Turing instabilities and pattern formation in a benthic nutrient-microorganism system

  • Received: 01 March 2004 Accepted: 29 June 2018 Published: 01 March 2004
  • MSC : 92D25, 92D40.

  • In general, the distributions of nutrients and microorganisms in sediments show complex spatio-temporal patterns, which often cannot be explained as resulting exclusively from the temporal fluctuations of environmental conditions and the inhomogeneity of the studied sediment's material. We studied the dynamics of one population of microorganisms feeding on a nutrient in a simple model, taking into account that the considered bacteria can be in an active or in a dormant state. Using this model, we show that the formation of spatio-temporal patterns can be the consequence of the interaction between predation and transport processes. Employing the model on a two-dimensional vertical domain, we show by simulations which patterns can arise. Depending on the strength of bioirrigation, we observe stripes or "hot spots'' (or "cold spots'') with high (or low) microbiological activity. A detailed study regarding the effect of non-homogeneous (depth dependent) forcing by bioirrigation shows that different patterns can appear in different depths.

    Citation: Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system[J]. Mathematical Biosciences and Engineering, 2004, 1(1): 111-130. doi: 10.3934/mbe.2004.1.111

    Related Papers:

    [1] Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116
    [2] Maya Mincheva, Gheorghe Craciun . Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences and Engineering, 2013, 10(4): 1207-1226. doi: 10.3934/mbe.2013.10.1207
    [3] Xiaomei Bao, Canrong Tian . Turing patterns in a networked vegetation model. Mathematical Biosciences and Engineering, 2024, 21(11): 7601-7620. doi: 10.3934/mbe.2024334
    [4] Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282
    [5] Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247
    [6] Mingzhu Qu, Chunrui Zhang, Xingjian Wang . Analysis of dynamic properties on forest restoration-population pressure model. Mathematical Biosciences and Engineering, 2020, 17(4): 3567-3581. doi: 10.3934/mbe.2020201
    [7] Ranjit Kumar Upadhyay, Swati Mishra . Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Mathematical Biosciences and Engineering, 2019, 16(1): 338-372. doi: 10.3934/mbe.2019017
    [8] Fiona R. Macfarlane, Mark A. J. Chaplain, Tommaso Lorenzi . A hybrid discrete-continuum approach to model Turing pattern formation. Mathematical Biosciences and Engineering, 2020, 17(6): 7442-7479. doi: 10.3934/mbe.2020381
    [9] Rina Su, Chunrui Zhang . The generation mechanism of Turing-pattern in a Tree-grass competition model with cross diffusion and time delay. Mathematical Biosciences and Engineering, 2022, 19(12): 12073-12103. doi: 10.3934/mbe.2022562
    [10] Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818
  • In general, the distributions of nutrients and microorganisms in sediments show complex spatio-temporal patterns, which often cannot be explained as resulting exclusively from the temporal fluctuations of environmental conditions and the inhomogeneity of the studied sediment's material. We studied the dynamics of one population of microorganisms feeding on a nutrient in a simple model, taking into account that the considered bacteria can be in an active or in a dormant state. Using this model, we show that the formation of spatio-temporal patterns can be the consequence of the interaction between predation and transport processes. Employing the model on a two-dimensional vertical domain, we show by simulations which patterns can arise. Depending on the strength of bioirrigation, we observe stripes or "hot spots'' (or "cold spots'') with high (or low) microbiological activity. A detailed study regarding the effect of non-homogeneous (depth dependent) forcing by bioirrigation shows that different patterns can appear in different depths.


  • This article has been cited by:

    1. Martin Baurmann, Thilo Gross, Ulrike Feudel, Instabilities in spatially extended predator–prey systems: Spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations, 2007, 245, 00225193, 220, 10.1016/j.jtbi.2006.09.036
    2. Jian Gao, Changgui Gu, Super Multi-Armed and Segmented Spiral Pattern in a Reaction-Diffusion Model, 2019, 7, 2169-3536, 140391, 10.1109/ACCESS.2019.2943421
    3. Gui-Quan Sun, Guang Zhang, Zhen Jin, Li Li, Predator cannibalism can give rise to regular spatial pattern in a predator–prey system, 2009, 58, 0924-090X, 75, 10.1007/s11071-008-9462-z
    4. Quan-Xing Liu, Zhen Jin, Formation of spatial patterns in an epidemic model with constant removal rate of the infectives, 2007, 2007, 1742-5468, P05002, 10.1088/1742-5468/2007/05/P05002
    5. Luo-Luo Jiang, Tao Zhou, Matjaž Perc, Bing-Hong Wang, Effects of competition on pattern formation in the rock-paper-scissors game, 2011, 84, 1539-3755, 10.1103/PhysRevE.84.021912
    6. Malay Banerjee, 2015, Chapter 8, 978-3-319-17036-7, 257, 10.1007/978-3-319-17037-4_8
    7. Malay Banerjee, Santo Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling–Tanner model, 2012, 236, 00255564, 64, 10.1016/j.mbs.2011.12.005
    8. Malay Banerjee, Syed Abbas, Existence and non-existence of spatial patterns in a ratio-dependent predator–prey model, 2015, 21, 1476945X, 199, 10.1016/j.ecocom.2014.05.005
    9. Subhendu Chakraborty, P.K. Tiwari, S.K. Sasmal, Santanu Biswas, Sabyasachi Bhattacharya, Joydev Chattopadhyay, Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system, 2017, 47, 0307904X, 128, 10.1016/j.apm.2017.03.028
    10. Jocirei D. Ferreira, V. Sree Hari Rao, 2020, Chapter 35, 978-981-15-0421-1, 459, 10.1007/978-981-15-0422-8_35
    11. M. Banerjee, V. Volpert, Prey-predator model with a nonlocal consumption of prey, 2016, 26, 1054-1500, 083120, 10.1063/1.4961248
    12. Ulrike Feudel, 2018, Chapter 15, 978-3-319-64333-5, 179, 10.1007/978-3-319-64334-2_15
    13. Thomas E. Woolley, Andrew L. Krause, Eamonn A. Gaffney, Bespoke Turing Systems, 2021, 83, 0092-8240, 10.1007/s11538-021-00870-y
    14. Subhendu Chakraborty, The influence of generalist predators in spatially extended predator–prey systems, 2015, 23, 1476945X, 50, 10.1016/j.ecocom.2015.06.003
    15. PENG ZHOU, JINGYU WANG, XIAODONG LI, ZHEN JIN, EMERGENCE OF TRAVELING PATTERN IN A PREDATOR–PREY SYSTEM, 2009, 20, 0129-1831, 1861, 10.1142/S0129183109014783
    16. Kunal Chakraborty, Kunal Das, T. K. Kar, Modeling and analysis of a marine plankton system with nutrient recycling and diffusion, 2015, 21, 10762787, 229, 10.1002/cplx.21559
    17. Florian Centler, Ingo Fetzer, Martin Thullner, Modeling population patterns of chemotactic bacteria in homogeneous porous media, 2011, 287, 00225193, 82, 10.1016/j.jtbi.2011.07.024
    18. Martin Thullner, Philippe Van Cappellen, Pierre Regnier, Modeling the impact of microbial activity on redox dynamics in porous media, 2005, 69, 00167037, 5005, 10.1016/j.gca.2005.04.026
    19. Subhendu Chakraborty, P.K. Tiwari, A.K. Misra, J. Chattopadhyay, Spatial dynamics of a nutrient–phytoplankton system with toxic effect on phytoplankton, 2015, 264, 00255564, 94, 10.1016/j.mbs.2015.03.010
    20. Yuval R. Zelnik, Yair Mau, Moshe Shachak, Ehud Meron, Yamir Moreno, High-integrity human intervention in ecosystems: Tracking self-organization modes, 2021, 17, 1553-7358, e1009427, 10.1371/journal.pcbi.1009427
    21. Tahani Alkarkhi, Spatiotemporal Irregularity under Allee Effect on a Predator-Prey Model, 2023, 1556-5068, 10.2139/ssrn.4456101
    22. Kankan Sarkar, Subhas Khajanchi, Spatiotemporal dynamics of a predator-prey system with fear effect, 2023, 00160032, 10.1016/j.jfranklin.2023.05.034
    23. Huimin Zhang, Jian Gao, Changgui Gu, Yongshang Long, Chuansheng Shen, Huijie Yang, Turing-like patterns induced by the competition between two stable states in a discrete-time predator–prey model, 2024, 180, 09600779, 114481, 10.1016/j.chaos.2024.114481
    24. Huimin Zhang, Jian Gao, Changgui Gu, Chuansheng Shen, Huijie Yang, Transition and coexistence of Turing pattern, Turing-like pattern and spiral waves in a discrete-time predator–prey model, 2024, 189, 09600779, 115591, 10.1016/j.chaos.2024.115591
    25. Huimin Zhang, Jian Gao, Changgui Gu, Chuansheng Shen, Huijie Yang, Structure of random Turing-like patterns in discrete-time systems is determined by the initial conditions, 2025, 111, 2470-0045, 10.1103/PhysRevE.111.014206
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4082) PDF downloads(964) Cited by(25)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog