Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Comparing methods for scaling shape similarity

Laboratory for Neurometric Research, Department of Psychology, University of Southern California,Los Angeles, California, USA

  Figure/Table
  Supplementary
  Article Metrics

Citation: Ernest Greene. Comparing methods for scaling shape similarity. AIMS Neuroscience, 2019, 6(2): 54-59. doi: 10.3934/Neuroscience.2019.2.54

References

  • 1. Greene E, Morrison J (2018) Computational scaling of shape similarity that has potential for neuromorphic implementation. IEEE Access 6: 38294–38302.    
  • 2. Kandell DG (1981) The statistics of shape. In: Barnett V ed, Interpreting Multivariate Data, New York: Wiley & Sons, 75–80.
  • 3. Kandell DG (1984) Shape-manifolds, Procrustean metrics and complex projective spaces. Bull Lond Math Soc 16: 81–121.    
  • 4. Kandell DG (1985) Exact distributions for shapes of random triangles in convex sets. Adv App Prob 17: 308–329.    
  • 5. Goodall C (1991) Procrustes methods in the statistical analysis of shape. J Royal Stat Soc B 53: 285–339.
  • 6. Vermeesch P, Garzanti E (2015) Making geological sense of "big data" in sedimentary provenance. Chem Geol 409: 20–27.    
  • 7. Mitteroecker P, Gunz P, Windhager S, et al. (2013) A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix Ital J Mammal 24: 59–66.
  • 8. O'Higgins P (2000) The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. J Anat 197: 203–220.
  • 9. Slice DE (2007) Geometric morphometrics. Ann Rev Anthropol 36: 261–281.    
  • 10. Dryden IL, Mardia KV (2016) Statistical Shape Analysis (2nd Ed), United Kingdom: Wiley & Sons.
  • 11. Greene E, Petel Y (2018) Scan transcription of two-dimensional shapes as an alternative neuromorphic concept. Trends Artific Intell 1: 27–33.
  • 12. Greene E, Hautus MJ (2017) Demonstrating invariant encoding of shapes using a matching judgment protocol. AIMS Neurosci 4: 120–147.    
  • 13. Greene E (2007) Retinal encoding of ultrabrief shape recognition cues. PLoS One 2: e871.    
  • 14. Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative spike latencies. Science 319: 1108–1111.    
  • 15. Ahissar E, Arieli A (2012) Seeing via miniature eye movements: a dynamic hypothesis for vision. Front Comput Neurosci 6: 1–27.
  • 16. Rucci M, Victor JD (2015) The unsteady eye: an information-processing stage, not a bug. Trends Neurosci 38: 195–206.    
  • 17. Greene E (2018) New encoding concepts for shape recognition are needed. AIMS Neurosci 5: 162–178.    

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved