AIMS Mathematics, 2020, 5(6): 5495-5509. doi: 10.3934/math.2020352.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Perturbed trapezoid inequalities for n th order differentiable convex functions and their applications

Department of Mathematics, Manisa Celal Bayar University, Manisa, Turkey

In this study, we introduce a new general identity for n th order differentiable functions. Also, we establish some new inequalities regarding general perturbed trapezoid inequality for the functions whose the absolute values of n th derivatives are convex. Finally, some applications for special means are provided.
  Figure/Table
  Supplementary
  Article Metrics

Keywords convex function; perturbed trapezoid inequalities

Citation: Duygu Dönmez Demir, Gülsüm Şanal. Perturbed trapezoid inequalities for n th order differentiable convex functions and their applications. AIMS Mathematics, 2020, 5(6): 5495-5509. doi: 10.3934/math.2020352

References

  • 1. M. A. Ardic, Inequalities via n-times differentiable convex functions, arXiv:1310.0947v1, 2013.
  • 2. P. Agarwal, J. Tarioon, S. K. Ntouyas, Some generalized Riemann-Liouville k-fractional integral inequalities, J. Inequalities Appl., Article number: 122 (2016).
  • 3. M. Bessenyei, Z. Páles, Characterizations of convexity via Hadamard's inequality, Math. Ineq. Appl., 9 (2006), 53-62.
  • 4. P. Cerone, S. S. Dragomir, C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk. J. Math., 24 (2000), 147-163.
  • 5. P. Cerone, On perturbed trapezoidal and midpoint rules, J. Appl. Math. Comput., 9 (2002), 423-435.
  • 6. S. S. Dragomir, P. Cerone, A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J. Pure Appl. Math., 31 (2000), 475-494.
  • 7. S. S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers Math. Applic., 33 (1997), 15-20.
  • 8. S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95.
  • 9. A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., 2020, 1-18.
  • 10. S. Jain, K. Mehrez, D. Baleanu, et al. Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019), 163.
  • 11. W. Liu, J. Park, Some perturbed versions of the generalized trapezoid inequality for functions of bounded variation, J. Comput. Anal. Appl., 22 (2017), 11-18.
  • 12. X. F. Ma, L. C. Wang, Two mapping related to Minkowski's inequalities, JIPAM, 10 (2009), 1-8.
  • 13. K. Mehrez, P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Ivlath., 350 (2019), 274-285.    
  • 14. D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993.
  • 15. P. O. Mohamed, Inequalities of -type for Riemann-Liouville fractional integrals, Appl. Ivlath. ENotes, 17 (2017), 199-206.
  • 16. P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258-262.    
  • 17. P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Inter. Ivlath., 22 (2019), 539-549.
  • 18. P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., 2019, 1-11.
  • 19. P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Jnequal. Appl., 2018, 359.
  • 20. P. O. Mohammed, F. K. Hamasalh, New conformable fractional integral inequalities of HermiteHadamard type for convex functions, Symrretry, 11 (2019), 263.
  • 21. P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Ivlath., 372 (2020), 112740.
  • 22. P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020, 69.
  • 23. C. P. Niculescu, L. E. Persson, Convex functions and their applications: A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006.
  • 24. M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Modell., 54 (2011), 2175-2182.    
  • 25. M. Tomar, P. Agarwal, J. Choi, Hermite-Hadamard type inequalities for generalized convex functions on fractal sets style, Bal. Soc. Paran. Ivlat., 38 (2020), 101-116.
  • 26. M. Tunç, G. Şanal, Some perturbed trapezoid inequalities for convex, s-convex and tgs-convex functions and applications, Tbilisi Math, J., 8 (2015), 87-102.    
  • 27. N. Ujević, Perturbed trapezoid and mid-point inequalities and applications, Soochow J. Math., 29 (2003), 249-257.
  • 28. F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of HermiteHadamard type for (α, m)-convex functions, J. Inequal. Appl., DOI: 10.1186/s13660-019-2079-6, 2019, 135.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved