
AIMS Mathematics, 2020, 5(6): 60876107. doi: 10.3934/math.2020391
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Revisiting the HermiteHadamard fractional integral inequality via a Green function
1 Department of Mathematics, University of Peshawar, Peshawar, Pakistan
2 Department of Mathematics and Computer Science, Alabama State University, Montgomery, AL 36101, USA
3 Department of Mathematics, Huzhou University, Huzhou 313000, China
4 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China
Received: , Accepted: , Published:
References
1. M. A. Khan, S. H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 118.
2. S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 110.
3. T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 114.
4. M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255271.
5. P. Agarwal, M. Kadakal, İ. İşcan, et al. Better approaches for ntimes differentiable convex functions, Mathematics, 8 (2020), 111.
6. S. Khan, M. A. Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 25772587.
7. S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 132.
8. M. A. Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Mathematics, 5 (2020), 49314945.
9. M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111124.
10. S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized Kfractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 26292645.
11. T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 45124528.
12. Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 7793.
13. B. Wang, C. L. Luo, S. H. Li, et al. Sharp oneparameter geometric and quadratic means bounds for the SándorYang means, RACSAM, 114 (2020), 110.
14. M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 121.
15. M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete pelliptic integrals, J. Math. Anal. Appl., 480 (2019), 19.
16. W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of oneparameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 11571166.
17. S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 115.
18. S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 112.
19. S. Rashid, F. Jarad, H. Kalsoom, et al. On PólyaSzegö and Ćebyšev type inequalities via generalized kfractional integrals, Adv. Differ. Equ., 2020 (2020), 118.
20. Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable fractional integral inequalities for GG and GAconvex function, AIMS Mathematics, 5 (2020), 50125030.
21. I. Abbas Baloch, Y. M. Chu, Petrovićtype inequalities for harmonic hconvex functions, J. Funct. Space., 2020 (2020), 17.
22. M. A. Latif, S. Rashid, S. S. Dragomir, et al. HermiteHadamard type inequalities for coordinated convex and qausiconvex functions and their applications, J. Inequal. Appl., 2019 (2019), 133.
23. M. U. Awan, N. Akhtar, A. Kashuri, et. al. 2D approximately reciprocal ρconvex functions and associated integral inequalities, AIMS Mathematics, 5 (2020), 46624680.
24. S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Mathematics, 5 (2020), 35253546.
25. M. U. Awan, N. Akhtar, S. Iftikhar, et al. New HermiteHadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 112.
26. S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials stype convexixity with applications, Adv. Differ. Equ., 2020 (2020), 120.
27. M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for sconvex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 114.
28. P. O. Mohammed, M. Z. Sarikaya, HermiteHadamard type inequalities for Fconvex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 133.
29. F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of HermiteHadamard type for (α, m)convex functions, J. Inequal. Appl., 2019 (2019), 117.
30. M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum HermiteHadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 120.
31. A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new HermiteHadamardtype inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 118.
32. M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of HermiteHadamardtype inequalities involving Ψ_{k}RiemannLiouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 110.
33. T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of HermiteHadamard type with applications, J. Funct. Space., 2020 (2020), 114.
34. M. Z. Sarikaya, E. Set, H. Yaldiz, et al. HermiteHadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 24032407.
35. M. Adil Khan, A. Iqbal, M. Suleman, et al. HermiteHadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 115.
36. R. P. Agarwal, P. J. Y. Patricia, Error Inequalities in Polynomial Interpolation and Their Applications, Springer Science & Business Media, 1993.
37. N. Mehmood, R. P. Agarwal, S. I. Butt, et al. New generalizations of Popoviciutype inequalities via new Green's functions and Montgomery identity, J. Inequal. Appl., 2017 (2017), 117.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)