Processing math: 100%
Review

Synthesis routes of zeolitic imidazolate framework-8 for CO2 capture: A review

  • Received: 01 September 2024 Revised: 06 February 2025 Accepted: 10 February 2025 Published: 06 March 2025
  • Zeolitic imidazole framework-8 (ZIF-8) represents a notable subtype of metal-organic frameworks (MOFs), characterized by tetrahedral and zeolite-like structures interconnected through Imidazolate anions. ZIF-8's outstanding attributes, including its expansive intra-crystalline surface area and robust chemical and thermal stability, have positioned it as a promising contender for carbon dioxide (CO2) capture applications. The application of ZIF-8 in the membrane and composite fields involves utilizing ZIF-8 in the development and enhancement of membranes and composite materials for gas separation, catalysis, and sensing. This article serves as a comprehensive exploration of contemporary CO2 capture technologies, elucidating their respective merits and demerits. Moreover, the review offers insights into the prevailing CO2 adsorption techniques implemented across industries. Delving into ZIF-8 synthesis methods, the discourse encompasses diverse synthetic pathways. Experimental evidence, furnished through X-Ray diffraction patterns and scanning electron microscopy, validates ZIF-8's structure-activity correlation and morphological characteristics. We extend this review to encapsulate the parameters governing CO2 adsorption by ZIF-8, delineating the key factors influencing its capture efficacy. Notably, we encompass CO2 measurement protocols and techniques specific to ZIF-8. Additionally, we appraise the CO2 adsorption potential of ZIF-8 within various composite and filter systems composed of distinct ZIFs. Culminating with an emphasis on ZIF-8's exceptional advantages for CO2 capture, this review serves as a repository of insights into the unparalleled potential of ZIF-8 as a foundational material. Providing a succinct yet comprehensive overview, this article facilitates a rapid understanding of ZIF-8's transformative role in the realm of CO2 capture.

    Citation: Angaraj Singh, Ajitanshu Vedrtnam, Kishor Kalauni, Aman Singh, Magdalena Wdowin. Synthesis routes of zeolitic imidazolate framework-8 for CO2 capture: A review[J]. AIMS Materials Science, 2025, 12(1): 118-164. doi: 10.3934/matersci.2025009

    Related Papers:

    [1] William E. Fitzgibbon . The work of Glenn F. Webb. Mathematical Biosciences and Engineering, 2015, 12(4): v-xvi. doi: 10.3934/mbe.2015.12.4v
    [2] Peter Hinow, Pierre Magal, Shigui Ruan . Preface. Mathematical Biosciences and Engineering, 2015, 12(4): i-iv. doi: 10.3934/mbe.2015.12.4i
    [3] David Logan . From the Guest Editor. Mathematical Biosciences and Engineering, 2007, 4(1): i-ii. doi: 10.3934/mbe.2007.4.1i
    [4] Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel . Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences and Engineering, 2004, 1(1): 111-130. doi: 10.3934/mbe.2004.1.111
    [5] Ghous Ali, Adeel Farooq, Mohammed M. Ali Al-Shamiri . Novel multiple criteria decision-making analysis under m-polar fuzzy aggregation operators with application. Mathematical Biosciences and Engineering, 2023, 20(2): 3566-3593. doi: 10.3934/mbe.2023166
    [6] Tetiana Biloborodova, Lukasz Scislo, Inna Skarga-Bandurova, Anatoliy Sachenko, Agnieszka Molga, Oksana Povoroznyuk, Yelyzaveta Yevsieieva . Fetal ECG signal processing and identification of hypoxic pregnancy conditions in-utero. Mathematical Biosciences and Engineering, 2021, 18(4): 4919-4942. doi: 10.3934/mbe.2021250
    [7] Edil D. Molina, Paul Bosch, José M. Sigarreta, Eva Tourís . On the variable inverse sum deg index. Mathematical Biosciences and Engineering, 2023, 20(5): 8800-8813. doi: 10.3934/mbe.2023387
    [8] Fengwei Li, Qingfang Ye, Juan Rada . Extremal values of VDB topological indices over F-benzenoids with equal number of edges. Mathematical Biosciences and Engineering, 2023, 20(3): 5169-5193. doi: 10.3934/mbe.2023240
    [9] Pshtiwan Othman Mohammed, Donal O'Regan, Dumitru Baleanu, Y. S. Hamed, Ehab E. Elattar . Analytical results for positivity of discrete fractional operators with approximation of the domain of solutions. Mathematical Biosciences and Engineering, 2022, 19(7): 7272-7283. doi: 10.3934/mbe.2022343
    [10] Feezan Ahmad, Xiao-Wei Tang, Mahmood Ahmad, Roberto Alonso González-Lezcano, Ali Majdi, Mohamed Moafak Arbili . Stability risk assessment of slopes using logistic model tree based on updated case histories. Mathematical Biosciences and Engineering, 2023, 20(12): 21229-21245. doi: 10.3934/mbe.2023939
  • Zeolitic imidazole framework-8 (ZIF-8) represents a notable subtype of metal-organic frameworks (MOFs), characterized by tetrahedral and zeolite-like structures interconnected through Imidazolate anions. ZIF-8's outstanding attributes, including its expansive intra-crystalline surface area and robust chemical and thermal stability, have positioned it as a promising contender for carbon dioxide (CO2) capture applications. The application of ZIF-8 in the membrane and composite fields involves utilizing ZIF-8 in the development and enhancement of membranes and composite materials for gas separation, catalysis, and sensing. This article serves as a comprehensive exploration of contemporary CO2 capture technologies, elucidating their respective merits and demerits. Moreover, the review offers insights into the prevailing CO2 adsorption techniques implemented across industries. Delving into ZIF-8 synthesis methods, the discourse encompasses diverse synthetic pathways. Experimental evidence, furnished through X-Ray diffraction patterns and scanning electron microscopy, validates ZIF-8's structure-activity correlation and morphological characteristics. We extend this review to encapsulate the parameters governing CO2 adsorption by ZIF-8, delineating the key factors influencing its capture efficacy. Notably, we encompass CO2 measurement protocols and techniques specific to ZIF-8. Additionally, we appraise the CO2 adsorption potential of ZIF-8 within various composite and filter systems composed of distinct ZIFs. Culminating with an emphasis on ZIF-8's exceptional advantages for CO2 capture, this review serves as a repository of insights into the unparalleled potential of ZIF-8 as a foundational material. Providing a succinct yet comprehensive overview, this article facilitates a rapid understanding of ZIF-8's transformative role in the realm of CO2 capture.



    Neural networks (NNs) are computational models that represent the information processing aspect of the human brain's neural network. NNs have been the focus of extensive studies across various domains in recent decades, including but not limited to automatic control [1], transmission of biological information [2], medical image analysis [3], system identification [4], and associate memory [5]. Synchronization is an essential tool for secure communication and biocomputing. It is the process of maintaining consistency in a system's dynamic signals as time passes. Synchronization, a common collective behavior, has emerged as a significant concern in the field of NNs. Researchers have developed various synchronization approaches, including pinning synchronization [6], finite time synchronization [7], and exponential synchronization [8]. In contrast to solitary NNs, coupled NNs (CNNs) exhibit more intricate and imperceptible behaviors. In recent years, researchers have made considerable progress in studying synchronization of CNNs [9,10,11,12].

    Due to the limitations caused by the speed at which signals may travel, specifically the speed at which neuron amplifiers in NNs can switch and transmit, the system trajectory is contingent not only on the previous state but also on the current one. The delay category, also known as neutral-type delay, has the potential to induce instability or other undesirable dynamic behaviors [13,14,15]. Furthermore, the time delays observed in CNNs may be subject to random occurrences due to the temporal signals and synaptic voltage fluctuations transmitted by the transmitters. This can result in extremely large time delay values, despite the extremely low probability that they will occur. A degree of conservatism results if information regarding the range of time delay variations is the only factor considered, without taking their probability into consideration. Thus, a succession of research findings concerning CNNs with probabilistic time-varying latencies are available [16,17,18]. In addition to time delay effects, real NNs are susceptible to impulsive effects when system states undergo instantaneous disturbances or abrupt state changes at specific instants. These effects can have a similar impact on systems' dynamical behaviors as time-delay effects do. Thus far, considerable interest has been devoted to the synchronization or stability of the coupled neutral NNs (CNNNs) [19,20,21] and impulsive coupled NNs (ICNNs) [22,23].

    Nerve signals are conveyed through chaotic electrical pulses in biological nervous systems, which are susceptible to stochastic disturbances and random noises. Frequently used to model these stochastic factors are Gaussian white noise or Brownian motion, considered reasonable approximations. As of now, a multitude of dynamic behaviors exhibited by coupled stochastic NNs, such as synchronization and stability, have been examined through the modeling of randomness using Brownian motion [14,16,20,24,25]. Nevertheless, rare instances are not uncommon among genuine biological neurons. Neuronal impulses discharge and chemical processes in neuronal synaptic receivers generate jump-type noise [26]. Therefore, the Lévy process, which expands Brownian motion to include jump-diffusion, is a more suitable model for these circumstances compared to Brownian motion [27,28,29,30]. Notwithstanding the augmented mathematical intricacy, the findings of this study suggest that examining synchronization in impulsive coupled neutral stochastic NNs (ICNSNNs) propelled by Lévy noise is more significant.

    The majority of the previously published findings on the examination of NNs synchronization necessitate the activation function to adhere to Lipschitz continuity. Nevertheless, in actual situations, the Lipschitz conditions frequently impose excessively stringent requirements, with certain conditions proving exceedingly challenging to fulfill [31]. There has been considerable scholarly activity aimed at easing restrictions on activation functions, including but not limited to one-sided Lipschitz conditions and local Lipschitz conditions [32,33,34]. Accordingly, it is critical, in light of these findings, to derive lower-limit synchronization conditions for ICNSNNs with Lévy noise.

    To attain synchronization among driver-response systems, it is customary to devise control protocols that specifically target the desired control outcome. CNNs are capable of implementing a wide range of control schemes, including adaptive control [13,20], impulsive control [30,35], and event-triggered control [27,28]. It is widely acknowledged that adaptive controllers possess numerous advantages and find utility across diverse domains. Adaptive control is appealing and intriguing due to its robustness and ability to adjust autonomously in response to various updating laws, suitable for systems characterized by strong nonlinearity and discontinuity on the righthand side.

    Based on the preceding discussion, we consider the problem of exponential synchronization in ICNSNNs with Lévy noise, specifically in the presence of non-Lipschitz conditions. The subsequent text provides a concise overview of the main advancements in contrast to the existing body of research.

    1) Compared to earlier neutral stochastic NN models, the model in this study incorporates impulse effects and probabilistic delays into the coupled neutral stochastic NNs, making it more versatile and beneficial in engineering practice.

    2) The requirements necessary for synchronization analysis, which do not need Lipschitz conditions, have been created, therefore relaxing the limitations imposed by Lipschitz conditions.

    3) Due to the lack of satisfaction of the chain rule by the Itô-type stochastic integral, the Dini differential method [16,22,23,35] presents challenges in solving the proof difficulties arising from the combination of impulsive component and neutral delay. Our technique is resistant to the aforementioned limitations and can efficiently tackle these challenges.

    4) Under the stochastic perturbations, impulses, and various delays, by resorting to an adaptive controller, some sufficient conditions have been established to make ICNSNNs with Lévy noise achieve exponential synchronization.

    Notations: Please refer to the following Table 1 for specific symbols.

    Table 1.  Detailed notations.
    (Ω,F,{Ft}t0,P) complete probability space
    {Ft}t0 filtration satisfying the usual conditions
    AT the transpose of a vector or matrix
    Euclidean norm or the matrix trace norm
    χ(θ) left limit of function χ(θ) at θ
    χ(θ+) right limit of function χ(θ) at θ
    diag() diagonal matrix
    ρ() the spectral radius of matrix
    N+ the family of positive integers
    C([G,0];Rn) the family of continuous function χ from [G,0] to Rn
    L2F0([G,0];Rn) the family of all bounded, F0-measurable,
    C(([G,0];Rn)-valued random variables

     | Show Table
    DownLoad: CSV

    We consider the neutral NNs with probabilistic delays of the form

    d[˜χ(t)A˜χ(tG(t))]=[B˜χ(t)+C˜H(˜χ(t))D˜H(˜χ(tP(t)))+˜E]dt, (2.1)

    where the variable ˜x(t)Rn reflects the state of neutral NNs that are connected to n neurons, and ˜H(˜x(t))Rn is the activation function of the neurons. G(t) is time-varying delay and satisfies conditions ˜GG(t)0 and 1>ˉG˙G(t). A is the neutral parameter matrix. B=diag(b1,b2,,bn)>0. ˜ERn. The connection weight matrix is denoted as C, whereas the delay connection weight matrix is denoted as D. The delay P(t) in system (2.1) is bounded and meets condition 0P(t)˜P2. Practically, there is a constant ˜P1 that satisfies 0˜P1˜P2. Moreover, P(t) assumes values within the intervals [0,˜P1] and (˜P1,˜P2] with a specific probability, as determined by its probability distribution, i.e., P{P(t)[0,˜P1]}=K0 and P{P(t)(˜P1,˜P2]}=1K0, 0K01.

    Then

    P(t)={P1(t),P(t)[0,˜P1],P2(t),P(t)(˜P1,˜P2],

    where Pk(t) satisfies 1>¯Pk˙Pk(t),k=1,2. The stochastic variable K(t) follows a Bernoulli distribution, denoted by P{K(t)=1}=P{P(t)[0,˜P1]} and P{K(t)=0}=P{P(t)(˜P1,˜P2]}. Then

    E{K(t)}=1×K0=K0.

    By utilizing the new functions P1(t) and P2(t), together with the stochastic variables K(t), system (2.1) may be reformulated as

    d[˜χ(t)A˜χ(tG(t))]=[B˜χ(t)+C˜H(˜χ(t))+K(t)D˜H(˜χ(tP1(t)))+(1K(t))D˜H(˜χ(tP2(t)))+˜E]dt. (2.2)

    The system (2.2) is considered the drive system, with the state variable represented as ˜χ(t). The response system, on the other hand, is described by the following ICNSNN, with the state variable denoted as ˜yk(t). ek(t)=˜yk(t)˜χ(t) specifies the following error vector:

    d[˜yk(t)A˜yk(tG(t))]=[B˜yk(t)+C˜H(˜yk(t))+K(t)D˜H(˜yk(tP1(t)))+(1K(t))D˜H(˜yk(tP2(t)))+˜ϱNj=1okjΥ˜yj(t)+˜E+Ψk]dt+μ(ek(t),ek(tG(t)),ek(tP1(t)),ek(tP2(t)))dω(t)+Vq(ek(t),ek(tG(t)),ek(tP1(t)),ek(tP2(t)),ν)˜N(dt,dν),tσl,lN+,Δ˜yk(σl)=˜yk(σl)˜y(σl)=˜Jl(ek(σl),ek(σlG(σl)))+Aek(σlG(σl))Aek(σlG(σl)),t=σl. (2.3)

    In system (2.3), the control input vector, denoted as Ψk=(φk1,φk2,,φkn)TRn, k=1,...,N, represents the control inputs for a system. ˜ϱ>0 is coupling strength. The configuration matrix O={okj}N×N denotes the topological structure of systems. A connection from node k to j is defined as okj>0, otherwise okj=0. Additionally, okk=Nj=1,jkokj. The positive definite diagonal matrix Υ represents the internal connection strength between two interconnected NNs. ek(σl)=ek(σ+l)=limtσ+lek(t) and ek(σl)=limtσlek(t). ˜Jl(,)Rn. The impulsive time instants, denoted as σl, follow the conditions 0=σ0<σ1<σ2<<σl<, and limkσl=. μ:Rn×Rn×Rn×RnRn×n and q:Rn×Rn×Rn×Rn×VRn indicate Lévy noise intensity functions. A vector Brownian motion is denoted by ω(t), which is defined on the probability space (Ω,F,{Ft}t0,P), where {Ft}t0 meets the standard conditions. N(dt,dν) is a Poisson counting measure utilizing a characteristic measure π on a measurable subset V of R, whereas N(t,ν) represents a Poisson process. ˜N(dt,dν)=N(dt,dν)π(dν)dt. The research operates under the assumption that stochastic processes ω and N are independent.

    According to systems (2.2) and (2.3) and the quality of matrix O,

    ˜ϱNj=1okjΥ˜yj(t)=˜ϱNj=1okjΥ(ej(t)+˜χ(t))=˜ϱNj=1okjΥej(t),

    the error dynamics system can be obtained such that

    d[ek(t)Aek(tG(t))]=[Bek(t)+CH(ek(t))+K(t)DH(ek(tP1(t)))+(1K(t))DH(ek(tP2(t)))+˜ϱNj=1okjΥej(t)+Ψk]dt+μ(ek(t),ek(tG(t)),ek(tP1(t)),ek(tP2(t)))dω(t)+Vq(ek(t),ek(tG(t)),ek(tP1(t)),ek(tP2(t)),ν)˜N(dt,dν),tσl,lN+,Δek(σl)=ek(σl)ek(σl)=˜Jl(ek(σl),ek(σlG(σl)))+Aek(σlG(σl))Aek(σlG(σl)),t=σl, (2.4)

    in which H(ek(t))=˜H(˜yk(t))˜H(˜χ(t)), H(ek(tP1(t)))=˜H(˜yk(tP1(t)))˜H(˜χ(tP1(t))), and H(ek(tP2(t)))=˜H(˜yk(tP2(t)))˜H(˜χ(tP2(t))), where ˜G0=max(˜G,˜P2). To establish synchronization, we assume control is defined as

    Ψk=(φk(t)I)(ek(t)Aek(tG(t))), (2.5)

    where represents a nonnegative real number. The adaptive feedback gain is denoted as φk(t)=diag(φk1(t),φk2(t),...,φkn(t))(k=1,...,N).

    To determine the synchronization requirements for systems (2.2) and (2.3), we provide the following assumptions.

    A1 There is a constant ϱ>0 that fulfills

    ˜H(θ1)˜H(θ2)2ϱϖ(θ1θ22),

    for θ1,θ2Rn, ˜H(0)=0, where ϖ():R+R+ is a concave increasing continuous function with ϖ(0)=0 and 10duϖ(u)=. Additionally, it is supposed that there exist a positive constant ϖ0 and a nonnegative function κ(t) with finite upper bound, such that

    ϖ(x)ϖ0x+κ(t),

    for x0. Here, κ(t) meets t0exp(ϑs)κ(s)ds< for ϑ>0.

    A2 There exist constants Λ1>0, Λ2>0, Λ3>0, Γ1>0, Γ2>0, and Γ3>0 such that

    trace(μ(θ1,θ2,θ3,θ4)Tμ(θ1,θ2,θ3,θ4))Λ1θ12+Λ2θ22+Λ3θ3+Λ4θ4,2

    and

    Vq(θ1,θ2,θ3,θ4,ν)2π(dν)Γ1θ12+Γ2θ22+Γ3θ32+Γ4θ42,

    hold for θ1,θ2,θ3,θ4Rn. In addition, μ(0,0,0)=0 and q(0,0,0,0)=0.

    A3 There exists a constant ς(0,1), which ensures that ρ(A) fulfills ρ(A)ς.

    A4 The function ˜Jl(,) is assumed to meet the specified conditions.

    ˜Jl(ek(σl),ek(σlG(σl)))T˜Jl(ek(σl),ek(σlG(σl)))Ξlek(σl)Aek(σlG(σl))2,

    where Ξl>0.

    Remark 2.1. If ϖ(x)=x, then the Lipschitz criteria are satisfied, indicating that the assumption A1 is less stringent than the prerequisite of the Lipschitz continuity. Certain activation functions do not meet the criteria for Lipschitz continuity, yet they do exhibit non-Lipschitz continuity in practical applications. For example, if we are examining a function ˜H(x)=xsinx that fails to meet the criteria of Lipschitz continuity, we may construct the concave nondecreasing function

    ϖ(θ)={θlog(1+θ1),θ[0,ϵ),ϵlog(1+θ1)+ϖ(ϵ)(θϵ),θ[ϵ,),

    for small enough ϵ(0,1)[36], so that ˜H(x) encounters the assumption A1.

    According to the literature [36,37,38], for any initial value {ek(ϵ):˜G0ϵ0}=ϕ0kL2F0([˜G0,0];Rn), the assumptions A1-A4 are believed to demonstrate that the solution symbolized by ek(t,ϕ0k) on t0 to the system (2.4) is both existent and unique. Evidently, the system (2.4) allows for ek(t,0)=0. The expressions ek(t,ϕ0k), ek(tG(t)), ek(tP1(t)), and ek(tP2(t)) will be referred to as ek(t), ekG(t), ekP1(t), and ekP2(t), respectively, for simplicity.

    Lemma 2.1. [30,39] Consider the function δ(t), which is piecewise continuous and nonnegative. It fulfills the condition

    δ(t)˜λ1+tt0˜λ2δ(u)du+t0<ti<t˜λ3δ(ti),

    where ti are the points of discontinuity of the first type for δ(t). Additionally, we have ˜λ10, ˜λ20, ˜λ30. Then, for ti<tti+1,

    δ(t)˜λ1(1+˜λ3)i(t0,t)exp(˜λ2(tt0)).

    Here, the notation i(t0,t) signifies the number of points ti that lie inside the interval [t0,t).

    Definition 2.1. [20] The drive system (2.2) and the response system (2.3) are considered to be exponentially synchronized in mean square (ESMS) if the error system (2.4) is exponentially stable in mean square, meaning that for all ϕ0kL2F0([˜G0,0];Rn),

    lim supt1tlog(ENk=1ek(t)2)<0.

    This section will provide the general requirements for the ESMS in systems (2.2) and (2.3) based on the assumptions A1A4 mentioned above.

    Theorem 3.1. Assume that conditions A1A4 are satisfied. If

    ˜1>0,ϑ˜3m1ln(1+˜2)>0), (3.1)

    where

    ˜1=(1˜)1{(1+)E[Ni=1(ek(0)AekG(0))T(ek(0)AekG(0))]+(1+)(1ˉG)1[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2+Γ2]0G(0)exp(ϑ(s+˜G))sup0stENk=1ek(s)2ds+(1+)(1¯P1)1[K0˜d2maxϱϖ0+Λ3+Γ3]0P1(0)exp(ϑ(s+~P1))sup0stENk=1ek(s)2ds+(1+)(1¯P2)1[(1K0)˜d2maxϱϖ0+Λ4+Γ4]0P2(0)exp(ϑ(s+~P2))sup0stENk=1ek(s)2ds+(1+)ϱ(1+c2max+˜d2max)Nt0exp(ϑs)κ(s)ds+˜sup˜Gs0ENk=1ek(s)2},˜2=˜Ξ(1+)(1˜)1(ς+(1+ς)1),˜3=(1˜)1(1+){ϑ(1+ς)2bmin+c2max+ϱϖ0+b2max+c2maxϱϖ0+(1+ς)2(1ς)+˜ϱNomax|Υ|(2+ς)+Λ1+Γ1+11ˉGexp(ϑ˜G)[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2+Γ2]+11¯P1exp(ϑ~P1)[K0˜d2maxϱϖ0+Λ3+Γ3]+11¯P2exp(ϑ~P2)[(1K0)˜d2maxϱϖ0+Λ4+Γ4]},bmin=min1jnbj,bmax=max1jnbj,cmax=ρ(C),˜dmax=ρ(D),omax=max1k,jN|okj|,

    then when the adaptive controller (2.5) with update rule

    ˙φkj(t)=1υkjexp(ϑt)(ekj(t)ni=1akieki(tG(t)))2,

    is applied, where υkj>0,k=1,...,N,j=1,2,,n, the systems (2.3) and (2.2) are ESMS.

    Proof. Define

    V(t,ek(t)AekG(t))=exp(ϑt)Nk=1(ek(t)AekG(t))T(ek(t)AekG(t))+Nk=1nj=1υkjφ2kj.

    By adopting the general Itˆo's formula [40] for the interval t(σl,σl+1) and doing integration on both sides from σl to t, we derive

    V=V(σl,ek(σl)AekG(σl))+tσlLVds+tσl2Nk=1exp(ϑs)(ek(s)AekG(s))T×μ(ek(s),ekG(s),ekP1(s),ekP2(s))dω(s)+tσlZexp(ϑs)[Nk=1(ek(s)AekG(s))+q(ek(s),ekG(s),ekP1(s),ekP2(s),ν))T×(ek(s)AekG(s)+q(ek(s),ekG(s),ekP1(s),ekP2(s),ν))Nk=1(ek(s)AekG(s))T(ek(s)AekG(s))]˜N(ds,dν), (3.2)

    where

    LV=2Nk=1nj=1υkjφkj˙φkj+ϑexp(ϑt)Nk=1(ek(t)AekG(t))T(ek(t)AekG(t))+2exp(ϑt)Nk=1(ek(t)AekG(t))T[Bek(t)+CH(ek(t))+K(t)DH(ekP1(t))+(1K(t))DH(ekP2(t))+ϱNj=1okjΥej(t)+Ψk]+exp(ϑt)Nk=1trace(μ(ek(t),ekG(t),ekP1(t),ekP2(t))T×μ(ek(t),ekG(t),ekP1(t),ekP2(t)))+Vexp(ϑt)Nk=1[(ek(t)AekG(t)+q(ek(t),ekG(t),ekP1(t),ekP2(t),ν))T×(ek(t)AekG(t)+q(ek(t),ekG(t),ekP1(t),ekP2(t),ν))(ek(t)AekG(t))T(ek(t)AekG(t))2(ek(t)AekG(t))Tq(ek(t),ekG(t),ekP1(t),ekP2(t),ν)]π(dν).

    Through employing Young's inequality, one may infer that

    tσlϑexp(ϑs)Nk=1(ek(s)AekG(s))T(ek(s)AekG(s))dsϑ(1+ς)tσlexp(ϑs)Nk=1ek(s)Tek(s)ds+ϑς(1+ς)tσlexp(ϑs)Nk=1eTkG(s)ekG(s)ds. (3.3)

    Based on the given assumptions A1, we may conclude that

    2tσlexp(ϑs)Nk=1(ek(s)AekG(s))T[Bek(s)+CH(ek(s))]dstσlexp(ϑs)Nk=1[2ek(s)TBek(s)+ek(s)TCTCek(s)+H(ek(s))TH(ek(s))+eTkG(s)ATAekG(s)+ek(s)TBTBek(s)+eTkG(s)ATAekG(s)+H(ek(s))TCTCH(ek(s))]dstσlexp(ϑs)Nk=1[2bmin+c2max+ϱϖ0+b2max+c2maxϱϖ0]ek(s)Tek(s)ds+tσlexp(ϑs)Nk=12ς2eTkG(s)ekG(s)+tσlexp(ϑs)Nk=1(1+c2max)ϱκ(s)ds, (3.4)

    and

    2tσlexp(ϑs)Nk=1(ek(s)AekG(s))T[K(s)DH(ekP1(s))+(1K(s))DH(ekP2(s))]dstσlexp(ϑs)[K(s)(ek(s)AekG(s))T(ek(s)AekG(s))+K(s)H(ekP1(s))TDTDH(ekP1(s))+(1K(s))(ek(s)AekG(s))T(ek(s)AekG(s))+(1K(s))H(ekP2(s))TDTDH(ekP2(s))]dstσlexp(ϑs)Nk=1(1+ς)ek(s)Tek(s)ds+tσlexp(ϑs)ς(1+ς)Nk=1eTkG(s)ekG(s)ds+tσlexp(ϑs)Nk=1K(s)˜d2maxϱϖ0eTkP1(s)ekP1(s)ds+tσlexp(ϑs)Nk=1(1K(s))˜d2maxϱϖ0eTkP2(s)ekP2(s)ds+tσlexp(ϑs)Nk=1˜d2maxϱκ(s)ds. (3.5)

    Comparable to (3.3), it is possible to get

    2tσlexp(ϑs)Nk=1(ek(s)AekG(s))T[(ek(s)Aek(sG(s)))]dstσlexp(ϑs)Nk=1(2(1ς)eTk(s)ek(s))ds+tσlexp(ϑs)Nk=12ς(1ς)eTkG(s)ekG(s)ds. (3.6)

    Besides, we have

    2tσlexp(ϑs)Nk=1(ek(s)AekG(s))T[˜ϱNj=1okjΥej(t)]dstσlexp(ϑs)Nk=1˜ϱNomax|Υ|[eTk(s)ek(s)+(ek(s)AekG(s))T(ek(s)AekG(s))]dstσlexp(ϑs)Nk=1˜ϱNomax|Υ|(2+ς)ek(s)Tek(s)ds+tσlexp(ϑs)Nk=1˜ϱNomax|Υ|ς(1+ς)eTkG(s)ekG(s)ds. (3.7)

    Following the assumption A2, there exist

    tσlexp(ϑs)Nk=1trace(μ(ek(s),ekG(s),ekP1(s),ekP2(s))Tμ(ek(s),ekG(s),ekP1(s),ekP2(s)))tσlexp(ϑs)Nk=1[Λ1eTk(s)ek(s)+Λ2eTkG(s)ekG(s)+Λ3eTkP1(s)ekP1(s)+Λ4eTkP2(s)ekP2(s)]ds, (3.8)

    and

    tσlVexp(ϑt)Nk=1[(ek(t)AekG(t)+q(ek(t),ekG(t),ekP1(t),ekP2(t),ν))T(ek(t)AekG(t)+q(ek(t),ekG(t),ekP1(t),ekP2(t),ν))(ek(t)AekG(t))T(ek(t)AekG(t))2(ek(t)AekG(t))Tq(ek(t),ekG(t),ekP1(t),ekP2(t),ν)]π(dν)dstσlVexp(ϑs)Nk=1[Γ1eTk(s)ek(s)+Γ2eTkG(s)ekG(s)+Γ3eTkP1(s)ekP1(s)+Γ4eTkP2(s)ekP2(s)]ds. (3.9)

    When t=σl, it produces

    EV(σl,ek(σl)ekG(σl))=E[exp(ϑσl)Nk=1|ek(σl)+˜Jl(ek(σl),ekG(σl))+AekG(σl)AekG(σl)AekG(σl)|2+Nk=1nj=1υkjφ2kj](1+Ξl)E[exp(ϑσl)Nk=1(ek(σl)AekG(σl))T(ek(σl)AekG(σl))+Nk=1nj=1υkjφ2kj]=˜ΞEV(σl,ek(σl)AekG(σl)),

    where ˜Ξ=maxlN+{1+Ξl}. By replacing (3.3)–(3.9) into (3.2) and subsequently calculating the mathematical expectation for both sides of (3.2), it yields

    EV=EV(σl,ek(σl)ekG(σl))+tσlLVds.

    Therefore, for any values of t inside the interval [0,σl+1), it follows that

    EV=E[Nk=1(ek(0)AekG(0))T(ek(0)AekG(0))]+0<σl<tEV(σl,ek(σl)AekG(σl)+t0LVdsE[Nk=1(ek(0)AekG(0))T(ek(0)AekG(0))]+˜Ξ0<σl<tEV(σl,ek(σl)AekG(σl))+[ϑ(1+ς)2bmin+c2max+ϱϖ0+b2max+c2maxϱϖ0+(1+ς)2(1ς)+˜ϱNomax|Υ|(2+ς)+Λ1+Γ1]t0exp(ϑs)Nk=1ek(s)2ds+[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2+Γ2]Et0exp(ϑs)Nk=1ekG(s)2ds+[K0˜d2maxϱϖ0+Λ3+Γ3]Et0exp(ϑs)Nk=1ekP1(s)2ds+[(1K0)˜d2maxϱϖ0+Λ4+Γ4]Et0exp(ϑs)Nk=1ekP2(s)2ds+ϱ(1+c2max+˜d2max)t0exp(ϑs)Nk=1κ(s)ds.

    Since

    t0exp(ϑs)Nk=1ekG(s)2ds11ˉG0G(0)exp(ϑ(s+˜G))Nk=1ek(s)2ds+11ˉGexp(ϑ˜G)t0exp(ϑs)Nk=1ek(s)2ds,
    t0exp(ϑs)Nk=1ekP1(s)2ds11¯P10P1(0)exp(ϑ(s+~P1))Nk=1ek(s)2ds+11¯P1exp(ϑ~P1)t0exp(ϑs)Nk=1ek(s)2ds,

    and

    t0exp(ϑs)Nk=1ekP2(s)2ds11¯P20P2(0)exp(ϑ(s+~P2))Nk=1ek(s)2ds+11¯P2exp(ϑ~P2)t0exp(ϑs)Nk=1ek(s)2ds,

    it can be deduced that

    EVE[Nk=1(ek(0)AekG(0))T(ek(0)AekG(0))]+11ˉG[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2+Γ2]0G(0)exp(ϑ(s+˜G))Nk=1Eek(s)2ds+11¯P1[K0˜d2maxϱϖ0+Λ3+Γ3]0P1(0)exp(ϑ(s+~P1))Nk=1Eek(s)2ds+11¯P2[(1K0)˜d2maxϱϖ0+Λ4+Γ4]0P2(0)exp(ϑ(s+~P2))Nk=1Eek(s)2ds+ϱ(1+c2max+˜d2max)Nt0exp(ϑs)κ(s)ds+˜Ξ0<σl<tEV(σl,ek(σl)AekG(σl))+{ϑ(1+ς)2bmin+c2max+ϱϖ0+b2max+c2maxϱϖ0+(1+ς)2(1ς)+˜ϱNomax|Υ|(2+ς)+Λ1+Γ1+11ˉGexp(ϑ˜G)[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2+Γ2]+11¯P1exp(ϑ~P1)[K0˜d2maxϱϖ0+Λ3+Γ3]+11¯P2exp(ϑ~P2)[(1K0)˜d2maxϱϖ0+Λ4+Γ4]}t0exp(ϑs)Nk=1Eek(s)2ds.

    In addition, employing the inequality in reference [36], it can be yielded that

    (γ1+γ2)2(1+ε)[γ21+ε1γ22],γ1,γ2,ε0,

    and we have

    sup0stexp(ϑs)ENk=1ek(s)2(1+)1ς2(1+)1exp(ϑ˜G)sup0stexp(ϑs)ENk=1ek(s)AekG(s)2+ς2(1+)1exp(ϑ˜G)1ς2(1+)1exp(ϑ˜G)sup˜Gs0ENk=1ek(s)2,

    where >0 is sufficiently large for ˜=ς2(1+)1exp(ϑ˜G)<1. Then,

    sup0stexp(ϑs)ENk=1ek(s)2(1˜)1{(1+)E[Nk=1(ek(0)AekG(0))T(ek(0)AekG(0))]+(1+)(1ˉG)1[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2+Γ2]0G(0)exp(ϑ(s+˜G))sup0stENk=1ek(s)2ds+(1+)(1¯P1)1[K0˜d2maxϱϖ0+Λ3+Γ3]0P1(0)exp(ϑ(s+~P1))sup0stENk=1ek(s)2ds+(1+)(1¯P2)1[(1K0)˜d2maxϱϖ0+Λ4+Γ4]0P2(0)exp(ϑ(s+~P2))sup0stENk=1ek(s)2ds+(1+)ϱ(1+c2max+˜d2max)Nt0exp(ϑs)κ(s)ds+˜sup˜Gs0ENk=1ek(s)2}+˜Ξ(1+)(1˜)1(ς+(1+ς)1)0<σl<tsup0stexp(ϑσl)ENk=1ek(σl)2+(1˜)1(1+){ϑ(1+ς)2bmin+c2max+ϱϖ0+b2max+c2maxϱϖ0+(1+ς)2(1ς)+˜ϱNomax|Υ|(2+ς)+Λ1+Γ1+11ˉGexp(ϑ˜G)[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2+Γ2]+11¯P1exp(ϑ~P1)[K0˜d2maxϱϖ0+Λ3+Γ3]+11¯P2exp(ϑ~P2)[(1K0)˜d2maxϱϖ0+Λ4+Γ4]}t0sup0stexp(ϑs)ENk=1ek(s)2ds=˜1+˜20<σl<tsup0stexp(ϑσl)ENk=1ek(σl)2+˜3t0sup0stexp(ϑs)ENk=1ek(s)2ds.

    Thus, Lemma 2.1 subsequently results in

    sup0stexp(ϑs)ENk=1ek(s)2˜1(1+˜2)kexp(˜3t).

    Based on the inequality minflN(σl+1σl), we ultimately get

    sup0stENk=1ek(s)2˜1exp((ϑ˜3m1ln(1+˜2))t).

    With respect to criterion (3.1), it may be concluded that systems (2.2) and (2.3) are ESMS.

    Remark 3.1. Based on our comprehension, certain current CNNN and neutral NN models [13,14,15,19,20] do not take into account the impact of impulses. This research explores a wider model by incorporating impulsive effects. The Dini differential technique[16,22,23,35] is not applicable to our primary problem since it involves a combination of neutral delay and impulsive factors, and Itô-type stochastic integrals do not adhere to the chain rule. The proof strategy outlined in Theorem 3.1 offers a method for resolving the difficulty.

    Remark 3.2. Activation functions are required to provide Lipschitz continuity in several studies on the synchronization or stability of CNNs, CNNNs, and neutral NNs, as indicated by the references [13,20,22,27,35]. Theorem 3.1 provides sufficient criteria for achieving synchronization in the drive-response system without the need for the Lipschitz situation, therefore relaxing the limitations imposed by Lipschitz conditions. As a result, this study extends the current findings (see [13,20,22,27,35]).

    When Lévy jump q(ek(t),ek(tG(t)),ek(tP1(t)),ek(tP2(t)),ν)=0, the coupled error system (2.4) reduced to the following form:

    d[ek(t)Aek(tG(t))]=[Bek(t)+CH(ek(t))+K(t)DH(ek(tP1(t)))+(1K(t))DH(ek(tP2(t)))+ϱNj=1okjΥej(t)+Ψk]dt+μ(ek(t),ek(tG(t)),ek(tP1(t)),ek(tP2(t)))dω(t)tσl,lN+,Δek(σl)=ek(σl)ek(σl)=˜Jl(ek(σl),ek(σlG(σl)))+Aek(σlG(σl))Aek(σlG(σl)),t=σl. (3.10)

    Under these circumstances, we ascertain the subsequent outcomes.

    Corollary 3.1. If conditions A1A4 are fulfilled, for

    ˜1>0,ϑ˜3m1ln(1+˜2)>0,

    where

    ˜1=(1˜)1{(1+)E[Nk=1(ek(0)AekG(0))T(ek(0)AekG(0))]+(1+)(1ˉG)1[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2]0G(0)exp(ϑ(s+˜G))sup0stENk=1ek(s)2ds+(1+)(1¯P1)1[K0˜d2maxϱϖ0+Λ3]0P1(0)exp(ϑ(s+~P1))sup0stENk=1ek(s)2ds+(1+)(1¯P2)1[(1K0)˜d2maxϱϖ0+Λ4]0P2(0)exp(ϑ(s+~P2))sup0stENk=1ek(s)2ds+(1+)ϱ(1+c2max+˜d2max)Nt0exp(ϑs)κ(s)ds+˜sup˜Gs0ENk=1ek(s)2},˜2=˜Ξ(1+)(1˜)1(ς+(1+ς)1),˜3=(1˜)1(1+){ϑ(1+ς)2bmin+c2max+ϱϖ0+b2max+c2maxϱϖ0+(1+ς)2(1ς)+˜ϱNomax|Υ|(2+ς)+Λ1+11ˉGexp(ϑ˜G)[ϑς(1+ς)+2ς2+ς(1+ς)+2ς(1ς)+˜ϱNomax|Υ|ς(1+ς)+Λ2]+11¯P1exp(ϑ~P1)[K0˜d2maxϱϖ0+Λ3]+11¯P2exp(ϑ~P2)[(1K0)˜d2maxϱϖ0+Λ4]},

    then when the adaptive controller (2.5) with update rule

    ˙φkj(t)=1υkjexp(ϑt)(ekj(t)ni=1akieki(tG(t)))2,

    is applied, where υkj>0,k=1,...,N,j=1,2,,n, the systems (2.3) and (2.2) are ESMS.

    Proof. Define

    V(t,ek(t)AekG(t))=exp(ϑt)Nk=1(ek(t)AekG(t))T(ek(t)AekG(t))+Nk=1nj=1υkjφ2kj.

    Employing Theorem 3.1 readily proves the result of Corollary 3.2, hence the proof is omitted in this context.

    This section presents numerical simulations to demonstrate the efficacy of our suggested strategy.

    Example 4.1. Consider the following two-dimensional neutral NNs with probabilistic delays, where

    ˜H(˜χ(t))=tanh(˜χ(t)),G(t)=0.4+0.1cos(2t),
    P1(t)=0.35+0.1cos(2t),P2(t)=0.39+0.1cos(2t),
    A=[0.10.150.150.1],B=[0.75000.85],C=[2.10.32.83.3],D=[3.50.250.81.7],

    ˜χ(t)=(˜χ1(t),˜χ2(t))T, P{K(t)=0}=0.2, E=[0.1,0.1]T. The initial values are ˜χ(t)=[2.3,2.6]T. The parameters of the corresponding response system could be expressed as follows.

    ˜Jl(ek(σl),ek(σlG(σl)))=Q(ek(σl)Aek(σlG(σl))),l=1,...,25.
    μ(ek(t),ekG(t),ekP1(t),ekP2(t))=diag{0.2ek1(t)+0.15ek1G(t)+0.2ek1P1(t)+0.1ek1P2(t),0.1ek2(t)+0.15ek2G(t)+0.2ek2P1(t)+0.1ek2P2(t)},
    q(ek(t),ekG(t),ekP1(t),ekP2(t),ν)=[1.3(ek1(t)+ek1(tG(t)))ν,1.5(ek2(t)+ek2(tP1(t))ν]T,
    Υ=[1001],O=[0.350.20.150.120.1200.110.0.190.3],Q=[0.40.150.350.4],

    ˜yk(t)=(˜yk1(t),˜yk2(t))T. ˜y1(t)=[1.2,1.4]T, ˜y2(t)=[1.5,1.8]T, ˜y3(t)=[2.2,2.4]T. φkj(t)=0,k=1,2,3,j=1,2. ϱ=0.5. The approaches provided in references [13,14,15,19,20] are not applicable to this particular instance. Verifying that the parameters in Example 4.1 fulfill the constraints of Theorem 3.1 is straightforward. Consequently, Theorem 3.1 may be utilized to establish that the response system (2.3) should be considered ESMS in theoretical analysis, together with the driving system (2.2). The simulated findings depicted in Figures 14 unequivocally validate our conclusion. We can find that the error systems in Figure 3 (a)(b) converge to zero as time progresses. Figure 4 depicts the evolutionary trajectory of the adaptive feedback gain φkj(t)(k=1,2,3,j=1,2).

    Figure 1.  The trajectory of system (2.2).
    Figure 2.  The time evolutions of ˜χj(t) and ˜ykj(t).
    Figure 3.  The time evolutions of errors ekj(t).
    Figure 4.  The trajectory of controller gain φkj(t).

    Example 4.2. Consider the following two-dimensional neutral NNs with probabilistic delays, where

    ˜H(˜χ(t))=˜χ(t)sin(˜χ(t)),G(t)=0.4+0.1cos(t),
    P1(t)=0.35+0.1cos(t),P2(t)=0.38+0.1cos(t),
    A=[0.090.150.250.01],B=[0.85000.8],C=[2.60.51.52.3],D=[3.10.50.52.5],

    ˜χ(t)=(˜χ1(t),˜χ2(t))T, P{K(t)=0}=0.2, E=[0.1,0.1]T. The initial values are ˜χ(t)=[3.2,3.4]T. The parameters of the corresponding response system can be given as

    ˜Jl(ek(σl),ek(σlG(σl)))=Q(ek(σl)Aek(σlG(σl))),l=1,...,25.
    μ(ek(t),ekG(t),ekP1(t),ekP2(t))=diag{0.2ek1(t)+0.15ek1G(t)+0.2ek1P1(t)+0.1ek1P2(t),0.1ek2(t)+0.15ek2G(t)+0.2ek2P1(t)+0.1ek2P2(t)},
    q(ek(t),ekG(t),ekP1(t),ekP2(t),ν)=[1.3(ek1(t)+ek1(tG(t)))ν,1.5(ek2(t)+ek2(tP1(t))ν]T,
    Υ=[1001],O=[0.40.20.20.10.250.150.250.150.4],Q=[0.20.10.150.2],

    k=1,2,3. ˜yk(t)=(˜yk1(t),˜yk2(t))T. ˜y1(t)=[2.2,2.4]T, ˜y2(t)=[1.3,1.1]T, ˜y3(t)=[2.6,2.8]T. φkj(t)=0,k=1,2,3,j=1,2. ϱ=0.5. By Remark 2.1, the activation function ˜H() in this instance does not meet the Lipschitz continuity. When ϵ=0.001, ϖ0=13, and κ(t)=exp(2ϑt) are used, then the parameters in this example fulfill the circumstances of Theorem 3.1, implying that the systems (2.2) and (2.3) should be ESMS in the theoretical analysis. Figures 58 display the results of the simulation, which amply supports our conclusion. Figure 6 shows the trajectories of the system (2.2) and the system (2.3) among them, and it is evident that as time goes on, their trajectories become consistent. The error's trajectory converges to zero, as illustrated in Figure 7. Figure 8 illustrates the evolutionary trajectory of the feedback gain φkj(t)(k=1,2,3,j=1,2).

    Figure 5.  The trajectory of system (2.2).
    Figure 6.  The time evolutions of ˜χj(t) and ˜ykj(t).
    Figure 7.  The time evolutions of errors ekj(t).
    Figure 8.  The trajectory of controller gain φkj(t).

    Through adaptive controller, we address the problem of exponential synchronization in ICNSNNs with Lévy noise and probabilistic time delays in cases where the conditions are non-Lipschitz. We additionally discover sufficient criteria for achieving ESMS. In this research, we enhance the practicality of the examined model by incorporating impulse and probabilistic time-varying delays in coupled neutral stochastic NNs, as compared to previous findings[13,14,15,19,20]. The activation function's Lipschitz continuity is not necessary for our investigation, suggesting that our criteria acquired are less limiting than existing ones and can be used in a broader range of situations. Furthermore, the findings of this study propose an approach to the challenge of analyzing synchronization, which arises from the presence of both a neutral delay term and an impulse term. Finally, we present two numerical illustrations that confirm the theoretical discoveries.

    In the non-Lipschitz case, developing the discriminant criteria for the exponential synchronization of ICNSNNs with Lévy noise is still a challenging issue. In addition, more discussion is required on the relaxation of the time delay condition. Lately, there has been a significant focus on the dynamic characteristics of systems that utilize event-triggered control and sliding-mode control. This is evident in the relevant literature [41,42,43,44,45]. Such issues deserve extra investigation and analysis.

    S. M.: Conceptualization; S. M. and JM. L.: Writing-original draft; S. M. and Q. L.: Writing-review & editing; JM. L. and RN. L.: Visualization. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The work was supported in part by the Fundamental Research Funds for the Central Universities, North Minzu University under Grant No.2020KYQD17, and in part by the National Natural Science Foundation of China under Grant No. 12202005, and in part by the High-Level Talent Research Foundation of Anhui Agricultural University under Grant No. RC382106, and in part by the Philosophy and Social Science Foundation of Universities of Anhui Province under Grant No. 2023AH050970, and in part by the Nature Science Foundation of Jiangsu Province under Grant No. BK20220233, and in part by the Ningxia Outstanding Talent Support Program.

    The authors declare no conflict of interest.



    [1] Keshavarz L, Ghaani MR, MacElroy JMD, et al. (2021) A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation. Chem Eng J 412: 128604. https://doi.org/10.1016/j.cej.2021.128604 doi: 10.1016/j.cej.2021.128604
    [2] Rybak A, Rybak A, Boncel S, et al. (2022) Hybrid organic-inorganic membranes based on sulfonated poly (ether ether ketone) matrix and iron-encapsulated carbon nanotubes and their application in CO2 separation. RSC Adv 12: 13367–13380. https://doi.org/10.1039/d2ra01585d doi: 10.1039/d2ra01585d
    [3] Sun Z, Dong J, Chen C, et al. (2021) Photocatalytic and electrocatalytic CO2 conversion: From fundamental principles to design of catalysts. J Chem Technol Biotechnol 96: 1161–1175. https://doi.org/10.1002/jctb.6653 doi: 10.1002/jctb.6653
    [4] Goda MN, Abdelhamid HN, Said AEAA (2020) Zirconium oxide sulfate-carbon (ZrOSO4@C) derived from carbonized UiO-66 for selective production of dimethyl ether. ACS Appl Mater Interfaces 12: 646–653. https://doi.org/10.1021/acsami.9b17520 doi: 10.1021/acsami.9b17520
    [5] Takht Ravanchi M, Sahebdelfar S (2021) Catalytic conversions of CO2 to help mitigate climate change: Recent process developments. Process Saf Environ Prot 145: 172–194. https://doi.org/10.1016/j.psep.2020.08.003 doi: 10.1016/j.psep.2020.08.003
    [6] Abdelhamid HN, Mathew AP (2022) Cellulose-based nanomaterials advance biomedicine: A review. Int J Mol Sci 23: 5405. https://doi.org/10.3390/ijms23105405 doi: 10.3390/ijms23105405
    [7] Younas M, Rezakazemi M, Daud M, et al. (2020) Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog Energy Combust Sci 80: 100849. https://doi.org/10.1016/j.pecs.2020.100849 doi: 10.1016/j.pecs.2020.100849
    [8] Kayal S, Sun B, Chakraborty A (2015) Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy 91: 772–781. https://doi.org/10.1016/j.energy.2015.08.096 doi: 10.1016/j.energy.2015.08.096
    [9] Qin JS, Yuan S, Alsalme A, et al. (2017) Flexible zirconium MOF as the crystalline sponge for coordinative alignment of dicarboxylates. ACS Appl Mater Interfaces 9: 33408–33412. https://doi.org/10.1021/acsami.6b16264 doi: 10.1021/acsami.6b16264
    [10] Joharian M, Morsali A (2019) Ultrasound-assisted synthesis of two new fluorinated metal-organic frameworks (F-MOFs) with the high surface area to improve the catalytic activity. J Solid State Chem 270: 135–146. https://doi.org/10.1016/j.jssc.2018.10.046 doi: 10.1016/j.jssc.2018.10.046
    [11] Bux H, Liang F, Li Y, et al. (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131: 16000–16001. https://doi.org/10.1021/ja907359t doi: 10.1021/ja907359t
    [12] Park KS, Ni Z, Côté AP, et al. (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103: 10186–10191. https://doi.org/10.1073/pnas.0602439103 doi: 10.1073/pnas.0602439103
    [13] Sorribas S, Zornoza B, Teílez C, et al. (2012) Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem Commun 48: 9388–9390. https://doi.org/10.1039/C2CC34893D doi: 10.1039/C2CC34893D
    [14] Sánchez-Laínez J, Zornoza B, Friebe S, et al. (2016) Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J Membr Sci 515: 45–53. https://doi.org/10.1016/j.memsci.2016.05.039 doi: 10.1016/j.memsci.2016.05.039
    [15] Kim D, Kim W, Buyukcakir O, et al. (2017) Highly hydrophobic ZIF-8/carbon nitride foam with hierarchical porosity for oil capture and chemical fixation of CO2. Adv Funct Mater 27: 1700706. https://doi.org/10.1002/adfm.201700706 doi: 10.1002/adfm.201700706
    [16] Gong X, Wang Y, Kuang T (2017) ZIF-8-based membranes for carbon dioxide capture and separation. ACS Sustain Chem Eng 5: 11204–11214. https://doi.org/10.1021/acssuschemeng.7b03613 doi: 10.1021/acssuschemeng.7b03613
    [17] Zhang Z, Xian S, Xi H, et al. (2011) Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chem Eng Sci 66: 4878–4888. https://doi.org/10.1016/j.ces.2011.06.051 doi: 10.1016/j.ces.2011.06.051
    [18] Yahia M, Phan Le QN, Ismail N, et al. (2021) Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation. Microporous Mesoporous Mater 312: 110761. https://doi.org/10.1016/j.micromeso.2020.110761 doi: 10.1016/j.micromeso.2020.110761
    [19] Bux H, Chmelik C, Krishna R, et al. (2011) Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion. J Membr Sci 369: 284–289. https://doi.org/10.1016/j.memsci.2010.12.001 doi: 10.1016/j.memsci.2010.12.001
    [20] Shi Q, Song Z, Kang X, et al. (2012) Controlled synthesis of hierarchical zeolitic imidazolate framework-GIS (ZIF-GIS) architectures. Cryst Eng Comm 14: 8280–8285. https://doi.org/10.1039/C2CE26170G doi: 10.1039/C2CE26170G
    [21] Lai LS, Yeong YF, Ani NC, et al. (2014) Effect of synthesis parameters on the formation of Zeolitic Imidazolate Framework 8 (ZIF-8) nanoparticles for CO2 adsorption. Sep Sci Technol 49: 520–528. https://doi.org/10.1080/02726351.2014.920445 doi: 10.1080/02726351.2014.920445
    [22] Zeng X, Huang L, Wang C, et al. (2016) Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Appl Mater Interfaces 8: 20274–20282. https://doi.org/10.1021/acsami.6b05746 doi: 10.1021/acsami.6b05746
    [23] Venna SR, Jasinski JB, Carreon MA (2010) Structural evolution of Zeolitic Imidazolate Framework-8. J Am Chem Soc 132: 7. https://doi.org/10.1021/ja109268m doi: 10.1021/ja109268m
    [24] Xiang L, Sheng L, Wang C, et al. (2017) Amino-functionalized ZIF-7 nanocrystals: Improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv Mater 29: 1–8. https://doi.org/10.1002/adma.201606999 doi: 10.1002/adma.201606999
    [25] Abdelhamid HN (2020) UiO-66 as a catalyst for hydrogen production via the hydrolysis of sodium borohydride. Dalton Trans 49: 10851. https://doi.org/10.1039/D0DT01688H doi: 10.1039/D0DT01688H
    [26] Abdelhaleem A, Abdelhamid HN, Ibrahim MG, et al. (2022) Photocatalytic degradation of paracetamol using photo-Fenton-like metal-organic framework-derived CuO@C under visible LED. J Clean Prod 379: 134571. https://doi.org/10.1016/j.jclepro.2022.134571 doi: 10.1016/j.jclepro.2022.134571
    [27] Madejski P, Chmiel K, Subramanian N, et al. (2022) Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 15: 887. https://doi.org/10.3390/en15030887 doi: 10.3390/en15030887
    [28] Gładysz P, Stanek W, Czarnowska L, et al. (2018) Thermo-ecological evaluation of an integrated MILD oxy-fuel combustion power plant with CO2 capture, utilization, and storage—A case study in Poland. Energy 144: 379–392. https://doi.org/10.1016/j.energy.2017.11.133 doi: 10.1016/j.energy.2017.11.133
    [29] Tramošljika B, Blecich P, Bonefačić I, et al. (2021) Advanced ultra-supercritical coal-fired power plant with post-combustion carbon capture: Analysis of electricity penalty and CO2 emission reduction. Sustainability 13: 1–20. https://doi.org/10.3390/su13020801 doi: 10.3390/su13020801
    [30] Holz F, Scherwath T, Crespo del Granado P, et al. (2021) A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector. Energy Econ 104: 105631. https://doi.org/10.1016/j.eneco.2021.105631 doi: 10.1016/j.eneco.2021.105631
    [31] Prat D, Wells A, Hayler J, et al. (2015) CHEM21 selection guide of classical-and less classical-solvents. Green Chem 18: 288. https://doi.org/10.1039/C5GC01008J doi: 10.1039/C5GC01008J
    [32] Kato M, Essaki K, Nakagawa K, et al. (2005) CO2 absorption properties of lithium ferrite for application as a high-temperature CO2 absorbent. J Ceram Soc Jpn 113: 684–686. https://doi.org/10.2109/jcersj.113.684 doi: 10.2109/jcersj.113.684
    [33] Samanta A, Zhao A, Shimizu GKH, et al. (2012) Post-combustion CO2 capture using solid sorbents: A review. Ind Eng Chem Res 51: 1438–1463. https://doi.org/10.1021/ie200686q doi: 10.1021/ie200686q
    [34] Omoregbe O, Mustapha AN, Steinberger-Wilckens R, et al. (2020) Carbon capture technologies for climate change mitigation: A bibliometric analysis of the scientific discourse during 1998–2018. Energy Rep 6: 1200–1212. https://doi.org/10.1016/j.egyr.2020.05.003 doi: 10.1016/j.egyr.2020.05.003
    [35] Yamauchi K, Murayama N, Shibata J (2007) Absorption and release of carbon dioxide with various metal oxides and hydroxides. Mater Trans 48: 2739–2742. https://doi.org/10.2320/matertrans.M-MRA2007877 doi: 10.2320/matertrans.M-MRA2007877
    [36] Spataru CI, Ianchis R, Petcu C, et al. (2016) Synthesis of non-toxic silica particles stabilized by molecular complex oleic-acid/sodium oleate. Int J Mol Sci 17: 4–8. https://doi.org/10.3390/ijms17111936 doi: 10.3390/ijms17111936
    [37] Pimenidou P, Dupont V (2015) Dolomite study for in situ CO2 capture for chemical looping reforming. Int J Ambient Energy 36: 170–182. https://doi.org/10.1080/01430750.2013.841590 doi: 10.1080/01430750.2013.841590
    [38] Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45: 23. https://doi.org/10.1021/es104291d doi: 10.1021/es104291d
    [39] Feron PHM, Hendriks CA (2005) CO2 capture process principles and costs. Oil Gas Sci Technol 60: 451–459. https://doi.org/10.2516/ogst:2005027 doi: 10.2516/ogst:2005027
    [40] Yampolskii Y, Topchiev AV (2012) Polymeric gas separation membranes. Russ Chem Rev 81: 483–500. https://doi.org/10.1021/ma300213b doi: 10.1021/ma300213b
    [41] Siqueira RM, Freitas GR, Peixoto HR, et al. (2017) Carbon dioxide capture by pressure swing adsorption. Energy Procedia 114: 2182–2192. https://doi.org/10.1016/j.egypro.2017.03.1355 doi: 10.1016/j.egypro.2017.03.1355
    [42] Yang MW, Chen NC, Huang CH, et al. (2014) Temperature swing adsorption process for CO2 capture using polyaniline solid sorbent. Energy Procedia 63: 2351–2358. https://doi.org/10.1016/j.egypro.2014.11.256 doi: 10.1016/j.egypro.2014.11.256
    [43] Saenz Cavazos PA, Hunter-Sellars E, Iacomi P, et al. (2023) Evaluating solid sorbents for CO2 capture: Linking material properties and process efficiency via adsorption performance. Front Energy Res 11: 1–22. https://doi.org/10.3389/fenrg.2023.1167043 doi: 10.3389/fenrg.2023.1167043
    [44] Tsai CW, Langner EHG, Harris RA (2019) Computational study of ZIF-8 analogues with electron donating and withdrawing groups for CO2 adsorption. Microporous Mesoporous Mater 288: 109613. https://doi.org/10.1016/j.micromeso.2019.109613 doi: 10.1016/j.micromeso.2019.109613
    [45] Junaidi MUM, Khoo CP, Leo CP, et al. (2014) The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous Mesoporous Mater 192: 52–59. https://doi.org/10.1016/j.micromeso.2013.10.006 doi: 10.1016/j.micromeso.2013.10.006
    [46] Song C, Liu Q, Deng S, et al. (2019) Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renew Sustain Energy Rev 101: 265–278. https://doi.org/10.1016/j.rser.2018.11.018 doi: 10.1016/j.rser.2018.11.018
    [47] Ahmed R, Liu G, Yousaf B, et al. (2020) Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation—A review. J Clean Prod 242: 118409. https://doi.org/10.1016/j.jclepro.2019.118409 doi: 10.1016/j.jclepro.2019.118409
    [48] Zulkurnai NZ, Mohammad Ali UF, Ibrahim N, et al. (2017) Carbon dioxide (CO2) adsorption by activated carbon functionalized with deep eutectic solvent (DES). IOP Conf Ser Mater Sci Eng 206: 012030. https://dx.doi.org/10.1088/1757-899X/206/1/012001 doi: 10.1088/1757-899X/206/1/012001
    [49] Ngoy JM, Wagner N, Riboldi L, et al. (2014) A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia 63: 2230–2248. https://doi.org/10.1016/j.egypro.2014.11.242 doi: 10.1016/j.egypro.2014.11.242
    [50] Singh S, Varghese AM, Reinalda D, et al. (2021) Graphene-based membranes for carbon dioxide separation. J CO2 Util 49: 101544. https://doi.org/10.1016/j.jcou.2021.101544 doi: 10.1016/j.jcou.2021.101544
    [51] Agrafioti E, Bouras G, Kalderis D, et al. (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101: 72–78. https://doi.org/10.1016/j.jaap.2013.02.010 doi: 10.1016/j.jaap.2013.02.010
    [52] Liu Y, Ren Y, Ma H, et al. (2022) Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. Adv Membr 2: 100028. https://doi.org/10.1016/j.advmem.2022.100028 doi: 10.1016/j.advmem.2022.100028
    [53] Yin M, Zhang L, Wei X, et al. (2022) Detection of antibiotics by electrochemical sensors based on metal-organic frameworks and their derived materials. Microchem J 183: 107946. https://doi.org/10.1016/j.microc.2022.107946 doi: 10.1016/j.microc.2022.107946
    [54] Rui Z, James JB, Lin YS (2018) Highly CO2 perm-selective metal-organic framework membranes through CO2 annealing post-treatment. J Membr Sci 555: 97–104. https://doi.org/10.1016/j.memsci.2018.03.036 doi: 10.1016/j.memsci.2018.03.036
    [55] Lee YR, Kim J, Ahn WS (2013) Synthesis of metal-organic frameworks: A mini review. Korean J Chem Eng 30: 1667–1680. https://doi.org/10.1007/s11814-013-0140-6 doi: 10.1007/s11814-013-0140-6
    [56] Demir H, Aksu GO, Gulbalkan HC, et al. (2022) MOF membranes for CO2 capture: Past, present and future. Carbon Capture Sci Technol 2: 100026. https://doi.org/10.1016/j.ccst.2021.100026 doi: 10.1016/j.ccst.2021.100026
    [57] Schaate A, Roy P, Godt A, et al. (2011) Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem Eur J 17: 6643–6651. https://doi.org/10.1002/chem.201003211 doi: 10.1002/chem.201003211
    [58] Bux H, Feldhoff A, Cravillon J, et al. (2011) Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem Mater 23: 2262–2269. https://doi.org/10.1021/cm200555s doi: 10.1021/cm200555s
    [59] Chen Y, Tang S (2019) Solvothermal synthesis of porous hydrangea-like zeolitic imidazolate framework-8 (ZIF-8) crystals. J Solid State Chem 276: 68–74. https://doi.org/10.1016/j.jssc.2019.04.034 doi: 10.1016/j.jssc.2019.04.034
    [60] Ejeromedoghene O, Oderinde O, Okoye CO, et al. (2022) Microporous metal-organic frameworks based on deep eutectic solvents for adsorption of toxic gases and volatile organic compounds: A review. Chem Eng J Adv 12: 100361. https://doi.org/10.1016/j.ceja.2022.100361 doi: 10.1016/j.ceja.2022.100361
    [61] Park JH, Park SH, Jhung SH (2009) Microwave-syntheses of zeolitic imidazolate framework material, ZIF-8. J Korean Chem Soc 53: 553–559. https://doi.org/10.5012/jkcs.2009.53.5.553 doi: 10.5012/jkcs.2009.53.5.553
    [62] Cravillon J, Münzer S, Lohmeier SJ, et al. (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21: 1410–1412. https://doi.org/10.1021/cm900166h doi: 10.1021/cm900166h
    [63] Mullin JW (2001) Crystallization: Chapter 5—Nucleation, In: Mullin JW, Crystallization, Oxford: Butterworth-Heinemann, 181–215. https://doi.org/10.1016/B978-075064833-2/50007-3
    [64] Bazzi L, Ayouch I, Tachallait H, et al. (2022) Ultrasound and microwave assisted-synthesis of ZIF-8 from zinc oxide for the adsorption of phosphate. Results Eng 13: 100378. https://doi.org/10.1016/j.rineng.2022.100378 doi: 10.1016/j.rineng.2022.100378
    [65] Beldon PJ, Fábián L, Stein RS, et al. (2010) Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem Int Ed 49: 9640–9643. https://doi.org/10.1002/anie.201005547 doi: 10.1002/anie.201005547
    [66] Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22: 1039–1059. https://doi.org/10.1002/adma.200904093 doi: 10.1002/adma.200904093
    [67] Cho HY, Kim J, Kim SN, et al. (2012) High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater 156: 171–177. https://doi.org/10.1016/j.micromeso.2012.11.012 doi: 10.1016/j.micromeso.2012.11.012
    [68] Chalati T, Horcajada P, Gref R, et al. (2010) Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J Mater Chem 20: 7676–7681. https://doi.org/10.1039/C0JM03563G doi: 10.1039/C0JM03563G
    [69] Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 8: 211–214. https://doi.org/10.1039/B513750K doi: 10.1039/B513750K
    [70] Carson CG, Brown AJ, Sholl DS, et al. (2022) Sonochemical synthesis and characterization of submicrometer crystals of the metal-organic framework Cu[(hfipbb)(H2hfipbb)0.5]. J Mater Chem 19: 18. https://doi.org/10.1021/cg200728b doi: 10.1021/cg200728b
    [71] Seyedin S, Zhang J, Usman KAS, et al. (2019) Facile solution processing of stable MXene dispersions towards conductive composite fibers. Glob Chall 3: 1900037. https://doi.org/10.1002/gch2.201900037 doi: 10.1002/gch2.201900037
    [72] Venna SR, Carreon MA (2010) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132: 76–78. https://doi.org/10.1021/ja909263x doi: 10.1021/ja909263x
    [73] Son WJ, Choi JS, Ahn WS (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater 113: 31–40. https://doi.org/10.1016/j.micromeso.2007.10.049 doi: 10.1016/j.micromeso.2007.10.049
    [74] Klimakow M, Klobes P, Thünemann AF, et al. (2010) Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem Mater 22: 5216–5221. https://doi.org/10.1021/cm1012119 doi: 10.1021/cm1012119
    [75] Yue Y, Qiao ZA, Li X, et al. (2013) Nanostructured zeolitic imidazolate frameworks derived from nanosized zinc oxide precursors. Cryst Growth Des 13: 1002–1005. https://doi.org/10.1021/cg4002362 doi: 10.1021/cg4002362
    [76] Usman KAS, Maina JW, Seyedin S, et al. (2020) Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Mater 12: 58. https://doi.org/10.1038/s41427-020-00240-5 doi: 10.1038/s41427-020-00240-5
    [77] Ogura M, Nakata SI, Kikuchi E, et al. (2001) Effect of NH4+ exchange on hydrophobicity and catalytic properties of Al-free Ti–Si–beta zeolite. J Catal 199: 41–47. https://doi.org/10.1006/jcat.2000.3156 doi: 10.1006/jcat.2000.3156
    [78] Gökpinar S, Diment T, Janiak C (2017) Environmentally benign dry-gel conversions of Zr-based UiO metal–organic frameworks with high yield and the possibility of solvent re-use. Dalton Trans 46: 9895. https://doi.org/10.1039/C7DT01717K doi: 10.1039/C7DT01717K
    [79] Awadallah-F A, Hillman F, Al-Muhtaseb SA, et al. (2019) Nano-gate opening pressures for the adsorption of isobutane, n-butane, propane, and propylene gases on bimetallic Co–Zn based zeolitic imidazolate frameworks. Microporous Mesoporous Mater 48: 4685. https://doi.org/10.1039/C9DT00222G doi: 10.1039/C9DT00222G
    [80] Tannert N, Gökpinar S, Hastürk E, et al. (2018) Microwave-assisted dry-gel conversion—A new sustainable route for the rapid synthesis of metal-organic frameworks with solvent re-use. Dalton Trans 47: 9850–9860. https://doi.org/10.1039/C8DT02029A doi: 10.1039/C8DT02029A
    [81] Ahmed I, Jeon J, Khan NA, et al. (2012) Synthesis of a metal−organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt. Cryst Growth Des. 12: 5878–5881. https://doi.org/10.1021/cg3014317 doi: 10.1021/cg3014317
    [82] Jahn A, Reiner JE, Vreeland WN, et al. (2008) Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10: 925–934. https://doi.org/10.1007/s11051-007-9340-5 doi: 10.1007/s11051-007-9340-5
    [83] Lee YR, Jang MS, Cho HY, et al. (2015) ZIF-8: A comparison of synthesis methods. Chem Eng J 271: 276–280. https://doi.org/10.1016/j.cej.2015.02.094 doi: 10.1016/j.cej.2015.02.094
    [84] Kolmykov O, Commenge JM, Alem H, et al. (2017) Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater Des 122: 31–41. https://doi.org/10.1016/j.matdes.2017.03.002 doi: 10.1016/j.matdes.2017.03.002
    [85] Schejn A, Frégnaux M, Commenge JM, et al. (2014) Size-controlled synthesis of ZnO quantum dots in microreactors. Nanotechnology 25. https://iopscience.iop.org/article/10.1088/0957-4484/25/14/145606/data
    [86] Gross AF, Sherman E, Vajo JJ (2012) Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans 41: 5458–5460. https://doi.org/10.1039/C2DT30174A doi: 10.1039/C2DT30174A
    [87] Faustini M, Kim J, Jeong GY, et al. (2013) Microfluidic approach toward continuous and ultrafast synthesis of metal−organic framework crystals and hetero structures in confined microdroplets. J Am Chem Soc 135: 14619–14626. https://doi.org/10.1021/ja4039642 doi: 10.1021/ja4039642
    [88] Yamamoto D, Maki T, Watanabe S, et al. (2013) Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chem Eng J 227: 145–150. https://doi.org/10.1016/j.cej.2012.08.065 doi: 10.1016/j.cej.2012.08.065
    [89] Butova VV, Soldatov MA, Guda AA, et al. (2016) Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ Chem Rev 85: 280–307. https://iopscience.iop.org/article/10.1070/RCR4554
    [90] Butova VV, Budnyk AP, Bulanova EA, et al. (2017) Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sci 69: 13–21. https://doi.org/10.1016/j.solidstatesciences.2017.05.002 doi: 10.1016/j.solidstatesciences.2017.05.002
    [91] Riley BJ, Vienna JD, Strachan DM, et al. (2016) Materials and processes for the effective capture and immobilization of radioiodine: A review. J Nucl Mater 470: 307–326. https://doi.org/10.1016/j.jnucmat.2015.11.038 doi: 10.1016/j.jnucmat.2015.11.038
    [92] Saini K, Yadav S, Jain M, et al. (2021) Recent advances and challenges in selective environmental applications of metal-organic frameworks. ACS Symp Ser 1394: 223–245. http://dx.doi.org/10.1021/bk-2021-1394.ch009 doi: 10.1021/bk-2021-1394.ch009
    [93] Lestari G (2012) Hydrothermal synthesis of zeolitic imidazolate frameworks-8 (ZIF-8) crystals with controllable size and morphology. MS Thesis, King Abdullah University of Science and Technology. https://doi.org/10.25781/KAUST-461G0
    [94] Pan Y, Liu Y, Zeng G, et al. (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47: 2071–2073. https://doi.org/10.1039/C0CC05002D doi: 10.1039/C0CC05002D
    [95] Huang XC, Lin YY, Zhang JP, et al. (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(ii) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed 45: 1557–1559. https://doi.org/10.1002/anie.200503778 doi: 10.1002/anie.200503778
    [96] Chiang YC, Chin WT, Huang CC (2021) The application of hollow carbon nanofibers prepared by electrospinning to carbon dioxide capture. J Mater Sci 56: 2490–2502. https://doi.org/10.3390/polym13193275 doi: 10.3390/polym13193275
    [97] Malekmohammadi M, Fatemi S, Razavian M, et al. (2019) A comparative study on ZIF-8 synthesis in aqueous and methanolic solutions: Effect of temperature and ligand content. Solid State Sci 91: 108–112. https://doi.org/10.1016/j.solidstatesciences.2019.03.022 doi: 10.1016/j.solidstatesciences.2019.03.022
    [98] Xian S, Xu F, Ma C, et al. (2015) Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation. Chem Eng J 280: 363–369. https://doi.org/10.1016/j.cej.2015.06.042 doi: 10.1016/j.cej.2015.06.042
    [99] Hao F, Yan XP (2022) Nano-sized zeolite-like metal-organic frameworks induced hematological effects on red blood cell. J Hazard Mater 424: 127353. https://doi.org/10.1016/j.jhazmat.2021.127353 doi: 10.1016/j.jhazmat.2021.127353
    [100] Zheng W, Ding R, Yang K, et al. (2019) ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs. Sep Purif Technol 214: 111–119. https://doi.org/10.1016/j.seppur.2018.04.010 doi: 10.1016/j.seppur.2018.04.010
    [101] Jiang HL, Liu B, Akita T, et al. (2009) Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc 131: 11302–11303. https://doi.org/10.1021/ja9047653 doi: 10.1021/ja9047653
    [102] Kong X, Yu Y, Ma S, et al. (2018) Adsorption mechanism of H2O molecule on the Li4SiO4 (010) surface from first principles. Chem Phys Lett 691: 1–7. https://doi.org/10.1016/j.cplett.2017.10.054 doi: 10.1016/j.cplett.2017.10.054
    [103] Chen B, Yang Z, Zhu Y, et al. (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications J Mater Chem A 2: 16811–16831. https://doi.org/10.1039/C4TA02984D doi: 10.1039/C4TA02984D
    [104] Chiang YC, Chin WT (2022) Preparation of zeolitic imidazolate framework-8-based nanofiber composites for carbon dioxide adsorption. Nanomaterials 12: 1492. https://doi.org/10.3390/nano12091492 doi: 10.3390/nano12091492
    [105] Aulia W, Ahnaf A, Irianto MY, et al. (2020) Synthesis and characterization of zeolitic imidazolate framework-8 (ZIF-8)/Al2O3 composite. IPTEK 31: 18–24. https://doi.org/10.12962/j20882033.v31i1.5511 doi: 10.12962/j20882033.v31i1.5511
    [106] Su Z, Zhang M, Lu Z, et al. (2018) Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability. Cellulose 25: 1997–2008. https://doi.org/10.1007/s10570-018-1696-4 doi: 10.1007/s10570-018-1696-4
    [107] Payra S, Challagulla S, Indukuru RR, et al (2018) The structural and surface modification of zeolitic imidazolate frameworks towards reduction of encapsulated CO2. New J Chem 42: 19205–19213. https://doi.org/10.1039/C8NJ04247K doi: 10.1039/C8NJ04247K
    [108] Chen R, Yao J, Gu Q, et al. (2013) A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem Commun 49: 9500. https://doi.org/10.1039/C3CC44342F doi: 10.1039/C3CC44342F
    [109] Awadallah-F A, Hillman F, Al-Muhtaseb SA, et al. (2019) On the nanogate-opening pressures of copper-doped zeolitic imidazolate framework ZIF-8 for the adsorption of propane, propylene, isobutane, and n-butane. J Mater Sci 54: 5513–5527. https://doi.org/10.1007/s10853-018-03249-y doi: 10.1007/s10853-018-03249-y
    [110] Cho HY, Kim J, Kim SN, et al. (2013) High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Micropor Mesopor Mat 169: 180–184. https://doi.org/10.1016/j.micromeso.2012.11.012 doi: 10.1016/j.micromeso.2012.11.012
    [111] Fu F, Zheng B, Xie LH, et al. (2018) Size-controllable synthesis of zeolitic imidazolate framework/carbon nanotube composites. Crystals 8: 367. https://doi.org/10.3390/cryst8100367 doi: 10.3390/cryst8100367
    [112] Du PD, Hieu NT, Thien TV (2021) Ultrasound-assisted rapid ZIF-8 synthesis, porous ZnO preparation by heating ZIF-8, and their photocatalytic activity. J Nanomater 2021: 9988998. https://doi.org/10.1155/2021/9988998 doi: 10.1155/2021/9988998
    [113] Modi A, Jiang Z, Kasher R (2022) Hydrostable ZIF-8 layer on polyacrylonitrile membrane for efficient treatment of oilfield produced water. Chem Eng J 434: 133513. https://doi.org/10.1016/j.cej.2021.133513 doi: 10.1016/j.cej.2021.133513
    [114] Mphuthi LE, Erasmus E, Langner EHG (2021) Metal exchange of ZIF-8 and ZIF-67 nanoparticles with Fe(Ⅱ) for enhanced photocatalytic performance. ACS Omega 6: 31632–31645. https://doi.org/10.1021/acsomega.1c04142 doi: 10.1021/acsomega.1c04142
    [115] Wu T, Dong J, De France K, et al. (2020) Porous carbon frameworks with high CO2 capture capacity derived from hierarchical polyimide/zeolitic imidazolate frameworks composite aerogels. Chem Eng J 395: 124927. https://doi.org/10.1016/j.cej.2020.124927 doi: 10.1016/j.cej.2020.124927
    [116] Aceituno Melgar VM, Ahn H, Kim J, et al. (2015) Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. J Ind Eng Chem 28: 1–15. https://doi.org/10.1016/j.jiec.2015.03.006 doi: 10.1016/j.jiec.2015.03.006
    [117] Drobek M, Bechelany M, Vallicari C, et al. (2015) An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers. J Membr Sci 475: 39–46. https://doi.org/10.1016/j.memsci.2014.10.011 doi: 10.1016/j.memsci.2014.10.011
    [118] Kenyotha K, Chanapattharapol KC, McCloskey S (2020) Water based synthesis of ZIF-8 assisted by hydrogen bond acceptors and enhancement of CO2 uptake by solvent assisted ligand exchange. Crystals 10: 599. https://doi.org/10.3390/cryst10070599 doi: 10.3390/cryst10070599
    [119] Ding B, Wang X, Xu Y, et al. (2018) Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO2 capture. J Colloid Interface Sci 519: 38–43. https://doi.org/10.1016/j.jcis.2018.02.047 doi: 10.1016/j.jcis.2018.02.047
    [120] Chen Y, Wang B, Zhao L, et al. (2015) New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. J Membr Sci 495: 415–423. https://doi.org/10.1016/j.memsci.2015.08.045 doi: 10.1016/j.memsci.2015.08.045
    [121] McEwen J, Hayman JD, Ozgur Yazaydin A, et al. (2013) A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chem Phys 412: 72–76. https://doi.org/10.1016/j.chemphys.2012.12.012 doi: 10.1016/j.chemphys.2012.12.012
    [122] Papchenko K, Risaliti G, Ferroni M, et al. (2021) An analysis of the effect of ZIF-8 addition on the separation properties of polysulfone at various temperatures. Membranes 11: 427. https://doi.org/10.3390/membranes11060427 doi: 10.3390/membranes11060427
    [123] Ma H, Wang Z, Zhang XF, et al. (2021) In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption. Carbohydr Polym 270: 118376. https://doi.org/10.1016/j.carbpol.2021.118376 doi: 10.1016/j.carbpol.2021.118376
    [124] Korelskiy D, Ye P, Fouladvand S, et al. (2015) Efficient ceramic zeolite membranes for CO2/H2 separation. J Mater Chem A 3: 12500–12506. https://doi.org/10.1039/C5TA02152A doi: 10.1039/C5TA02152A
    [125] Ban Y, Li Y, Peng Y, et al. (2014) Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane-separation properties. Chem Eur J 20: 11402–11409. https://doi.org/10.1002/chem.201402287 doi: 10.1002/chem.201402287
    [126] Al Abdulla S, Sabouni R, Ghommem M, et al. (2023) Synthesis and performance analysis of zeolitic imidazolate frameworks for CO2 sensing applications. Heliyon 9: e21349. https://doi.org/10.1016/j.heliyon.2023.e21349 doi: 10.1016/j.heliyon.2023.e21349
    [127] Wang B, Côté AP, Furukawa H, et al. (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453: 207–211. https://doi.org/10.1038/nature06900 doi: 10.1038/nature06900
    [128] Banerjee R, Phan A, Wang B, et al. (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319: 939–943. https://doi.org/10.1126/science.1152516 doi: 10.1126/science.1152516
    [129] Chen C, Kim J, Yang DA, et al. (2011) Carbon dioxide adsorption over zeolite-like metal-organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect. Chem Eng J 168: 1134–1139. https://doi.org/10.1016/j.cej.2011.01.096 doi: 10.1016/j.cej.2011.01.096
    [130] Shieh FK, Wang SC, Leo SY, et al. (2013) Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chem Eng J 19: 11139–11142 https://doi.org/10.1002/chem.201301560 doi: 10.1002/chem.201301560
    [131] Tien-Binh N, Rodrigue D, Kaliaguine S (2018) In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. J Membr Sci 548: 429–438. https://doi.org/10.1016/j.memsci.2017.11.054 doi: 10.1016/j.memsci.2017.11.054
    [132] Vedrtnam A, Kalauni K, Dubey S, et al. (2020) A comprehensive study on structure, properties, synthesis, and characterization of ferrites. AIMS Mater Sci 7: 800–835. https://doi.org/10.3934/matersci.2020.6.800 doi: 10.3934/matersci.2020.6.800
    [133] Vendite AC, Soares TA, Coutinho K (2022) The effect of surface composition on the selective capture of atmospheric CO2 by ZIF nanoparticles: The case of ZIF-8. J Chem Inf Model 62: 6530–6543. https://doi.org/10.1021/acs.jcim.2c00579 doi: 10.1021/acs.jcim.2c00579
    [134] Railey P, Song Y, Liu T, et al. (2017) Metal-organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater Res Bull 96: 385–394. https://doi.org/10.1016/j.materresbull.2017.04.020 doi: 10.1016/j.materresbull.2017.04.020
    [135] Keskin S, van Heest TM, Sholl DS (2010) Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3: 879–891. https://doi.org/10.1002/cssc.201000114 doi: 10.1002/cssc.201000114
    [136] Abraha YW, Tsai CW, Niemantsverdriet JWH, et al. (2021) Optimized CO2 capture of the zeolitic imidazolate framework ZIF-8 modified by solvent-assisted ligand exchange. ACS Omega 6: 21850–21860. https://doi.org/10.1021/acsomega.1c01130 doi: 10.1021/acsomega.1c01130
    [137] Karagiaridi O, Lalonde MB, Bury W, et al. (2012) Opening ZIF-8: A catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc 134: 18790–18796. https://doi.org/10.1021/ja308786r doi: 10.1021/ja308786r
    [138] Jayachandrababu KC, Sholl DS, Nair S (2017) Structural and mechanistic differences in mixed-linker zeolitic imidazolate framework synthesis by solvent-assisted linker exchange and de novo routes. J Am Chem Soc 139: 5906–5915. https://doi.org/10.1021/jacs.7b01660 doi: 10.1021/jacs.7b01660
    [139] Wang P, Liu J, Liu C, et al. (2016) Electrochemical synthesis and catalytic properties of encapsulated metal clusters within zeolitic imidazolate frameworks. Chem Eur J 22: 16613–16620. https://doi.org/10.1002/chem.201602924 doi: 10.1002/chem.201602924
    [140] Phan A, Doonan CJ, Uribe-Romo FJ, et al. (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43: 58–67. https://doi.org/10.1021/ar900116g doi: 10.1021/ar900116g
    [141] Marti AM, Wickramanayake W, Dahe G, et al. (2017) Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture. ACS Appl Mater Interfaces 9: 5678–5682. https://doi.org/10.1021/acsami.6b15619 doi: 10.1021/acsami.6b15619
    [142] Chen B, Bai F, Zhu Y, et al. (2014) A cost-effective method for the synthesis of zeolitic imidazolate framework-8 materials from stoichiometric precursors via aqueous ammonia modulation at room temperature. Microporous Mesoporous Mater 193: 7–14. https://doi.org/10.1016/j.micromeso.2014.03.006 doi: 10.1016/j.micromeso.2014.03.006
    [143] Lai LS, Yeong YF, Lau KK, et al. (2016) Effect of synthesis parameters on the formation of ZIF-8 under microwave-assisted solvothermal conditions. Procedia Eng 148: 35–42. https://doi.org/10.1016/j.proeng.2016.06.481 doi: 10.1016/j.proeng.2016.06.481
    [144] Jiang S, Liu J, Guan J, et al. (2023) Enhancing CO2 adsorption capacity of ZIF-8 by synergetic effect of high pressure and temperature. Sci Rep 13: 1–10. https://doi.org/10.1038/s41598-023-44960-4 doi: 10.1038/s41598-023-44960-4
    [145] Pouramini Z, Mousavi SM, Babapoor A, et al. (2023) Effect of metal atom in zeolitic imidazolate frameworks. Catalysts 13: 155. https://doi.org/10.3390/catal13010155 doi: 10.3390/catal13010155
    [146] Latrach Z, Moumen E, Kounbach S, et al. (2022) Mixed-ligand strategy for the creation of hierarchical porous ZIF-8 for enhanced adsorption of copper ions. ACS Omega 7: 12345–12354. https://doi.org/10.1021/acsomega.2c00980 doi: 10.1021/acsomega.2c00980
    [147] Hu J, Liu Y, Liu J, et al. (2017) Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: The significant role of functional groups. Fuel 200: 244–251. https://doi.org/10.1016/j.fuel.2017.03.079 doi: 10.1016/j.fuel.2017.03.079
    [148] Liu Y, Kasik A, Linneen N, et al. (2014) Adsorption and diffusion of carbon dioxide on ZIF-68. Chem Eng Sci 118: 32–40. https://doi.org/10.1016/j.ces.2014.07.030 doi: 10.1016/j.ces.2014.07.030
    [149] Liu Y, Liu J, Chang M, et al. (2012) Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks. Fuel 95: 521–527. https://doi.org/10.1016/j.fuel.2011.09.057 doi: 10.1016/j.fuel.2011.09.057
    [150] Gu C, Liu Y, Wang W, et al. (2021) Effects of functional groups for CO2 capture using metal-organic frameworks. Front Chem Sci Eng 15: 437–449 https://doi.org/10.1007/s11705-020-1961-6 doi: 10.1007/s11705-020-1961-6
    [151] Yang F, Ge T, Zhu X, et al. (2022) Study on CO2 capture in humid flue gas using amine-modified ZIF-8. Sep Purif Technol 287: 120535. https://doi.org/10.1016/j.seppur.2022.120535 doi: 10.1016/j.seppur.2022.120535
    [152] Ji Y, Liu X, Li H, et al. (2023) Hydrophobic ZIF-8 covered active carbon for CO2 capture from humid gas. J Ind Eng Chem 121: 331–337. https://doi.org/10.1016/j.jiec.2023.01.036 doi: 10.1016/j.jiec.2023.01.036
    [153] Xu H, Cheng W, Jin X, et al. (2013) Effect of the particle size of quartz powder on the synthesis and CO2 absorption properties of Li4SiO4 at high temperature. Ind Eng Chem Res 52: 1886–1891. https://doi.org/10.1021/ie301178p doi: 10.1021/ie301178p
    [154] Li Z, Cao Z, Grande C, et al. (2021) A phase conversion method to anchor ZIF-8 onto a PAN nanofiber surface for CO2 capture. RSC Adv 12: 664–670. https://doi.org/10.1039/D1RA06480K doi: 10.1039/D1RA06480K
    [155] Åhlén M, Jaworski A, Strømme M, et al. (2021) Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7–8s: The effect of linker substitution on uptake capacity and kinetics. Chem Eng J 422: 130117. https://doi.org/10.1016/j.cej.2021.130117 doi: 10.1016/j.cej.2021.130117
    [156] Asadi E, Ghadimi A, Hosseini SS, et al. (2022) Surfactant-mediated and wet-impregnation approaches for modification of ZIF-8 nanocrystals: Mixed matrix membranes for CO2/CH4 separation. Microporous Mesoporous Mater 329: 111539. https://doi.org/10.1016/j.micromeso.2021.111539 doi: 10.1016/j.micromeso.2021.111539
    [157] Zhang H, Duan C, Li F, et al. (2018) Green and rapid synthesis of hierarchical porous zeolitic imidazolate frameworks for enhanced CO2 capture. Inorg Chim Acta 482: 358–363. https://doi.org/10.1016/j.ica.2018.06.034 doi: 10.1016/j.ica.2018.06.034
    [158] Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, et al. (2012) Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal-organic frameworks. Cryst Growth Des 12: 3489–3498. https://doi.org/10.1021/cg300552w doi: 10.1021/cg300552w
    [159] Zhang X, Yuan N, Chen T, et al. (2022) Fabrication of hydrangea-shaped Bi2WO6/ZIF-8 visible-light responsive photocatalysts for degradation of methylene blue. Chemosphere 307: 135678. https://doi.org/10.1016/j.chemosphere.2022.135949 doi: 10.1016/j.chemosphere.2022.135949
    [160] Liu X, Gao F, Xu J, et al. (2016) Zeolite@mesoporous silica-supported-amine hybrids for the capture of CO2 in the presence of water. Microporous Mesoporous Mater 222: 113–119. https://doi.org/10.1016/j.micromeso.2015.10.006 doi: 10.1016/j.micromeso.2015.10.006
    [161] Sebastián V, Kumakiri I, Bredesen R, et al. (2007) Zeolite membrane for CO2 removal: Operating at high pressure. J Membr Sci 292: 92–97. https://doi.org/10.1016/j.memsci.2007.01.017 doi: 10.1016/j.memsci.2007.01.017
    [162] Erkartal M, Incekara K, Sen U (2022) Synthesis of benzotriazole functionalized ZIF-8 by postsynthetic modification for enhanced CH4 and CO2 uptakes. Inorg Chem Commun 142: 109696. https://doi.org/10.1016/j.inoche.2022.109696 doi: 10.1016/j.inoche.2022.109696
    [163] Bolotov VA, Kovalenko KA, Samsonenko DG, et al. (2018) Enhancement of CO2 uptake and selectivity in a metal–organic framework by the incorporation of thiophene functionality. Inorg Chem 57: 5074–5082. https://doi.org/10.1021/acs.inorgchem.8b00138 doi: 10.1021/acs.inorgchem.8b00138
    [164] Shi GM, Yang T, Chung TS (2012) Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. J Membr Sci 415–416: 577–586. https://doi.org/10.1016/j.memsci.2012.05.052 doi: 10.1016/j.memsci.2012.05.052
    [165] Yang T, Chung TS (2013) High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int J Hydrogen Energy 38: 229–239. https://doi.org/10.1016/j.ijhydene.2012.10.045 doi: 10.1016/j.ijhydene.2012.10.045
    [166] Abdelhamid HN, Mathew AP (2021) In-situ growth of zeolitic imidazolate frameworks into a cellulosic filter paper for the reduction of 4-nitrophenol. Carbohydr Polym 274: 118657. https://doi.org/10.1016/j.carbpol.2021.118657 doi: 10.1016/j.carbpol.2021.118657
    [167] Ding M, Flaig RW, Jiang HL, et al. (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48: 2783–2828. https://doi.org/10.1039/C8CS00829A doi: 10.1039/C8CS00829A
    [168] Liu D, Ma X, Xi H, et al. (2014) Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J Membr Sci 451: 85–93. https://doi.org/10.1016/j.memsci.2013.09.029 doi: 10.1016/j.memsci.2013.09.029
    [169] Reza Abbasi A, Moshtkob A, Shahabadi N, et al. (2019) Synthesis of nano zinc-based metal–organic frameworks under ultrasound irradiation in comparison with solvent-assisted linker exchange: Increased storage of N2 and CO2. Ultrason Sonochem 59: 104729. https://doi.org/10.1016/j.ultsonch.2019.104729 doi: 10.1016/j.ultsonch.2019.104729
    [170] Hu Z, Zhang H, Zhang XF, et al. (2022) Polyethylenimine grafted ZIF-8@cellulose acetate membrane for enhanced gas separation. J Membr Sci 662: 120996. https://doi.org/10.1016/j.memsci.2022.120996 doi: 10.1016/j.memsci.2022.120996
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1479) PDF downloads(93) Cited by(0)

Figures and Tables

Figures(12)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog