Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Theoretical study of the effect of halogen substitution in molecular porous materials for CO2 and C2H2 sorption

Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa,FL 33620-5250, USA

Special Issue: Synthesis and Applications of Metal-Organic Frameworks (MOFs)

Grand canonical Monte Carlo (GCMC) simulations of carbondioxide (CO$_2$) and acetylene (C$_2$H$_2$) sorption were performed in MPM-1-Cl and MPM-1-Br, two robust molecular porous materials (MPMs) that were synthesized by the addition of adenine to CuX$_2$ (X = Cl or Br) by solvent diffusion. Previous experimental studies revealed that both MPMs are selective for C$_2$H$_2$ over CO$_2$ [Xie DY, et al. (2017) ${CIESC J}$ 68: 154--162]. Simulations in MPM-1-Cl and MPM-1-Br were carried out using polarizable and nonpolarizable potentials of the respective sorbates; this was done to investigate the role of explicit induction on the gas sorption mechanism in these materials. The calculated sorption isotherms and isosteric heat of adsorption ($Q_{st}$) valuesfor both sorbates are in reasonable agreement with the corresponding experimental measurements, with simulations using the polarizable models producing the closest overall agreement. The modeled CO$_2$ binding sitein both MPMs was discovered as sorption between the halide ions of two adjacent [Cu$_2$(adenine)$_4$X$_2$]$^{2+}$ (X = Cl, Br) units.In the case of C$_2$H$_2$, it was found that the sorbate molecule prefers to align along the X--Cu--Cu--X axis of the copper paddlewheels suchthat each H atom of the C$_2$H$_2$ molecule can interact favorably with the coordinated X$^-$ ions. The simulations revealed that both MPMs exhibit stronger interactions with C$_2$H$_2$ than CO$_2$, which is consistent with experimental findings. The effect of halogen substitution toward CO$_2$ and C$_2$H$_2$ sorption in two isostructural MPMs was also elucidated in our theoretical studies.
  Figure/Table
  Supplementary
  Article Metrics

Keywords metal–organic framework; simulation; gas sorption; carbon dioxide; acetylene; gas separation

Citation: Douglas M. Franz, Mak Djulbegovic, Tony Pham, Brian Space. Theoretical study of the effect of halogen substitution in molecular porous materials for CO2 and C2H2 sorption. AIMS Materials Science, 2018, 5(2): 226-245. doi: 10.3934/matersci.2018.2.226

References

  • 1. Zhou H, Long J, Yaghi O (2012) Introduction to Metal–Organic Frameworks. Chem Rev 112: 673–674.    
  • 2. Long J, Yaghi O (2009) The pervasive chemistry of metal–organic frameworks. Chem Soc Rev 38: 1213–1214.    
  • 3. Pham T, Forrest K, Franz D, et al. (2017) Experimental and theoretical investigations of the gas adsorption sites in rht-metal–organic frameworks. CrystEngComm 19: 4646–4665.    
  • 4. Nugent P, Belmabkhout Y, Burd S, et al. (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495: 80–84.    
  • 5. Mason J, Sumida K, Herm Z, et al. (2011) Evaluating metal–organic frameworks for postcombustion carbon dioxide capture via temperature swing adsorption. Energ Environ Sci 4: 3030–3040.    
  • 6. Caskey S, Wong-Foy A, Matzger A (2008) Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. J Am Chem Soc 130: 10870–10871.    
  • 7. Yang D, Cho H, Kim J, et al. (2012) CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energ Environ Sci 5: 6465–6473.    
  • 8. Collins D, Zhou H (2007) Hydrogen storage in metal-organic frameworks. J Mater Chem 17: 3154–3160.    
  • 9. Collins D, Ma S, Zhou H (2010) Hydrogen and Methane Storage in Metal–Organic Frameworks, Metal-Organic Frameworks: Design and Application, John Wiley & Sons Inc., 249–266.
  • 10. Suh M, Park H, Prasad T, et al. (2012) Hydrogen Storage in Metal–Organic Frameworks. Chem Rev 112: 782–835.    
  • 11. Lin X, Telepeni I, Blake A, et al. (2009) High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials: The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites. J Am Chem Soc 131: 2159–2171.    
  • 12. Yan Y, Lin X, Yang S, et al. (2009) Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem Commun 1025–1027.
  • 13. Mohammed M, Elsaidi S, Wojtas L, et al. (2012) Highly Selective CO2 Uptake in Uninodal 6-Connected "mmo" Nets Based upon MO42- (M = Cr, Mo) Pillars. J Am Chem Soc 134: 19556–19559.    
  • 14. Wu H, Yao K, Zhu Y, et al. (2012) Cu-TDPAT, an rht-Type Dual-Functional Metal–Organic Framework Offering Significant Potential for Use in H2 and Natural Gas Purification Processes Operating at High Pressures. J Phys Chem C 116: 16609–16618.    
  • 15. Franz D, Forrest K, Pham T, et al. (2016) Accurate H2 Sorption Modeling in the rht-MOF NOTT-112 Using Explicit Polarization. Cryst Growth Des 16: 6024–6032.    
  • 16. Pham T, Forrest K, Franz D, et al. (2017) Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes. Phys Chem Chem Phys 19: 18587–18602.    
  • 17. Franz D, Dyott Z, Forrest K, et al. (2018) Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal–organic framework. Phys Chem Chem Phys 20: 1761–1777.    
  • 18. Li J, Kuppler R, Zhou H (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38: 1477–1504.    
  • 19. Wang H, Yao K, Zhang Z, et al. (2014) The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chem Sci 5: 620–624.    
  • 20. Lee J, Farha O, Roberts J, et al. (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 5: 1450–1459.
  • 21. Maeda C, Miyazaki Y, Ema T (2014) Recent progress in catalytic conversions of carbon dioxide. Catal Sci Technol 4: 1482–1497.    
  • 22. Cho S, Ma B, Nguyen S, et al. (2006) A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem Commun 2563–2565.
  • 23. Song J, Zhang Z, Hu S, et al. (2009) MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem 11: 1031–1036.    
  • 24. Ma D, Li B, Zhou X, et al. (2013) A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chem Commun 8964–8966.
  • 25. Wang J, Li M, Li D (2013) A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour. Chem Sci 4: 1793–1801.    
  • 26. Larsen R, Wojtas L (2013) Photoinduced inter-cavity electron transfer between Ru(II)tris(2,2'- bipyridne) and Co(II)tris(2,2'-bipyridine) Co-encapsulated within a Zn(II)-trimesic acid metal organic framework. J Mater Chem A 1: 14133-14139.    
  • 27. Larsen R, Wojtas L (2012) Photophysical Studies of Ru(II)tris(2,2'-bipyridine) Confined within a Zn(II)–Trimesic Acid Polyhedral Metal–Organic Framework. J Phys Chem A 116: 7830–7835.    
  • 28. Whittington C, Wojtas L, Gao W, et al. (2015) A new photoactive Ru(II)tris(2,2'-bipyridine) templated Zn(II) benzene-1,4-dicarboxylate metal organic framework: structure and photophysical properties. Dalton T 44: 5331–5337.    
  • 29. Larsen R, Wojtas L (2015) Fixed distance photoinduced electron transfer between Fe and Zn porphyrins encapsulated within the Zn HKUST-1 metal organic framework. Dalton T 44: 2959– 2963.    
  • 30. McKinlay A, Morris R, Horcajada P, et al. (2010) BioMOFs: metal–organic frameworks for biological and medical applications. Angew Chem Int Edit 49: 6260–6266.    
  • 31. Hinks N, McKinlay A, Xiao B, et al. (2010) Metal organic frameworks as NO delivery materials for biological applications. Micropor Mesopor Mat 129: 330–334.    
  • 32. Eddaoudi M, Moler D, Li H, et al. (2001) Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal–Organic Carboxylate Frameworks. Accounts Chem Res 34: 319–330.    
  • 33. Nouar F, Eubank J, Bousquet T, et al. (2008) Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal–Organic Frameworks. J Am Chem Soc 130: 1833–1835.    
  • 34. Figueroa J, Fout T, Plasynski S, et al. (2008) Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program. Int J Greenh Gas Con 2: 9–20.
  • 35. Chen K, Scott H, Madden D, et al. (2016) Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials. Chem 1: 753–765.    
  • 36. Scott H, Shivanna M, Bajpai A, et al. (2017) Highly Selective Separation of C2H2 from CO2 by a New Dichromate-Based Hybrid Ultramicroporous Material. ACS Appl Mater Inter 9: 33395–33400.    
  • 37. Xie DY, Xing HB, Zhang ZG, et al. (2017) Porous hydrogen-bonded organometallic frameworks for adsorption separation of acetylene and carbon dioxide. CIESC J 68: 154–162.
  • 38. Thomas-Gipson J, Beobide G, Castillo O, et al. (2011) Porous supramolecular compound based on paddle-wheel shaped copper (II)–adenine dinuclear entities. CrystEngComm 13: 3301–3305.    
  • 39. Thomas-Gipson J, Beobide G, Castillo O, et al. (2014) Paddle-Wheel Shaped Copper(II)-Adenine Discrete Entities As Supramolecular Building Blocks To Afford Porous Supramolecular Metal–Organic Frameworks (SMOFs). Cryst Growth Des 14: 4019–4029.    
  • 40. Chui S, Lo S, Charmant J, et al. (1999) A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 283: 1148–1150.    
  • 41. Pham T, Forrest K, Chen K, et al. (2016) Theoretical Investigations of CO2 and H2 Sorption in Robust Molecular Porous Materials. Langmuir 32: 11492–11505.    
  • 42. Nugent P, Rhodus V, Pham T, et al. (2013) A robust molecular porous material with high CO2 uptake and selectivity. J Am Chem Soc 68: 154–162.
  • 43. Belof J, Stern A, Space B (2008) An Accurate and Transferable Intermolecular Diatomic Hydrogen Potential for Condensed Phase Simulation. J Chem Theory Comput 4: 1332–1337.    
  • 44. Rappé A, Casewit C, Colwell K, et al. (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114: 10024–10035.    
  • 45. Van Duijnen P, Swart M (1998) Molecular and Atomic Polarizabilities: Thole's Model Revisited. J Phys Chem A 102: 2399–2407.    
  • 46. Forrest K, Pham T, McLaughlin K, et al. (2012) Simulation of the Mechanism of Gas Sorption in a Metal–Organic Framework with Open Metal Sites: Molecular Hydrogen in PCN-61. J Phys Chem C 116: 155 38–155549.
  • 47. Breneman C, Wiberg K (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11: 361–373.
  • 48. Valiev M, Bylaska EJ, Govind N, et al. (2010) NWChem: A comprehensive and scalable opensource solution for large scale molecular simulations. Comput Phys Commun 181: 1477–1489.    
  • 49. Mullen A, Pham T, Forrest K, et al. (2013) A Polarizable and Transferable PHAST CO2 Potential for Materials Simulation. J Chem Theory Comput 9: 5421–5429.    
  • 50. Potoff J, Siepmann J (2001) Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J 47: 16761682.
  • 51. Metropolis N, Rosenbluth A, Rosenbluth M, et al. (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092.    
  • 52. Massively Parallel Monte Carlo (MPMC), 2012. Available from: https://github.com/mpmccode/mpmc.
  • 53. Monte Carlo-Molecular Dynamics (MCMD), 2017. Available from: https://github.com/khavernathy/mcmd.
  • 54. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by Simulated Annealing. Science 220: 671–680.    
  • 55. Dincă M, Dailly A, Liu Y, et al. (2006) Hydrogen Storage in a Microporous Metal–Organic Framework with Exposed Mn2+ Coordination Sites. J Am Chem Soc 128: 16876–16883.    
  • 56. Pham T, Forrest K, McLaughlin K, et al. (2013) Theoretical Investigations of CO2 and H2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material. J Phys Chem C 117: 9970–9982.    
  • 57. Nicholson D, Parsonage N (1982) Computer Simulation and the Statistical Mechanics of Adsorption, Academic Press.
  • 58. Bae Y, Mulfort K, Frost H, et al. (2008) Separation of CO2 from CH2 Using Mixed-Ligand Metal–Organic Frameworks. Langmuir 24: 8592–8598.    
  • 59. Goj A, Sholl D, Akten E, et al. (2002) Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolites: The Impact of Pore Size and Shape. J Phys Chem B 106: 8367–8375.    
  • 60. Akten E, Siriwardane R, Sholl D (2003) Monte Carlo Simulation of Single- and Binary-Component Adsorption of CO2, N2, and H2 in Zeolite Na-4A. Energ Fuel 17: 977–983.    
  • 61. Harris J, Yung K (1995) Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem 99: 12021–12024.    

 

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved