumour cells,

proliferate logistically at a rate pm2, and have a natural mortality rate de2. The M1→M2 and
M2→M1 polarisation terms have been described above. Finally, the M2 macrophages are
predisposed to infections with VSV particles at a rate β2 [61].
• The infected M2 macrophages (see Eq (2.1e)) are lysed by the replicating viruses at a rate δi2. All

other terms have been described above.
• The oncolytic virus population (see Eq (2.1f)) proliferates when new virus particles are released

by infected M2 cells and tumour cells. Parameters b and c describe the number of virus particles
released by one infected tumour cell and one infected M2 macrophage, respectively. Moreover,
the reduction in the number of virus particles is the result of their elimination, at a rate δv, by the
M1 macrophages. Note that, as discussed in [15], viral clearance may be prevented by the M2
macrophages. Finally, we assume that the virus particles have a natural death rate ω [16]. This
last term includes also the virus elimination rate by other innate immune cells (e.g., NK cells [74])
or adaptive immune cells (e.g., T cells [12]) not considered in this study.

Remark 1. Because many experimental studies on the proliferation rates of macrophages do not
distinguish between the M1 and M2 cells [11], throughout most of this study we will assume that
pm1 = pm2 =: pm.

Remark 2. Many modelling studies have included infected tumour cells in the carrying capacity terms
(see [35,48]). Since in our study we did not see any significant changes in the model dynamics when we
considered the infected cells (see Figure 14 in Appendix B we have decided to ignore the infected cells
in the carrying capacity terms for both tumour and macrophages (see Eqs (2.1a), (2.1c) and (2.1d)).

In the next sub-section we discuss in more detail the parameter values that we use to parametrise
model (2.1).

2.1. Parameter values

In Table 1, we summarise the parameter values used throughout this theoretical study. Column 3 in
Table 1 shows the dimensional values of the parameters (with units in column 4) – as obtained from the
published literature (see discussion below) or estimated values/ranges. However, to avoid numerical
problems caused by very large parameter values (see K1, K2 in column 3 in Table 1) and very small
parameter values (see β1, β2 in column 3 in Table 1), we decided to rescale the cell populations by their
carrying capacities (see also Appendix A): T ∗u = Tu/K1, T ∗i = Ti/K1, M∗

1 = M1/K2, M∗
2u = M2u/K2,

M∗
2i = M2i/K2. In addition, we rescaled the total virus population by Vmax = 1011, which is assumed

to be the maximum viral load that does not cause neurotoxicity (see also Appendix A): V∗ = V/Vmax.
This rescaling of variables leads to a rescaling of 11 parameters: β1, β1, b, c, av

1, ai
1, au

1, au
2, hu, hv, hm.

These rescaled parameter values are listed in column 5 of Table 1. Note that for those parameter values
that were not rescaled, columns 3 and 5 in Table 1 are identical.

Below we discuss the parameter values we approximated using experimental studies, and the values
taken from the literature (especially if different mathematical studies used different parameter values).

• In this study we focus on the MDA-MB-231 tumour cell line, used to study late-stage breast
cancer as it is invasive in vitro and metastasises spontaneously. For humane reasons, many in-
vivo murine studies on tumour growth stop the murine experiments when tumours reach ≈ 1 cm3
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= 1000 mm3 [71]. We can assume that at this size the tumour has likely depleted the organism of
nutrients (so the tumour has reached its carrying capacity). Moreover, based on the study in [24]
we assume that 1cm3 tumour tissue contains maximum 109 tumour cells. Thus, for this study we
choose a tumour carrying capacity of K1 = 109 cells/cm3.
• The doubling time of MDA-MB-231 cells varies depending on the culture medium. For example,

Risinger et al. [64] calculated an average doubling time for MDA-MB-231 cells of 31.1 hr. Brown
et al. [8] calculated a population doubling time between 1.05±0.091 days and 1.31±0.11 days on
average. Corbin et al. [13] calculated an average cell doubling time around 26.7±8.8 hr. In this
study we consider a tumour proliferation rate r ∈ (0.47, 0.93), with an average of r = 0.62.
• In [22] the authors suggested that the doubling time of macrophages is around 27 hrs. In [81]

the authors estimated the doubling time of untreated murine macrophage-like RAW264.7 cells
to be between 18–22 hrs, while cells stimulated with bacterial lipopolysaccharide (LPS) had an
estimated doubling time of 35 hrs. In [72], the authors estimated that M1 macrophages have a
doubling time between 23.86 hrs and 28.97 hrs. In [11] it has been indicated that the average
doubling time of macrophages is between 20–30 hrs. Therefore, from all these experimental
studies we deduce that the doubling time of macrophages is likely between 18–35 hrs, which
corresponds to proliferation rates between 0.4–0.9/day. For simplicity, through this study we
choose the baseline proliferation rates pm1 = pm2 = 0.57/day, although we varied these rates
within the interval (0.4, 0.9).
• In regard to the M1/M2 macrophages natural death rates, various modelling studies used different

values. For example, in [20] it was assumed that de1 = de2 = 0.02/day, the same as in [47]. On
the other hand, in [18] the authors considered de1 = de2 = 0.2/day, as approximated from the
experimental study in [78]. A recent experimental paper [31] suggested that the half-life of M1
pro-inflammatory murine M1 macrophages is between 18–20 hr (corresponding to a death rate
between ln(2.0)/20hr and ln(2.0)/18hr), while the half-life of anti-inflammatory murine M2 cells
is between 5–7 days (corresponding to a death rate between ln(2.0)/7days and ln(2.0)/5days).
Therefore, for this study we choose de1 ∈ (0.83, 0.93) and de2 ∈ (0.099, 0.138).
• It is known that in breast cancer, up to 40% tumour size can be represented by macrophages [69].

Therefore, throughout this study we assume that the carrying capacity for macrophages is K2 =

40%K1 = 4 × 108.
• In regard to the lysis rate of infected macrophages, Rager et. al [63] showed that two macrophages

cell lines (clones J774.16 and C3C, derived from the murine reticulum cell sarcoma J774) were
completely lysed by the virus within 1–2 days after infection. Thus, in this study we assume a
death rate of δi2 ∈

(
ln(2.0)

2 , ln(2.0)
1

)
= (0.35, 0.69)/day. For the simulations we use an average value

of δi2 = 0.52.
• In regard to the VSV burst size, [63] showed that each productively infected macrophage was able

to produce viral progeny of at least 1000PFU. Moreover, Zhu et. al [80] showed that each virus-
infected tumour cell produced between 50 to 8000 progeny virus particles. For our numerical
simulations we assume that the average burst size of infected tumour cells is b = 2500, which is
the same value as in [18]. For the burst size of infected macrophages we assume c = 2000.
• The VSV death rate varies between different mathematical studies: e.g., ω = 2/day in [18,46]), or
ω ∈ (1 − 2.56)/day in [21]. This is because experimental studies have shown that the intracellular
half-lives of non-replicating wild type and mutant strains of VSV can vary between 5.3 hrs and
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18 hrs, which translates into a death rate between ln(2)/5.3hr = 3.13 days and ln(2)/18hr= 0.92
days [16]. In [26] the authors have calculated the half-life of a replicating VSV strain between
2–15.9 hrs, which translates into a death rate between 1.04–8.31/day. In this study, we choose an
average death rate of ω = 2/day.
• In regard to the M1→M2 and M2→M1 baseline polarisation rates, the theoretical studies

in [20, 75] used r0
m1 ∈ (0.05, 0.09) and r0

m2 ∈ (0.05, 0.08). In [18] the authors used the baseline
values of r0

m1 = 0.001 and r0
m2 = 0.01. Here, we assume that these two parameters vary between

(10−5, 10−1).
• For the virus-induced re-polarisation rate r2

m2 we used the same values as in [18], and thus we
consider the baseline value rv

m2 = 0 (meaning that by default there is no virus-induced
re-polarisation).
• The rest of the parameter values (i.e., hm, hv, δi1, β1, β2, δv, ru

m1, g2) used in this study for the
numerical simulations are listed in Table 1. The ranges of these parameters, as well as their
baseline values are “guessed”, since we could not find any references for these parameters.
To investigate the impact of these guessed parameters on the dynamics of uninfected tumour cells
(Tu), we perform a global sensitivity analysis using the Latin Hypercube Sampling/Partial Rank
Correlation Coefficient (PRCC) approach [5, 51]. In Figure 2 we plot the PRCC index for each
model parameter, and we see that among these guessed parameter values only β1 and ru

m1 have
an impact on uninfected tumour cells Tu (since β1 ≈ −0.8, and ru

m1 ≈ −0.4). Here we simulated
tumour dynamics for 14 days; simulating tumour dynamics for longer time (e.g., 60–80 days)
reduces the impact of ru

m1; but β1 still has an important role on tumour dynamics. In a similar
manner we can investigate the sensitivity of M1 and M2 macrophages to model parameters; see
Figures 15 and 16 in Appendix E. Both uninfected macrophage populations (M1 and M2) are most
sensitive to two guessed parameters, hu and rv

m2 (whose upper range is also guessed in Table 1).

Remark 3. The study in [24] suggested that the detection level for human tumours is between 107−109

cells. We can assume that for in vivo murine experiments, the detection level is between 106−107 cells
(since we are expecting to see tumour growth at the injection site). After the rescaling cell variables
– see Appendix A – we assume that the detection level for the new rescaled tumours will be between
10−3 − 10−2. We will use this information in our discussion of numerical results.

3. Results: steady states and their stability

We start investigating the dynamics of model (2.1) by focusing first on the long-term (asymptotic)
behaviour of this model, i.e., the steady states and their stability. Due to the complexity of model
(2.1), we combine analytical results with numerical simulations to gain a better understanding of this
long-term dynamics. These steady-state results will be further used in section 3.2, where we will
investigate numerically the transient and asymptotic behaviour of model (2.1), to explain the oscillatory
and chaotic dynamics observed numerically in this model.

3.1. Steady states and their stability

Steady states. In this section we investigate the long-term behaviour of the model (2.1) by
discussing all possible steady states. This steady-state investigation will allow us to understand better
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Table 1. Summary of the parameters that appear in model (2.1), together with the original
values and their units (columns 3, 4) and rescaled values (column 5) - used for the numerical
simulations; for this rescaling, see Appendix A. The parentheses in columns 3 & 5 show the
baseline values used for numerical simulations. The units are: “cells/vol” = “cells/mm3” (for
tumour, macrophages), and “PFU/vol” = plaque-forming units per vol (for VSV). Time is
measured in “days”.

Param. Description & References Values Units Rescaled Values
r proliferation rate of tumour cells [8, 13, 64] 0.47 − 0.93 (0.62) day−1 0.47-0.93 (0.62)
K1 carrying capacity of the tumour [24, 71] 109 cells

vol 1
g1 coefficient that measures the contribution of infected tumour

cells to tumour carrying capacity
0, 1 − 0, 1

β1 infection rate of tumour cells with the oncolytic viruses
(guessed value)

10−11 − 10−8 (10−9) vol
PFU×day 1 − 103 (10)

du elimination rate of uninfected tumour cells by M1
macrophages [18]

10−2 − 101 (1) day−1 10−2 − 101 (1)

dm enhanced growth rate of uninfected tumour cells in the presence
M2 macrophages [18]

10−2 − 101 (0.2) day−1 10−2 − 101 (0.2)

δi1 death rate of infected tumour cells due to viral lysis (guessed
value)

0.3 − 0.7 (0.4) days−1 0.3 − 0.7 (0.4)

di elimination rate of infected tumour cells by M1
macrophages [18]

10−1 − 101 (2) day−1 10−1 − 101 (2)

av
1 activation rate of M1 macrophages by viral antigens from VSV

particles [18]
10−6 − 10−3 (10−4) cells

day×PFU 0.00025 − 0.25
(0.025)

ai
1 activation rate of M1 macrophages by viral antigens from

infected tumour cells [18]
10−6 − 10−3 (10−4) day−1 2.5 × 10−6− 2.5 ×

10−3 (0.00025)
au

1 activation rate of M1 macrophages in response to tumour
antigen [18]

10−8 − 10−6 (5× 10−8) day−1 2.5 × 10−8− 2.5 ×
10−6 (1.25 × 10−7)

pm1 proliferation rate of M1 cells [11] 0.4 − 0.9 (0.57) day−1 0.4 − 0.9 (0.57)
r0

m1 baseline M1→M2 re-polarisation rate in response to anti-
inflammatory cytokines in the microenvironment [18]

10−5 − 10−1 (10−3) day−1 10−5 − 10−1 (10−3)

r0
m2 baseline M2→M1 re-polarisation rate in response to pro-

inflammatory cytokines in the microenvironment [18]
10−5 − 10−1 (10−3) day−1 10−5 − 10−1 (10−3)

ru
m1 tumour-induced M1→M2 polarisation rate (guessed value) 0 − 10 (1) day−1 0 − 10 (1)

rv
m2 VSV-induced M2→M1 re-polarisation rate [18] 0 − 101 (0) day−1 0 − 101 (0)

de1 natural death rate of M1 macrophages [31] 0.83 − 0.93 (0.88) day−1 0.83 − 0.93 (0.88)
de2 natural death rate of M2 macrophages [31] 0.099 − 0.138 (0.12) day−1 0.099 − 0.138 (0.12)
au

2 activation rate of M2 macrophages in response to tumour
growth [18]

10−8 − 10−6 (10−7) days−1 2.5 × 10−8− 2.5 ×
10−6 (2.5 × 10−7)

pm2 proliferation rate of M2 cells [11] 0.4 − 0.9 (0.57) day−1 0.4 − 0.9 (0.57)
K2 carrying capacity of macrophages [69, 71] 4 × 108 cells/vol 1
g2 coefficient that measures the contribution of infected tumour

cells to tumour carrying capacity
0, 1 − 0, 1

β2 infection rate of M2 macrophages with the oncolytic virus
(guessed value)

10−11−10−8 (5×10−9) vol
PFU×day 1 − 103 (500)

δi2 rate at which an infected M2 cell is killed by the oncolytic virus
particles [63]

0.35 − 0.69 (0.52) day−1 0.35 − 0.69 (0.52)

b number of virus particles released from an infected tumour
cell [80]

50 − 8000 (2500) PFU
cells 0.5 − 80 (25)

c number of virus particles released from an infected M2 cell [63,
80]

50 − 8000 (2000) PFU
cells 0.2 − 32 (8)

ω natural death rate of oncolytic viruses [16, 26] 0.1 − 10 (2) day−1 0.1 − 10 (2)
δv elimination rate of viruses by the M1 cells (guessed value) 10−6 − 10−1 (5× 10−5) day−1 10−6−10−1 (5×10−5)
hu Half-saturation constant for the tumour cells that can trigger an

M1→M2 re-polarisation (guessed value)
100 − 106 (105) cells/vol 10−9 − 10−3 (10−4)

hv half-saturation constant for the viruses to trigger a M2 → M1
re-polarisation (guessed value)

100 − 106 (105) PFU/vol 10−11 − 10−5 (10−6)

hm half-saturation constant for M2 macrophages involved in pro-
tumour/anti-tumour immune responses (guessed value)

100 − 106 (105) cells/vol 2.5 × 10−9− 2.5 ×
10−3 (2.5 × 10−4)
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Figure 2. The effect of model parameters on Tu, as predicted by the LHS-PRCC analysis.
Each parameter is sampled randomly 1000 times from the parameter ranges shown in Table 1,
using a uniform distribution. We simulate tumour dynamics for 14 days (while the tumour
exhibits a transient behaviour), with a time step of 1 day. The PRCC index varies between
−1 and +1, and the largest PRCC index (in absolute value) corresponds to the parameter with
respect to which the model outcome is most sensitive. We see that Tu is most sensitive to r,
followed by β1 and ru

m1.

the numerical simulations in sections 3.2.1–3.2.2. The equilibria of (2.1a)–(2.1f) satisfy the following
equations:

rT ∗u

(
1 −

T ∗u
K1

)
− β1V∗T ∗u − duT ∗u

M∗
1

hm + M∗
2u

+ dmT ∗u
M∗

2u

hm + M∗
2u

= 0, (3.1a)

β1V∗T ∗u − δi1T ∗i − diT ∗i
M∗

1

hm + M∗
2u

= 0, (3.1b)

av
1V∗ + ai

1T ∗i + au
1T ∗u + pm1M∗

1

(
1 −

M∗
1 + M∗

2u

K2

)
− de1M∗

1−

M∗
1

(
r0

m1 + ru
m1

T ∗u
hu + T ∗u

)
+ M∗

2u

(
r0

m2 + rv
m2

V∗

hv + V∗

)
= 0, (3.1c)
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au
2T ∗u + pm2M∗

2u

(
1 −

M∗
1 + M∗

2u

K2

)
+ M∗

1

(
r0

m1 + ru
m1

T ∗u
hu + T ∗u

)
−

de2M∗
2u − M∗

2u

(
r0

m2 + rv
m2

V∗

hv + V∗

)
− β2V M∗

2u = 0, (3.1d)

β2V∗M∗
2u − δi2M∗

2i = 0, (3.1e)

b δi1T ∗i + c δi2M∗
2i − ωV∗ − δvV∗

M∗
1

hm + M∗
2u

= 0. (3.1f)

As mentioned in the previous section, since we do not have data which differentiates between the
proliferation rates for M1 and M2 cells, we assume that pm1 = pm2 := pm (see Table 1). Under
these assumptions, model (2.1) exhibits two general types of equilibria: tumour-free steady states
(summarised in Proposition 1) and tumour-present steady states (summarised in Proposition 2).

Proposition 1. Model (2.1) can exhibit the following three types of tumour-free steady states:

(i) Tumour-Free, Virus-Free, M1/M2u/M2i Macrophages-Free state (TIVF):
(T ∗u ,T

∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗) = (0, 0, 0, 0, 0, 0).
(ii) Tumour-Free, Virus-Free, M1/M2u Macrophages-Present state (TVF):

(T ∗u ,T
∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗) = (0, 0,M∗
1,M

∗
2u, 0, 0), with M∗

1 and M∗
2u given implicitly by the

following equation (which is plotted in Figure 3(a) for the baseline parameter values given in
Table 1):

pm(M∗
2u − M∗

1)
(
1 −

M∗
1 + M∗

2u

K2

)
= M∗

2u(2r0
m2 + de2) − M∗

1(2r0
m1 + de1) (3.2)

(iii) Tumour-Free, Virus-Present, M1/M2u/M2i-Present state (TF):
(T ∗u ,T

∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗) = (0, 0,M∗
1,M

∗
2u,M

∗
2i,V

∗), with M∗
1, M∗

2u, M∗
2i, and V∗ given implicitly

by the following equations (the last two being plotted in Figure 3(b) for the baseline parameter
values given in Table 1):

M∗
2i =

β2V∗M∗
2u

δi2
, (3.3a)

M∗
1 =

(hm + M∗
2u)(c β2M∗

2u − ω)
δv

, (3.3b)

pm(M∗
2u − M∗

1)
(
1 −

M∗
1 + M∗

2u

K2

)
= M∗

2u

(
2r0

m2 + 2rv
m2

V∗

hv + V∗
+ de2

)
−

M∗
1(2r0

m1 + de1) + av
1V∗ + β2V∗M∗

2u. (3.3c)

From Eq (3.3b) it is clear that this T F steady state exists only when M∗
2u >

ω
c β2

.

Proposition 2. Model (2.1) can exhibit the following two types of tumour-present steady states:

(i’) Tumour-Present, Virus-Free, M1/M2u Macrophages-Present states (VF):

(T ∗u ,T
∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗) = (T ∗u , 0,M
∗
1,M

∗
2u, 0, 0),
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where T ∗u , M∗
1 and M∗

2u are given implicitly by the following equations (also plotted in Figure 3(c),
after Eq (3.4a) was substituted into (3.4b)):

T ∗u = K1

(
1 +

dmM∗
2u − duM∗

1

r(hm + M∗
2u)

)
, (3.4a)

(au
2 − au

1)T ∗u + 2ru
m1M∗

1
T ∗u

hu + T ∗u
+ pm(M∗

2u − M∗
1)

(
1 −

M∗
1 + M∗

2u

K2

)
=

M∗
2u(2r0

m2 + de2) − M∗
1(2r0

m1 + de1). (3.4b)

(b) TF steady states

VF steady states(c) TIV steady states(d)

TVF steady states(a)
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Figure 3. Summary of all non-zero steady states displayed by model (2.1), for the baseline
parameters values shown in Table 1. (a) Plot of TVF steady states given by Eq (3.2), in the
(M∗

1,M
∗
2u) plane; (b) Plot of T F steady states given by Eqs (3.3b)–(3.3c), in the (V∗,M∗

2u)
plane; (c) Plot of VF steady states given by Eq (3.4), in the (M∗

1,M
∗
2u) plane; (d) Plot of T IV

steady states given by Eqs (3.5a)–(3.5d), in the (M∗
1,M

∗
2u) plane.
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(ii’) Tumour-Present, Virus-Present and M1/M2u/M2i-Present states (TIV):

(T ∗u ,T
∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗) = (T ∗u ,T
∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗),

where the states are given implicitly by the following equations (also plotted in Figure 3(d) after
substituting T ∗u ,T

∗
i and V∗ in (3.5d)):

T ∗u =
δi1 + di

M∗1
hm+M∗2u

b δi1 β1

(
ω +

δvM∗
1

hm + M∗
2u

− c β2M∗
2u

)
, (3.5a)

V∗ =
r

K1 β1

(
K1 +

K1

r
(dmM∗

2u − duM∗
1)

(hm + M∗
2u)

− T ∗u

)
, (3.5b)

T ∗i =
β1V∗T ∗u

δi1 + di
M∗1

hm+M∗2u

, (3.5c)

(au
2 − au

1)T ∗u + 2ru
m1M∗

1
T ∗u

hu + T ∗u
+ pm(M∗

2u − M∗
1)

(
1 −

M∗
1 + M∗

2u

K2

)
=

M∗
2u(2r0

m2 + de2) − M∗
1(2r0

m1 + de1) + av
1V∗ + ai

1T ∗i + β2V∗M∗
2u. (3.5d)

In regard to Figure 3, where we plot the implicit expressions describing the various steady states,
we note that for TVF, VF and T IV steady states, an increase in M1 cells is associated with an increase
in the uninfected M2 cells. This is true also for the steady state T F (see Eq (3.3b)). Since the steady
states TVF, T F, VF and T IV are too complex to calculate their closed-form expressions, in Figure 4
we show how they change as we vary two model parameters: (a) the tumour infection rate β1, (b) the
M2 macrophages infection rate β2. We see that a decrease in β1 below β1 = 729.9 or an increase in β2

above β2 = 5.9 leads to the bifurcation of a TIV state (which contains tumour) from the TF state (with
no tumour).

Stability of steady states. In the following we investigate analytically the stability of two of the
steady states summarised in Proposition 1 – the simplest states, with no tumour and no virus. For
the more complex steady states we will have to use numerical approaches to investigate their stability.
We emphasise that this stability analysis will help us understand the numerical results presented in
sections 3.2.1–3.2.2.

Proposition 3. The tumour-free/virus-free/macrophages-free state (T IVF) and the
tumour-free/virus-free/macrophage-present state (TVF) have the following stabilities:

(i) The TIVF state is always unstable.
(ii) The TVF state is asymptotically stable provided that the following inequalities hold true:

M∗
1 >

rhm + (dm + r)M∗
2u

du
, (3.6a)

M∗
1 + M∗

2u >
K2

3pm

[
2pm − (r0

m1 + r0
m2) − (de1 + de2)

]
, (3.6b)[

pm

(
1 −

M∗
1 + M∗

2u

K2

)
− de1 − (r0

m1 + r0
m2)

] [
pm

(
1 − 2

M∗
1 + M∗

2u

K2

)
− de2

]
> 0. (3.6c)
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Figure 4. Bifurcation diagrams for all five steady states displayed by model (2.1) and
summarised in Propositions 1–2, as we vary the infection parameters: (a) infection rate of
tumour cells, β1 ∈ [1, 103]; (b) infection rate of macrophages, β2 ∈ [1, 103]. Sub-panels (i)
show M∗

2u vs. parameter, while sub-panels (ii) show V∗ vs parameter. All other parameter
values that appear in model (2.1) are as in Table 1. Here “BP1” denotes the bifurcation
point where T IV steady state bifurcates out of the T F steady state as we decrease β1 below
β1 = 729.9, and “BP2” denotes the bifurcation point where T IV bifurcates out of T F as we
increase β2 above β2 = 5.9.

Proof.
(i) The Jacobian matrix (see Eq (A.2) in Appendix C) associated with system (2.1) calculated at the
TIVF steady state (T ∗u ,T

∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗) = (0, 0, 0, 0, 0, 0) has always one positive eigenvalue
λ1 = r > 0. Thus this steady state is always unstable.
(ii) The Jacobian matrix associated with system (2.1) calculated at the TVF steady state
(T ∗u ,T

∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗) = (0, 0,M∗
1,M

∗
2u, 0, 0) has the following eigenvalues:

λ1 = r −
duM∗

1

hm + M∗
2u

+
dmM∗

2u

hm + M∗
2u

,
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λ2 = −δi1 −
diM∗

1

hm + M∗
2u

< 0,

λ3 = −ω −
δvM∗

1

hm + M∗
2u

< 0,

λ4 = −δi2 < 0,

and λ5,6 satisfying the quadratic equation

λ2 − λ(c11 + c22) + c11c22 − c12c21 = 0,

with

c11 = pm

(
1 −

2M∗
1 + M∗

2u

K2

)
− r0

m1 − de1,

c12 = r0
m2 −

pm1M∗
1

K2
, c21 = r0

m1 −
pm2M∗

2u

K2
,

c22 = pm

(
1 −

M∗
1 + 2M∗

2u

K2

)
− r0

m2 − de2.

This steady state is stable if λ1 < 0 and λ5,6 < 0.

• Condition λ1 < 0 leads to the following inequality between the steady state values for M1 cells
and uninfected M2 cells:

M∗
1 >

r hm + (dm + r)M∗
2u

du
.

• Condition λ5,6 < 0 holds true if c11 + c22 < 0 and c11c22 − c12c21 > 0. When pm1 = pm2 := pm these
last two inequalities are equivalent to

pm

(
2 − 3

M∗
1 + M∗

2u

K2

)
− (de1 + de2) < r0

m1 + r0
m2 and[

pm

(
1 −

M∗
1 + M∗

2u

K2

)
− de1 − (r0

m1 + r0
m2)

] [
pm

(
1 − 2

M∗
1 + M∗

2u

K2

)
− de2

]
> 0.

This completes the proof.

Remark 4. Note that the stability of TF, VF, and TIV steady states is very difficult to investigate
analytically, due to the complexity of the model and the fact that all these states are defined implicitly;
see Eqs (3.3)–(3.5d). Even the stability conditions (3.6) for the TVF state are not straightforward to
understand, since they depend on the implicit expression (3.2) connecting M∗

1 and M∗
2.

To address the analytical issues highlighted in the above Remark, in Figure 5 we investigate
numerically the stability of steady states exhibited by model (2.1), as we vary the two infection
parameters: β1, β2 ∈ (1, 1000). Since the TIVF state is always unstable, we do not show it here. We
note that TVF and VF steady states are always unstable when varying β1 and β2. An interesting
dynamics is observed for the TF state when we vary β2 (see panels (c)(ii), (d)(ii) and (e)). As β2

increases towards β∗2 = 10.5 the larger amplitude limit cycle around the unstable TF point becomes
unstable, and a smaller amplitude limit cycle emerges. This stable limit cycle evolves around the
unstable TIV point.

Mathematical Biosciences and Engineering Volume 18, Issue 1, 764–799.



779

M

(i) varying 

M
M

M
M

(i) varying 

(ii) varying (i) varying 

(d)

M

M

(ii) varying 

(a)

Stability of TF steady states(c)

(e)  Combining the graphs in (c)(ii) + (d)(ii)

(ii) varying 

Stability of TIV steady states

Stability of TVF steady states

Stability of VF steady states

(i) varying 

(b)

M

(ii) varying 

M

β
 1

β 2

 2
u

*

 2
u

*

 2
u

*

β 2β 1

β 2oscillations

 2

β 2

 2
u

*

 2
u

*

 2
u

*

 2
u

*

β 2β 1

β 2β 1

 2
u

*

β 1

 2
u

*

β 1

β 1
β
 2

β 1 β 2

Max. of

oscillations

Max. of oscillations

Min. of

oscillations

Min. of

β

HB1

HB2

HB2

β
  
=

1
0
.5

2

HB1

Figure 5. Stability of (a) TVF, (b) VF, (c) TF and (d) TIV steady states, as we vary the
infection rates: (i) β1 ∈ [0, 1000] and (ii) β2 ∈ [0, 1000]. Here we do not show the stability of
TIVF since according to the Proposition 3 this steady state is always unstable (for all model
parameters). Continuous curves show stable states and stable limit cycles, while dashed
curves show unstable steady states (the unstable limit cycles were difficult to be traced, so
we do not show them here). Dotted curves show the max/min of the stable oscillations when
we have periodic solutions as a result of Hopf bifurcations. In sub-panel (e) we show on
the same axes the graphs in (c)(ii) and (d)(ii), to emphasise the two Hopf bifurcation points
“HB1” and “HB2”, and the two limit cycles with different amplitudes that exchange stability
at β2 = 10.5. The rest of parameter values are presented in Table 1.
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3.2. Numerical results

Numerical approach. To approximate numerically the ODE system (2.1), which might become stiff
due to small and large parameter values (see Table 1), here we use an implicit 3rd order Rosenbrock
method [65].

Initial conditions. The initial conditions for the time-evolution of model (2.1), summarised also in
Table 2, were chosen to replicate some of the experimental conditions for tumour-macrophage-VSV
dynamics from [25]. In [25], VSV was added to a plate with 5×105 MDA-MB231 human breast cancer
cells, at a multiplicity of infection (MOI) of 1 or 10 PFU/cells. Here, we assume an average MOI of 2,
and thus consider V(0) = 106PFU. The experiment in [25] considered the same number of macrophages
and tumour cells (i.e., 5 × 105). Since in this study we investigate the activation/proliferation of M1
and M2 cells, as well as the M1→M2 polarisation (as tumour progresses) and M2→M1 re-polarisation
(triggered by the VSV), here we start with much lower levels of M1 and M2 macrophages, and with
more M1 than M2 cells; see also Table 2.

Table 2. Summary of initial conditions used for the numerical simulations of system (2.1).

Variable Description Initial conditions Rescaled initial
conditions

Tu Density of uninfected tumour cells (cell numbers per volume) Tu(0) = 5 × 105 Tu(0) = 5 × 10−4

Ti Density of infected tumour cells (cell numbers per volume) Ti(0) = 0 Ti(0) = 0
M1 Density of M1 macrophages (cell numbers per volume) M1(0) = 103 M1(0) = 2.5 × 10−6

M2u Density of uninfected M2 macrophages (cell numbers per
volume)

M2u(0) = 102 M2u(0) = 2.5 × 10−7

M2i Density of infected M2 macrophages (cell numbers per volume) M2i(0) = 0 M2i(0) = 0
V Density of virus particles (plaque-forming units (PFU) per

volume)
V(0) = 106 V(0) = 10−5

Remark 5. We emphasise that there are very few experimental studies that investigate the
interactions between the tumour cells, macrophages and oncolytic viruses – VSV in
particular [25, 42, 43]. Most of the experimental studies existent in the literature record the dynamics
of macrophages in general, without distinguishing the anti-viral/pro-viral roles of this heterogeneous
population of cells [42, 43]. Among the very few experimental studies we found to distinguish the
anti-tumour/pro-tumour and anti-viral/pro-viral roles of macrophages, we used [25] to generate the
initial conditions for our mathematical model. Note that some of the experimental results in [25]
(which did not include tumour explicitly, but focused on macrophages infection with VSV) were
published very recently in [60].
This scarcity of experimental results did not allow us to parametrise model (2.1) using one single
experimental study, and thus many parameters were “guessed”; see section 2.1.

3.2.1. Baseline model dynamics

We start the investigation into the dynamics of model (2.1) by showing in Figure 6 the baseline
dynamics obtained for the parameter values listed in Table 1. In sub-panel (a) we show the time
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evolution of model variables, while in sub-panel (b) we graph the percentage of macrophages in the
system (since various studies consider the percentage of macrophages as a predictor for tumour
relapse [9]). We see that the increase in viral load leads to tumour elimination by day t = 16. The
increase in M2 cells for t ∈ (20, 30) leads to an un-detected growth in tumour population. This growth
is faster and becomes detectable for t > 50, and is the result in a decrease in the M1 cell population
around t ≈ 50. The role of M1 and M2 macrophages in tumour relapse can be seen more clearly in
sub-panel (b).
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Figure 6. Dynamics of model (2.1) for the baseline parameter values listed in Table 1,
with the initial conditions listed in Table 2. Sub-panel (a) shows virus-macrophages-tumour
interactions. The thick horizontal pink line shows the detection level of the tumour (see
Remark 3). Sub-panel (b) shows the percentages of M1 cells, as well as uninfected and
infected M2 cells, at four specific days: t = 10, t = 30, t = 50 and t = 70.

3.2.2. Numerical results: transient and long-term behaviour as we vary model parameters

In the following we investigate numerically the dynamics of model (2.1) as we vary the rate of
tumour cells infection with VSV (β1) and the rate of M2 cells infection with VSV (β2). We also
investigate numerically the effect of varying the macrophages polarisation (ru

m1) and re-polarisation
(rv

m2) rates (to address question (i) in the Introduction), and the effect of varying the viral bursts sizes c
and b (to address question (ii) in the Introduction).

• In Figure 7(a),(b) we see that decreasing tumour infection rate β1 = 10 → β1 = 1 (while fixing
β2 = 500) leads to a faster tumour relapse and a large tumour size. In Figure 7(c),(d) we see that
decreasing the macrophage infection rate β2 = 10 → β2 = 1 (while fixing β1 = 500) leads to
tumour elimination in the presence or absence of virus-immune oscillations.
• In Figure 8 we investigate the oscillatory dynamics observed above for small β2. To this end, we

fix β1 = β2 = 1.4 and vary the tumour-induced macrophages polarisation rate ru
m1. We see that a

decrease in this rate leads, in the long term, to a transition from regular oscillations (panels (a))
to chaotic oscillations (panels (c)). This chaotic dynamics occurs during tumour relapse; tumour
seems to be eliminated before day t = 35, but relapse after day t = 50 in (b) and after day t = 150
in (c).
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Figure 7. Dynamics of model (2.1) when we vary the infection rates. Sub-panels (i) show
the short-term (transient) dynamics, while sub-panels (ii) show the long-term (asymptotic)
dynamics. (a) β1 = 10 < β2 = 500; (b) β1 = 1 < β2 = 500; (c) β1 = 500 > β2 = 10; (d)
β1 = 500 > β2 = 1.The rest of the parameters are as in the Table 1.
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Figure 8. Dynamics of model (2.1), when we fix β1 = β2 = 1.4, and we vary ru
m1. Sub-

panels (i) show the short-term (transient) dynamics, while sub-panels (ii) show the long-term
(asymptotic) dynamics. (a) ru

m1 = 1; (b) ru
m1 = 0.1; and (c) ru

m1 = 0.01. The rest of the
parameters are as in the Table 1.

• In Figure 9 we investigate again the oscillatory dynamics observed above for small β2, and how
it changes as we vary the virus-induced macrophages re-polarisation rate rv

m2. As we increase this
rate, from rv

m2 = 0.01 in sub-panel (a) to r2
m2 = 10 in sub-panel (c) we see a loss in oscillations and

a reduction/elimination of virus population. The virus particles are eliminated by the M1 cells,
which cannot eliminate also the tumour cells.
• In Figure 10 we investigate the effect of varying the number of VSV particles released from

infected M2 cells. We see that an increase in macrophages burst size from c = 1 (sub-panels (a))
to c = 80 (sub-panels (c)) leads to an increase in a transient immune-virus oscillatory dynamics,
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Figure 9. Dynamics of model (2.1), when we fix β1 = β2 = 1.4 and vary rv
m2. Sub-

panels (i) show the short-term (transient) dynamics, while sub-panels (ii) show the long-term
(asymptotic) dynamics. (a) rv

m2 = 0.01, (b) rv
m2 = 1 and (c) rv

m2 = 10. The rest of the
parameters are as in the Table 1.

which occurs when tumour is not detectable. In the long term, the tumour always approaches a
steady state T ∗u , which increases with the ratio b/c (see panel (d)). For b/c < 1 this asymptotic
tumour size decreases fast towards zero. For b/c > 1 this asymptotic tumour size increases at a
much slower rate. These results suggest that the non-linearity in model dynamics plays a role in
tumour evolution when the same number of virus particles are released by the infected tumour
cells and infected macrophages. In particular, for the parameter values investigated here, larger
macrophages burst sizes (c) have a bigger impact on tumour reduction compared to the tumour
burst sizes (b).

The above results, on the effect of β1, β2, ru
m1, r

v
m2 on tumour dynamics, are summarised in Table 3.
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.
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Table 3. Summary of the results shown in Figures 7–9.

Parameter Results

β1 > β2 Tumour elimination, virus persistence.
β1 < β2 Tumour persistence, virus persistence.
β1 = β2, (rmu

1 ↓) Chaotic dynamics.
β1 = β2, (rmv

2 ↑) Steady states dynamics.

Periodic and chaotic oscillations. We have seen in Figure 8(c) that, for some specific parameter
values, model (2.1) can exhibit chaotic dynamics. To have a better understanding of the short-term
and long-term tumour behaviour corresponding to this case (where tumour seems to be eliminated
periodically), in Figure 11 we graph the chaotic attractor corresponding to Figure 8(c), together with
all the fixed points of model (2.1) (which will be discussed in more detail in section 3.1. We see
that the tumour (T ∗u + T ∗i ) is decreased towards zero due to the unstable tumour-present fixed points.
The unstable tumour-free (TF) steady state resides in the chaotic attractor, while all other fixed points
are outside the attractor. For comparison with the above chaotic attractor, in Figure 12 we show a
periodic attractor. where the tumour is decreased to lower values but detectable values. The unstable
tumour-free (TF) steady state resides in the middle of the periodic orbit, with the other fixed points
(all unstable) being outside this orbit. Finally, we summarise these different asymptotic dynamics in
Figure 13, where we show the regions in the (β1, β2) parameter space where we can find stable steady
states (TF or TIV), stable limit cycles, and chaotic attractors.

4. Summary and discussions

In this paper, we considered a mathematical modelling and computational approach to investigate
the complex interactions between tumour cells, an oncolytic virus – the Vesicular Stomatitis Virus
(VSV) – and the innate immune response generated by the M1 and M2 macrophages, which can be
found in large numbers inside different solid tumours. The novel aspect of this model is the possibility
of infection of M2 cells with this oncolytic virus (as shown experimentally in [60]).

To understand the dynamics of this new (complex) mathematical model, we first focused on the
steady states and their stability. Analytical results combined with numerical simulations were used to
show how the steady states varied when we changed parameters related to cells’ infection rates (i.e.,
β1, β2; see Figures 4 and 5). We mention here that a global sensitivity and uncertainty analysis using
the classical LHS-PRCC approach identified β1 as an parameter to which the uninfected tumour cells
(Tu) are most sensitive to (see Figure 2); however, throughout this study we also wanted to compare
the roles of β1 and β2 on the overall short-term and long-term tumour dynamics. Then, we used
numerical simulations to investigate the transient and long-term dynamics of this model, as we varied
the infection rates (β1, β2; see Figure 7), the tumour-induced M1→M2 polarisation rate (ru

m1; see
Figure 8), the virus-induced M2→M1 re-polarisation rate (rv

m2; see Figure 9), and the viral burst size
for tumour cells and macrophages (b, c; see Figure 10). Overall, numerical simulations showed a
variety of asymptotic dynamics: from stable steady states, to stable limit cycles and chaotic
oscillations (when all steady states were unstable). Given that for the parameter values used in this
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Figure 11. Chaotic attractor exhibited by model (2.1), when ru
m1 = 0.01 and β1 = β2 = 1.4

(all other parameters are as in Table 1): (a) Densities of cell/virus populations vs. time (for
t ∈ [700, 1000] days); (b) 3D phase plane plot showing macrophages vs. virus vs. tumour
populations (for t ∈ [700, 1000] days); (c) (i) Plot of solution trajectories in the (macrophage,
virus) plane (for t ∈ [700, 1000] days); (ii) Plot of solution trajectories in (macrophage,
tumour) plane (for t ∈ [700, 1000] days). In addition, we show the fixed points TIVF, TVF,
VF, TF and TIV, corresponding to these parameter values.

study (many of which were guessed, due to a lack of experimental studies on both tumour and
macrophage infections with oncolytic VSV) the regular and irregular oscillations were observed also
above the tumour detection level (see Remark 3). To our knowledge, this is not a biologically realistic
behaviour for aggressive breast cancers, as the majority of experimental in vitro and in vivo studies on
the highly aggressive MDA-MB-231 cell line show exponential cancer growth [10, 71, 76], in the
absence of any external treatment that could be periodically administered (and thus force a periodic
decay/re-growth of tumour). Nevertheless, the results are interesting from a dynamical systems point
of view, since they allow us to understand the whole range of possible dynamics exhibited by model
(2.1).

Returning to the biological questions we raised at the end of the Introduction section, our
computational results have suggested the following biological hypotheses:

(i) The increase in the macrophage tumour-induced polarisation rate ru
m1 leads to a fast tumour relapse

(see Figure 8): from relapse on day t ≈ 170 for ru
m1 = 0.01 to a relapse on day t ≈ 70 for ru

m1 = 0.1
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Figure 12. Periodic attractor exhibited by model (2.1), when ru
m1 = 0.01 and β1 = 2 > β2 = 1

(and all other parameters as in Table 1): (a) Densities of cell/virus populations vs. time (for
t ∈ [700, 1000] days); (b) 3D phase plane plot showing macrophages vs. virus vs. tumour
populations (for t ∈ [700, 1000] days); (c) (i) Phase plane for macrophages-virus plane, (ii)
Phase plane for macrophages-tumour plane, (for t ∈ [700, 1000]). In addition, we show the
fixed points TIVF, TVF, VF, TF and TIV (corresponding to these parameter values.)

.

and continuous tumour presence when ru
m1 = 1.0. The increase in the macrophage virus-induced

re-polarisation rate rv
m2 can lead to a tumour reduction (but not elimination) for as long as the virus

is present in the system (see Figure 9).
(ii) Changes in the infection rate of macrophages, β2 (for large β1, which lead to tumour elimination)

seems to lead to a transition between a state characterised by oscillations in immune response to
a state characterised by an immune-only steady state (see Figure 7 (c),(d)). We do not know yet
if such oscillations in immune response (which take place over multiple days) are realistic from a
biological point of view.
The increase in the infection rate of tumour cells, β1 (for large β2) leads to a delay in tumour
relapse (see Figure 7(a),(b)).

(iii) In regard to VSV replication inside macrophages vs. tumour cells, and the release of these
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Figure 13. Summary of asymptotic dynamics in the (β1, β2) plane. (a) ru
m1 = 1, and β1,2 ∈

(1, 1000). (b) ru
m1 = 0.01, and β1,2 ∈ (1, 10).

particles from the lysed cells, we note that b > c is associated with a fast tumour relapse after a
temporary reduction in tumour size. In contrast, c > b is associated with an increase in tumour
relapse. Moreover, the tumour seems to be more sensitive changes in macrophages burst size c
compared to tumour burst size b (see Figure 10).

Since the VSV-infected macrophages do not release immediately the virus particles, being able to
act as reservoirs of VSV gRNA [54,68], our current work in progress focuses on the impact of delayed
release of VSV particles from the infected macrophages. Also, since infected M2 macrophages can
deliver oncolytic viruses to hypoxic areas of the tumour [53] another current research direction focuses
on the migration of macrophages that can be infected with VSV, and their interactions with the tumour
cells.

To conclude this discussion, we emphasise that the mathematical models derived to investigate
specific aspects of tumour-immune interactions and different immunotherapies for cancer are
becoming more and more complex, thus acknowledging the complex biological interactions that
made it impossible until now to find a cure for cancer. But this increased model complexity also
forces us to rely more and more heavily on computational approaches to understand model dynamics,
and to make biologically-testable predictions.
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Appendix A: Rescaled model (2.1)

To avoid numerical problems caused by some very large parameters (K1, K2) and some very small
parameters (β1, β2), we decided to rescale the variables in system (2.1) as follows:

T ∗u =
Tu

K1
, T ∗i =

Ti

K1
, M∗

1 =
M1

K2
, M∗

2u =
M2u

K2
, V∗ =

V
Vmax

,

where Vmax is the maximum possible VSV level that does not lead to neurotropism and neurovirulence
(which has been observed rodents infected with VSV [7,23,70]). While normal experimental doses of
VS range between 106 − 109 [7], here we consider Vmax = 1011PFU.

β∗1 = β1Vmax, β∗1 = β2Vmax, b∗ =
b

Vmax
K1, c∗ =

c
Vmax

K2, au∗
2 =

au
2K1

K2
,

av∗
1 =

av
1

K2
Vmax, ai∗

1 =
ai

1K1

K2
, au∗

1 =
au

1K1

K2
, h∗m =

hm

K2
, h∗u =

hu

K1
, h∗v =

hv

Vmax
.

We can drop the “ ∗ ” for simplicity. The rescaled model is similar to model (2.1), since we did not
remove any variables/parameters; we only rescaled the variables/parameters (see also the 5th column
in Table 1).

Appendix B: Changing in model dynamics when assuming that infected tumour and
macrophages cells can affect the carrying capacities

Here we investigate numerically the dynamics of model (2.1) when we assume that infected tumour
cells and macrophages can also impact the carrying capacities. Thus Eqs (2.1a)–(2.1c) become:

dTu

dt
=rTu

(
1 −

Tu + g1Ti

K1

)
− β1VTu − duTu

M1

hm + M2u
+ dmTu

M2u

hm + M2u
, (A.1a)

dM1

dt
=av

1V + ai
1Ti + au

1Tu + pm1M1

(
1 −

M1 + M2u + g2M2i

K2

)
− de1M1

− M1

(
r0

m1 + ru
m1

Tu

hu + Tu

)
+ M2u

(
r0

m2 + rv
m2

V
hv + V

)
, (A.1b)

dM2u

dt
=au

2Tu + pm2M2u

(
1 −

M1 + M2u + g2M2i

K2

)
+ M1

(
r0

m1 + ru
m1

Tu

hu + Tu

)
− de2M2u − M2u

(
r0

m2 + rv
m2

V
hv + V

)
− β2V M2u, (A.1c)

In Figure 14 we show the baseline dynamics of model (A.1) for the baseline parameters listed in
Table 1 when we consider g1 = g2 = 0 (the baseline case; cyan continuous curve); g1 = 1 and g2 = 0
(dotted black curve); g1 = 0, and g2 = 1 (the dashed green curve); g1 = 1 and g2 = 1 (the dash-dot
curve). We see that there is no significant difference between the cases with gi = 0 and gi = 1, i ∈ {0, 1}.
Therefore, for simplicity, we can work with the case g1,2 = 0; see model (2.1).
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Figure 14. The dynamics of (a) tumour cells, (b) M1 cells, (c) M2 cells, and (d) virus
particles for model (A.1) when we we assume that g1, g2 ∈ {0, 1} (corresponding to the cases
where infected tumour cells impact or not the carrying capacity K1, and infected macrophages
impact or not the carrying capacity K2). The rest of parameter values are listed in Table (1).

Appendix C: Linear stability of steady states for model (2.1)

For the proof of Proposition 3 we use the Jacobian matrix associated with system (2.1a)–(2.1f). At
a generic equilibrium point, this matrix is:

J(T ∗u ,T
∗
i ,M

∗
1,M

∗
2u,M

∗
2i,V

∗) =



b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66


, (A.2)

with
b11 = r

(
1 − T ∗u

K1

)
− rT ∗u − β1V∗ − du M∗1

hm+M∗2u
+

dm M∗2u
hm+M∗2u

, b12 = 0, b13 = −
duT ∗u

hm+M∗2u

b14 =
duT ∗u M∗1

(hm+M∗2u)2 +
dmT ∗u

hm+M∗2u
, b15 = 0, b16 = −β1T ∗u , b21 = β1V∗, b22 = −δi1 −

di M∗1
hm+M∗2u

,
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b23 = −
diT ∗i

hm+M∗2u
, b24 =

diT ∗i M∗1
(hm+M∗2u)2 , b25 = 0, b26 = β1T ∗u , b31 = au

1 − M∗
1

( ru
m1

hu+T ∗u
−

ru
m1T ∗u

(hu+Tu)2

)
,

b32 = ai
1, b33 = pm1

(
1 − 2M∗1+M∗2u

K2

)
− r0

m1 −
ru

m1T ∗u
hu+T ∗u

− de1, b34 = r0
m2 − pm1M∗

1 +
rv

m2V∗

1+V∗ , b35 = 0,

b36 = av
1 + M∗

2u

( rv
m2

hv+V∗ −
rv

m2V∗

(hv+V∗)2

)
, b41 = au

2 + M∗
1

( ru
m1

hu+T ∗u
−

ru
m1T ∗u

(hu+T ∗u )2

)
, b42 = 0, b43 = r0

m1− pm2M∗
2u +

ru
m1T ∗u

hu+T ∗u
,

b44 = pm2

(
1 − M∗1+2M∗2u

K2

)
− r0

m2 −
rv

m2V∗

hv+V∗ − de2 − β2V∗, b45 = 0, b46 = −M∗
2u

( rv
m2

hv+V∗ −
rv

m2V∗

(hv+V∗)2

)
− β2M∗

2u,
b51 = 0, b52 = 0, b53 = 0, a54 = β2V∗, b55 = −δi2, b56 = β2M∗

2u, b61 = 0, b62 = δi1b,
b63 = − δvV∗

hm+M∗2u
, b64 =

δvV∗M∗1
(hm+M∗2u)2 , b65 = c δi2, b66 = −ω −

δv M∗1
hm+M∗2u

.

Appendix D: Stability of steady states shown in Figures 11 and 12

In the following we use the Jacobian matrix (A.2) to calculate the stability of the steady states TIVF,
TVF, VF, TF and TIV shown in Figures 11 and 12 (for the specific parameter values used in these two
figures).
Steady states and associated eigenvalues for the simulations shown in Figure 11:

• TIVF: (0, 0, 0, 0, 0, 0)
Eigenvalues: λ1 = 0.62, λ2 = 0.449, λ3 = −0.311, λ4 = −2, λ5 = −0.399, λ6 = −0.52.
• TVF: (0, 0, 0.001, 0.7867, 0, 0)

Eigenvalues:λ1 = 0.819, λ2 = −0.449, λ3 = −0.76, λ4 = −3.525, λ5 = −0.403, λ6 = 1.005.
• VF: (1.3204, 0, 0.001, 0.7867, 0, 0)

Eigenvalues:λ1 = −0.819, λ2 = −0.77, λ3 = −0.449, λ4 = −6.08, λ5 = 3.65, λ6 = −0.497.
• TIV: (0.1053, 0.0394, 0.0201, 0.058, 0.0455, 0.2916)

Eigenvalues:λ1 = −3.08, λ2 = 0.105 + 0.68i, λ3 = 0.105 − 0.68i, λ4 = −0.64, λ5 = −0.159,
λ6 = −0.41.
• TF: (0, 0, 0.0148, 0.1786, 0.1164, 0.242)

Eigenvalues:λ1 = −2.575, λ2 = 0.398, λ3 = −0.02 + 0.37i, λ4 = −0.02 − 0.37i, λ5 = −0.565,
λ6 = −0.436.

Steady states and associated eigenvalues for the simulations shown in Figure 12:

• TIVF: (0, 0, 0, 0, 0, 0)
Eigenvalues: λ1 = 0.62, λ2 = 0.449, λ3 = −0.311, λ4 = −2, λ5 = −0.399, λ6 = −0.52.
• TVF: (0, 0, 0.001, 0.7867, 0, 0)

Eigenvalues:λ1 = 0.819, λ2 = −0.449, λ3 = −0.76, λ4 = −3.215, λ5 = −0.403, λ6 = 0.69.
• VF: (1.3204, 0, 0.001, 0.7867, 0, 0)

Eigenvalues:λ1 = −0.819, λ2 = −0.77, λ3 = −0.449, λ4 = −6.71, λ5 = 4.298, λ6 = −0.51.
• TF: (0, 0, 0.0166, 0.25, 0.14, 0.297)

Eigenvalues:λ1 = −2.569, λ2 = 0.16, λ3 = −0.04 + 0.346i, λ4 = −0.04 − 0.346i, λ5 = −0.53,
λ6 = −0.48.
• TIV: (0.02, 0.02, 0.02, 0.168, 0.11, 0.343)

Eigenvalues:λ1 = −2.66, λ2 = 0.03 + 0.49i, λ3 = 0.03 − 0.49i, λ4 = −0.082, λ5 = −0.58,
λ6 = −0.44.
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Appendix E: Global sensitivity and uncertainty analysis of M1 and M2 cells to model
parameters

In Figures 15 and 16 we show the PRCC index for the two uninfected macrophage populations
(as these tumour-infiltrating immune cells are assumed to have an impact on tumour dynamics). As
in Figure 2, we randomly sampled each parameter 1000 times from the parameter ranges shown in
Table 1. We simulated the dynamics of M1 and M2 cells for 14 days, with a time step of 1 day.
It is clear that the M1 cells are most sensitive to av

1 (the activation rate of M1 cells in response to
oncolytic viruses), hu (half-saturation constant for tumour cells that trigger M1→M2 polarisation), pm1

(proliferation rate of M1 cells), rv
m2 (virus-induced M2→M1 re-polarisation), and ω (natural death rate

of oncolytic viruses). The M2 cells are also sensitive to hu and rv
m2. In addition, they are somewhat

sensitive to hv (half-saturation constant for viruses that trigger M2→M1 re-polarisation).
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Figure 15. The effect of model parameters on M1, as predicted by the LHS-PRCC analysis.
The largest PRCC index (in absolute value) corresponds to the parameter with respect to
which the model outcome (i.e., M1) is most sensitive: pm1, ω, rv

m2, hu, av
1.
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Figure 16. The effect of model parameters on M2, as predicted by the LHS-PRCC analysis.
The largest PRCC index in absolute value corresponds to the parameter with respect to which
the model outcome (i.e., M2) is most sensitive: rv

m2, hv, hu.
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