Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation

  • We propose a sharp-interface model which describes rate-independent hysteresis in phase-transforming solids (such as shape memory alloys) by resolving explicitly domain patterns and their dissipative evolution. We show that the governing Gibbs' energy functional is the $\Gamma$-limit of a family of regularized Gibbs' energies obtained through a phase-field approximation. This leads to the convergence of the solution of the quasistatic evolution problem associated with the regularized energy to the one corresponding to the sharp interface model. Based on this convergence result, we propose a numerical scheme which allows us to simulate mechanical experiments for both spatially homogeneous and heterogeneous samples. We use the latter to assess the role that impurities and defects may have in determining the response exhibited by real samples. In particular, our numerical results indicate that small heterogeneities are essential in order to obtain spatially localized nucleation of a new martensitic variant from a pre-existing one in stress-controlled experiments.

    Citation: Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids:Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation[J]. Networks and Heterogeneous Media, 2013, 8(2): 481-499. doi: 10.3934/nhm.2013.8.481

    Related Papers:

    [1] Alina Alb Lupaş, Georgia Irina Oros . Differential sandwich theorems involving Riemann-Liouville fractional integral of $ q $-hypergeometric function. AIMS Mathematics, 2023, 8(2): 4930-4943. doi: 10.3934/math.2023246
    [2] Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor . Fuzzy differential subordination and superordination results for $ q $ -analogue of multiplier transformation. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794
    [3] Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using $ q $-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886
    [4] Ekram E. Ali, Georgia Irina Oros, Abeer M. Albalahi . Differential subordination and superordination studies involving symmetric functions using a $ q $-analogue multiplier operator. AIMS Mathematics, 2023, 8(11): 27924-27946. doi: 10.3934/math.20231428
    [5] Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy $ \mathbf{\gamma } $-convex functions connected with the $ \mathfrak{q} $-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263
    [6] Madan Mohan Soren, Luminiţa-Ioana Cotîrlǎ . Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution. AIMS Mathematics, 2024, 9(8): 21053-21078. doi: 10.3934/math.20241023
    [7] Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, R. Sidaoui, Abdelkader Moumen . Inclusion properties for analytic functions of $ q $-analogue multiplier-Ruscheweyh operator. AIMS Mathematics, 2024, 9(3): 6772-6783. doi: 10.3934/math.2024330
    [8] K. Saritha, K. Thilagavathi . Differential subordination, superordination results associated with Pascal distribution. AIMS Mathematics, 2023, 8(4): 7856-7864. doi: 10.3934/math.2023395
    [9] Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with $ q $-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336
    [10] Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui . Application of subordination and superordination for multivalent analytic functions associated with differintegral operator. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579
  • We propose a sharp-interface model which describes rate-independent hysteresis in phase-transforming solids (such as shape memory alloys) by resolving explicitly domain patterns and their dissipative evolution. We show that the governing Gibbs' energy functional is the $\Gamma$-limit of a family of regularized Gibbs' energies obtained through a phase-field approximation. This leads to the convergence of the solution of the quasistatic evolution problem associated with the regularized energy to the one corresponding to the sharp interface model. Based on this convergence result, we propose a numerical scheme which allows us to simulate mechanical experiments for both spatially homogeneous and heterogeneous samples. We use the latter to assess the role that impurities and defects may have in determining the response exhibited by real samples. In particular, our numerical results indicate that small heterogeneities are essential in order to obtain spatially localized nucleation of a new martensitic variant from a pre-existing one in stress-controlled experiments.


    More and more fields of research have used fractional calculus to develop and find new applications. Similarly, $ q $-calculus is involved in several engineering domains, physics, and in mathematics. The combination of fractional and $ q $-calculus in geometric functions theory and some interesting applications were obtained by Srivastava [1].

    Jackson [2,3] established the $ q $-derivative and the $ q $-integral in the field of mathematical analysis via quantum calculus. The foundations of quantum calculus in the theory of geometric functions were laid by Srivastava [4]. Continued research in this field has led to the obtaining of numerous $ q $-analogue operators, such as the $ q $-analogue of the Sălăgean differential operator [5], giving new applications in [6,7,8]; the $ q $-analogue of the Ruscheweyh differential operator introduced by Răducanu and Kanas [9] and studied by Mohammed and Darus [10] and Mahmood and Sokół [11]; and the $ q $ -analogue of the multiplier transformation [12,13].

    This study involves an operator defined by applying the Riemann-Liouville fractional integral to the $ q $-analogue of the multiplier transformation. Many operators have been defined and studied in recent years by using the Riemann-Liouville or Atagana-Baleanu fractional integrals.

    First, we recall the classically used notations and notions from geometric functions theory.

    Working on the open unit disc $ U = \{z\in \mathbb{C}:|z| < 1\}, $ we establish here the class of analytic functions denoted by $ \mathcal{H}\left(U\right) $ and its subclasses $ \mathcal{H}\left[ a, n\right] $ containing the functions $ f\in \mathcal{H}\left(U\right) $ defined by $ f(z) = a+a_{n}z^{n}+a_{n+1}z^{n+1}+\dots $, with $ z\in U, $ $ a\in \mathbb{C} $, $ n\in \mathbb{N} $, as well as $ \mathcal{A}_{n} $, containing the functions $ f\in \mathcal{H}\left(U\right) $ of the form $ f(z) = z+a_{n+1}z^{n+1}+\dots $, $ z\in U. $ When $ n = 1 $, the notation $ \mathcal{A}_{1} = \mathcal{A} $ is used.

    We also recall the Riemann-Liouville fractional integral definition introduced in [13,15]:

    Definition 1. ([13,15]) The fractional integral of order $ \lambda $ applied to the analytic function $ f $ in a simply-connected region of the $ z $ -plane which contains the origin is defined by

    $ Dλzf(z)=1Γ(λ)z0f(t)(zt)1λdt,
    $

    where $ \lambda > 0 $ and the multiplicity of $ \left(z-t\right) ^{\lambda -1} $ is removed by the condition that $ \log \left(z-t\right) $ is real when $ \left(z-t\right) > 0. $

    The $ q $-analogue of the multiplier transformation is defined below.

    Definition 2 ([13]) The $ q $-analogue of the multiplier transformation, denoted by $ \mathcal{I}_{q}^{m, l}, $ has the following form:

    $ Im,lqf(z)=z+j=2([l+j]q[l+1]q)majzj,
    $

    where $ q\in \left(0, 1\right) $, $ m, l\in \mathbb{R} $, $ l > -1 $, and $ f(z) = z+\sum_{j = 2}^{\infty }a_{j}z^{j}\in \mathcal{A} $, $ z\in U. $

    Remark 1. We notice that $ \underset{q\rightarrow 1}{\lim }\mathcal{I }_{q}^{m, l}f\left(z\right) = \underset{q\rightarrow 1}{\lim }\left(z+\sum_{j = 2}^{\infty }\left(\frac{\left[ l+j\right] _{q}}{\left[ l+1\right] _{q}}\right) ^{m}a_{j}z^{j}\right) = z+\sum_{j = 2}^{\infty }\left(\frac{l+j}{ l+1}\right) ^{m}a_{j}z^{j} $ $ = I\left(m, 1, l\right) $. The operator $ I\left(m, 1, l\right) $ was studied by Cho and Srivastava [16] and Cho and Kim [17]. The operator $ I\left(m, 1, 1\right) $ was studied by Uralegaddi and Somanatha [18], and the operator $ I\left(\alpha, \lambda, 0\right) $ was introduced by Acu and Owa [19]. Cătaş [20] studied the operator $ I_{p}\left(m, \lambda, l\right) $ which generalizes the operator $ I\left(m, \lambda, l\right). $ Alb Lupaş studied the operator $ I\left(m, \lambda, l\right) $ in [21,22,23].

    Now, we introduce definitions from the differential subordination and differential superordination theories.

    Definition 3. ([24]) Between the analytic functions $ f $ and $ g $ there is a differential subordination, denoted $ f\left(z\right) \prec g\left(z\right) $, if there exists $ \omega $, a Schwarz analytic function with the properties $ |\omega (z)| < 1 $, $ z\in U $ and $ \omega (0) = 0 $, such that $ f(z) = g(\omega (z)), $ $ \forall $ $ z\in U $. In the special case where $ g $ is an univalent function in $ U $, the above differential subordination is equivalent to $ f(U)\subset g(U) $ and $ f(0) = g(0) $.

    Definition 4. ([24]) Considering a univalent function $ h $ in $ U $ and $ \psi :\mathbb{C }^{3}\times U\rightarrow \mathbb{C} $, when the analytic function $ p $ satisfies the differential subordination

    $ ψ(p(z),zp(z),z2p(z);z)h(z),  zU,
    $
    (1.1)

    then $ p $ is a solution of the differential subordination. When $ p\prec g $ for all solutions $ p $, the univalent function $ g $ is a dominant of the solutions. A dominant $ \widetilde{g} $ with the property $ \widetilde{g}\prec g $ for every dominant $ g $ is called the best dominant of the differential subordination.

    Definition 5. ([25]) Considering an analytic function $ h $ in $ U $ and $ \varphi : \mathbb{C}^{3}\times \overline{U}\rightarrow \mathbb{C} $, when $ p $ and $ \varphi \left(p\left(z\right), zp^{\prime }\left(z\right), z^{2}p^{\prime \prime }\left(z\right); z\right) $ are univalent functions in $ U $ fulfilling the differential superordination

    $ h(z)φ(p(z),zp(z),z2p(z);z),   
    $
    (1.2)

    then $ p $ is a solution of the differential superordination. When $ g\prec p $ for all solutions $ p $, the analytic function $ g $ is a subordinant of the solutions. A subordinant $ \widetilde{g} $ with the property $ g\prec \widetilde{g} $ for every subordinant $ g $ is called the best subordinant of the differential superordination.

    Definition 6. ([24]) $ Q $ denotes the class of injective functions $ f $ analytic on $ \overline{U}\backslash E\left(f\right) $, with the property $ f^{\prime }\left(\zeta \right) \neq 0 $ for $ \zeta \in \partial U\backslash E\left(f\right) $, when $ E\left(f\right) = \{ \zeta \in \partial U:\underset {z\rightarrow \zeta }{\lim }f\left(z\right) = \infty \}. $

    The obtained results from this paper are constructed based on the following lemmas.

    Lemma 1. ([24]) Considering the univalent function $ g $ in $ U $ and the analytic functions $ \theta $, $ \eta $ in a domain $ D\supset g\left(U\right) $, such that $ \eta \left(w\right) \neq 0, $ $ \forall $ $ w\in g\left(U\right), $ define the functions $ G\left(z\right) = zg^{\prime }\left(z\right) \eta \left(g\left(z\right) \right) $ and $ h\left(z\right) = \theta \left(g\left(z\right) \right) +G\left(z\right) $. Assuming that $ G $ is starlike univalent in $ U $ and $ Re\left(\dfrac{zh^{\prime }\left(z\right) }{G\left(z\right) }\right) > 0, $ $ \forall $ $ z\in U, $ when the analytic function $ p $ having the properties $ p\left(U\right) \subseteq D $ and $ p\left(0\right) = g\left(0\right) $, satisfies the differential subordination $ \theta \left(p\left(z\right) \right) +zp^{\prime }\left(z\right) \eta \left(p\left(z\right) \right) \prec \theta \left(g\left(z\right) \right) +zg^{\prime }\left(z\right) \eta \left(g\left(z\right) \right), $ for $ z\in U, $ then $ p\prec g $ and $ g $ is the best dominant.

    Lemma 2. ([26]) Considering the convex univalent function $ g $ in $ U $ and the analytic functions $ \theta, $ $ \eta $ in a domain $ D\supset g\left(U\right) $, define the function $ G\left(z\right) = zg^{\prime }\left(z\right) \eta \left(g\left(z\right) \right) $. Assuming that $ G $ is starlike univalent in $ U $ and $ Re\left(\dfrac{\theta ^{\prime }\left(g\left(z\right) \right) }{\eta \left(g\left(z\right) \right) }\right) > 0, $ $ \forall $ $ z\in U, $ when $ p\in \mathcal{H}\left[ g\left(0\right), 1\right] \cap Q $, with $ p\left(U\right) \subseteq D $, the function $ \theta \left(p\left(z\right) \right) +zp^{\prime }\left(z\right) \eta \left(p\left(z\right) \right) $ is univalent in $ U $, and the differential superordination $ \theta \left(g\left(z\right) \right) +zg^{\prime }\left(z\right) \eta \left(g\left(z\right) \right) \prec \theta \left(p\left(z\right) \right) +zp^{\prime }\left(z\right) \eta \left(p\left(z\right) \right) $ is satisfied, then $ g\prec p $ and $ g $ is the best subordinant.

    The operator obtained by applying the the Riemann-Liouville fractional integral to the $ q $-analogue of the multiplier transformation is written as follows:

    Definition 7. Let $ q, m, l $ be real numbers, $ q\in \left(0, 1\right) $, $ l > -1 $, and $ \lambda \in \mathbb{N}. $ The fractional integral applied to the $ q $-analogue of the multiplier transformation is defined by

    $ DλzIm,lqf(z)=1Γ(λ)z0Im,lqf(t)(zt)1λdt=
    $
    (2.1)
    $ 1Γ(λ)z0t(zt)1λdt+j=2([l+j]q[l+1]q)majz0tj(zt)1λdt.
    $

    After a laborious computation, we discover that the fractional integral applied to the $ q $-analogue of the multiplier transformation takes the following form:

    $ DλzIm,lqf(z)=1Γ(λ+2)zλ+1+j=2([l+j]q[l+1]q)mΓ(j+1)Γ(j+λ+1)ajzj+λ,
    $
    (2.2)

    when $ f(z) = z+\sum_{j = 2}^{\infty }a_{j}z^{j}\in \mathcal{A} $. We note that $ D_{z}^{-\lambda }\mathcal{I}_{q}^{m, l}f\left(z\right) \in \mathcal{H}\left[ 0, \lambda +1\right]. $

    Remark 2. When $ q\rightarrow 1 $, we obtain the classical case, and the fractional integral applied to the multiplier transformation is defined by

    $ DλzI(m,1,l)f(z)=1Γ(λ)z0I(m,1,l)f(t)(zt)1λdt=
    $
    (2.3)
    $ 1Γ(λ)z0t(zt)1λdt+j=2(l+jl+1)majz0tj(zt)1λdt,
    $

    which, after several calculus can be written in the form

    $ DλzI(m,1,l)f(z)=1Γ(λ+2)zλ+1+j=2(l+jl+1)mΓ(j+1)Γ(j+λ+1)ajzj+λ,
    $
    (2.4)

    when $ f(z) = z+\sum_{j = 2}^{\infty }a_{j}z^{j}\in \mathcal{A} $. We note that $ D_{z}^{-\lambda }I\left(m, 1, l\right) f\left(z\right) \in \mathcal{H}\left[ 0, \lambda +1\right]. $

    The main subordination result product regarding the operator introduced in Definition 7 is exposed in the following theorem:

    Theorem 1. Consider $ f\in \mathcal{A} $ and $ g $ an analytic function univalent in $ U $ with the property that $ g\left(z\right) \neq 0 $, $ \forall $ $ z\in U $, with real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1 $, and $ \lambda, n\in \mathbb{N}. $ Assuming that $ \dfrac{zg^{\prime }\left(z\right) }{ g\left(z\right) } $ is a starlike function univalent in $ U $ and

    $ Re(1+bdg(z)+2cd(g(z))2zg(z)g(z)+zg(z)g(z))>0,
    $
    (2.5)

    for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0 $, $ z\in U, $ denote

    $ ψm,l,qλ(n,a,b,c,d;z):=a+b[DλzIm,lqf(z)z]n+
    $
    (2.6)
    $ c[DλzIm,lqf(z)z]2n+dn[z(DλzIm,lqf(z))DλzIm,lqf(z)1].
    $

    If the differential subordination

    $ ψm,l,qλ(n,a,b,c,d;z)a+bg(z)+c(g(z))2+dzg(z)g(z),
    $
    (2.7)

    is satisfied by the function $ g $, for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ then the differential subordination

    $ (DλzIm,lqf(z)z)ng(z),
    $
    (2.8)

    holds and $ g $ is the best dominant for it.

    Proof. Setting $ p\left(z\right) : = \left(\dfrac{D_{z}^{-\lambda }\mathcal{I} _{q}^{m, l}f\left(z\right) }{z}\right) ^{n} $, $ z\in U $, $ z\neq 0 $, and differentiating with respect to $ z $, we get

    $ p^{\prime }\left( z\right) = n\left( \frac{D_{z}^{-\lambda }\mathcal{I}_{q}^{m,l}f\left( z\right) }{z} \right) ^{n-1}\left[ \frac{\left( D_{z}^{-\lambda }\mathcal{I} _{q}^{m,l}f\left( z\right) \right) ^{\prime }}{z}-\frac{D_{z}^{-\lambda } \mathcal{I}_{q}^{m,l}f\left( z\right) }{z^{2}}\right] = $
    $ n\left( \frac{ D_{z}^{-\lambda }\mathcal{I}_{q}^{m,l}f\left( z\right) }{z}\right) ^{n-1} \frac{\left( D_{z}^{-\lambda }\mathcal{I}_{q}^{m,l}f\left( z\right) \right) ^{\prime }}{z}-\frac{n}{z}p\left( z\right) $

    and

    $ \frac{zp^{\prime }\left( z\right) }{p\left( z\right) } = n\left[ \frac{z\left( D_{z}^{-\lambda } \mathcal{I}_{q}^{m,l}f\left( z\right) \right) ^{\prime }}{D_{z}^{-\lambda } \mathcal{I}_{q}^{m,l}f\left( z\right) }-1\right] . $

    Defining the functions $ \theta $ and $ \eta $ by $ \theta \left(w\right) : = a+bw+cw^{2} $ and $ \eta \left(w\right) : = \frac{d}{w} $, it can be easily certified that $ \theta $ is analytic in $ \mathbb{C} $, $ \eta $ is analytic in $ \mathbb{C}\backslash \{0\} $, and that $ \eta \left(w\right) \neq 0, $ $ w\in \mathbb{C}\backslash \{0\}. $

    Considering the functions $ G\left(z\right) = zg^{\prime }\left(z\right) \eta \left(g\left(z\right) \right) = d\dfrac{zg^{\prime }\left(z\right) }{ g\left(z\right) } $ and

    $ h\left(z\right) = \theta \left(g\left(z\right) \right) +G\left(z\right) = a+bg\left(z\right) +c\left(g\left(z\right) \right) ^{2}+d\dfrac{zg^{\prime }\left(z\right) }{g\left(z\right) } $,

    we deduce that $ G\left(z\right) $ is starlike univalent in $ U $.

    Differentiating the function $ h $ with respect to $ z $ we get

    $ h^{\prime }\left( z\right) = bg^{\prime }\left( z\right) +2cg\left( z\right) g^{\prime }\left( z\right) +d\frac{\left( g^{\prime }\left( z\right) +zg^{\prime \prime }\left( z\right) \right) g\left( z\right) -z\left( g^{\prime }\left( z\right) \right) ^{2}}{\left( g\left( z\right) \right) ^{2}} $

    and

    $ \frac{ zh^{\prime }\left( z\right) }{G\left( z\right) } = \frac{zh^{\prime }\left( z\right) }{d\frac{zg^{\prime }\left( z\right) }{g\left( z\right) }} = 1+ \frac{b}{d}g\left( z\right) +\frac{2c}{d}\left( g\left( z\right) \right) ^{2}-\frac{zg^{\prime }\left( z\right) }{g\left( z\right) }+\frac{zg^{\prime \prime }\left( z\right) }{g^{\prime }\left( z\right) }. $

    The condition

    $ Re\left( \frac{zh^{\prime }\left( z\right) }{G\left( z\right) }\right) = Re\left( 1+\frac{b}{d}g\left( z\right) +\frac{2c}{d}\left( g\left( z\right) \right) ^{2}-\frac{zg^{\prime }\left( z\right) }{g\left( z\right) }+ \frac{zg^{\prime \prime }\left( z\right) }{g^{\prime }\left( z\right) } \right) > 0 $

    is satisfied by relation (2.5), and we deduce that

    $ a+bp\left( z\right) +c\left( p\left( z\right) \right) ^{2}+d\frac{zp^{\prime }\left( z\right) }{p\left( z\right) } = a+b\left[ \frac{D_{z}^{-\lambda } \mathcal{I}_{q}^{m,l}f\left( z\right) }{z}\right] ^{n}+ $
    $ c\left[ \frac{ D_{z}^{-\lambda }\mathcal{I}_{q}^{m,l}f\left( z\right) }{z}\right] ^{2n}+ d\gamma \left[ \frac{z\left( D_{z}^{-\lambda }\mathcal{I}_{q}^{m,l}f\left( z\right) \right) ^{\prime }}{D_{z}^{-\lambda }\mathcal{I}_{q}^{m,l}f\left( z\right) }-1\right] = \psi _{\lambda }^{m,l,q}\left( n,a,b,c,d;z\right), $

    which is the function from relation (2.6).

    Rewriting the differential subordination (2.7), we obtain

    $ a+bp\left( z\right) +c\left( p\left( z\right) \right) ^{2}+d\frac{zp^{\prime }\left( z\right) }{p\left( z\right) }\prec a+bg\left( z\right) +c\left( g\left( z\right) \right) ^{2}+d\frac{zg^{\prime }\left( z\right) }{g\left( z\right) } . $

    The hypothesis of Lemma 1 being fulfilled, we get the conclusion $ p\left(z\right) \prec g\left(z\right) $, written as

    $ \left( \frac{D_{z}^{-\lambda }\mathcal{I}_{q}^{m,l}f\left( z\right) }{z} \right) ^{n}\prec g\left( z\right) $

    and $ g $ is the best dominant.

    Corollary 1. Suppose that the relation (2.5) is fulfilled for real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1 $, and $ \lambda, n \in \mathbb{N } $. If the differential subordination

    $ ψm,l,qλ(n,a,b,c,d;z)a+bαz+1βz+1+c(αz+1βz+1)2+d(αβ)z(αz+1)(βz+1)
    $

    is verified for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ $ -1\leq \beta < \alpha \leq 1 $, and the function $ \psi _{\lambda }^{m, l, q} $ is given by relation (2.6), then the differential subordination

    $ (DλzIm,lqf(z)z)nαz+1βz+1
    $

    is satisfied with the function $ g\left(z\right) = \dfrac{\alpha z+1}{\beta z+1 } $ as the best dominant.

    Proof. Considering in Theorem 1 the function $ g\left(z\right) = \dfrac{\alpha z+1}{\beta z+1} $, with $ -1\leq \beta < \alpha \leq 1, $ the corollary is verified.

    Corollary 2. Assume that relation (2.5) is satisfied for real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1 $, and $ \lambda, n\in \mathbb{N} $. If the differential subordination

    $ ψm,l,qλ(n,a,b,c,d;z)a+b(z+11z)s+c(z+11z)2s+2sdz1z2
    $

    holds for $ a, b, c, d\in \mathbb{C} $, $ 0 < s\leq 1 $, $ d\neq 0, $ and the function $ \psi _{\lambda }^{m, l, q} $ is defined by relation (2.6), then the differential subordination

    $ (DλzIm,lqf(z)z)n(z+11z)s
    $

    is satisfied with the function $ g\left(z\right) = \left(\dfrac{z+1}{1-z} \right) ^{s} $ as the best dominant.{}

    Proof. Considering in Theorem 1 the function $ g\left(z\right) = \left(\dfrac{ z+1}{1-z}\right) ^{s} $, with $ 0 < s\leq 1, $ the corollary is obtained.

    When $ q\rightarrow 1 $ in Theorem 1, we get the classical case:

    Theorem 2. Consider $ f\in \mathcal{A} $ and $ g $ an analytic function univalent in $ U $ with the property that $ g\left(z\right) \neq 0 $, $ \forall $ $ z\in U $, with real numbers $ m, l $, $ l > -1 $, and $ \lambda, n\in \mathbb{N}. $ Assuming that $ \dfrac{zg^{\prime }\left(z\right) }{g\left(z\right) } $ is a starlike function univalent in $ U $ and

    $ Re(1+bdg(z)+2cd(g(z))2zg(z)g(z)+zg(z)g(z))>0,
    $
    (2.9)

    for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0 $, $ z\in U, $ denote

    $ ψm,l,λ(n,a,b,c,d;z):=a+b[DλzI(m,1,l)f(z)z]n+
    $
    (2.10)
    $ c[DλzI(m,1,l)f(z)z]2n+dn[z(DλzI(m,1,l)f(z))DλzI(m,1,l)f(z)1].
    $

    If the differential subordination

    $ ψm,l,λ(n,a,b,c,d;z)a+bg(z)+c(g(z))2+dzg(z)g(z),
    $
    (2.11)

    is satisfied by the function $ g $, for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ then the differential subordination

    $ (DλzI(m,1,l)f(z)z)ng(z)
    $
    (2.12)

    holds and $ g $ is the best dominant for it.

    Proof. The proof of the theorem follows the same steps as the proof of Theorem 1 and it is omitted.

    The corresponding superordination results regarding the operator introduced in Definition 7 are exposed in the following:

    Theorem 3. Consider $ f\in \mathcal{A} $ and $ g $ an analytic function univalent in $ U $ with the properties $ g\left(z\right) \neq 0 $ and $ \dfrac{zg^{\prime }\left(z\right) }{g\left(z\right) } $ is starlike univalent in $ U $, with real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1 $, and $ \lambda, n\in \mathbb{N}. $ Assuming that

    $ Re(2cd(g(z))2+bdg(z))>0,forb,c,dC,d0
    $
    (2.13)

    and the function $ \psi _{\lambda }^{m, l, q}\left(n, a, b, c, d;z\right) $ is defined in relation (2.6), if the differential superordination

    $ a+bg(z)+c(g(z))2+dzg(z)g(z)ψm,l,qλ(n,a,b,c,d;z)
    $
    (2.14)

    is fulfilled for the function $ g $, for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ then the differential superordination

    $ g(z)(DλzIm,lqf(z)z)n
    $
    (2.15)

    holds and $ g $ is the best subordinant for it.

    Proof. Set $ p\left(z\right) : = \left(\frac{D_{z}^{-\lambda }\mathcal{I} _{q}^{m, l}f\left(z\right) }{z}\right) ^{n} $, $ z\in U $, $ z\neq 0 $.

    Defining the functions $ \theta $ and $ \eta $ by $ \theta \left(w\right) : = a+bw+cw^{2} $ and $ \eta \left(w\right) : = \dfrac{d}{w}, $ it is evident that $ \eta \left(w\right) \neq 0 $, $ w\in \mathbb{C}\backslash \{0\} $ and we can certify that $ \theta $ is analytic in $ \mathbb{C} $ and $ \eta $ is analytic in $ \mathbb{C}\backslash \{0\}. $

    With easy computation, we get that

    $ \frac{\theta ^{\prime }\left( g\left( z\right) \right) }{\eta \left( g\left( z\right) \right) } = \frac{g^{\prime }\left( z\right) \left[ b+2cg\left( z\right) \right] g\left( z\right) }{d} $

    and relation (2.13) can be written as

    $ Re\left( \frac{\theta ^{\prime }\left( g\left( z\right) \right) }{\eta \left( g\left( z\right) \right) } \right) = Re\left( \frac{2c}{d}\left( g\left( z\right) \right) ^{2}+\frac{b}{d }g\left( z\right) \right) > 0, $

    for $ b, c, d\in \mathbb{C}, $ $ d\neq 0. $

    Following the same computations as in the proof of Theorem 1, the differential superordination (2.14) can be written as

    $ a+bg(z)+c(g(z))2+dzg(z)g(z)a+bp(z)+c(p(z))2+dzp(z)p(z).
    $

    The hypothesis of Lemma 2 being fulfilled, we obtain the conclusion

    $ g(z)p(z)=(DλzIm,lqf(z)z)n
    $

    and $ g $ is the best subordinant.

    Corollary 3. Assume that relation (2.13) is verified for real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1 $, and $ \lambda, n\in \mathbb{N} $. If the differential superordination

    $ a+bαz+1βz+1+c(αz+1βz+1)2+d(αβ)z(αz+1)(βz+1)ψm,l,qλ(n,a,b,c,d;z)
    $

    is satisfied for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ $ -1\leq \beta < \alpha \leq 1 $, and the function $ \psi _{\lambda }^{m, l, q} $ is defined by the relation (2.6), then the differential superordination

    $ αz+1βz+1(DλzIm,lqf(z)z)n
    $

    holds with the function $ g\left(z\right) = \dfrac{\alpha z+1}{\beta z+1 } $ as the best subordinant.

    Proof. Considering in Theorem 3 the function $ g\left(z\right) = \dfrac{\alpha z+1}{\beta z+1}, $ with $ -1\leq \beta < \alpha \leq 1, $ the corollary is proved.

    Corollary 4. Suppose that relation (2.13) is fulfilled for real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1 $, and $ \lambda, n\in \mathbb{N} $. If the differential superordination

    $ a+b(z+11z)s+c(z+11z)2s+2sdz1z2ψm,l,qλ(n,a,b,c,d;z)
    $

    is satisfied for $ a, b, c, d\in \mathbb{C} $, $ 0 < s\leq 1 $, $ d\neq 0, $ and the function $ \psi _{\lambda }^{m, l, q} $ is given by the relation (2.6), then the differential superordination

    $ (z+11z)s(DλzIm,lqf(z)z)n
    $

    is satisfied with the function $ g\left(z\right) = \left(\dfrac{z+1}{1-z} \right) ^{s} $ as the best subordinant.

    Proof. Considering in Theorem 3 the function $ g\left(z\right) = \left(\dfrac{z+1}{1-z}\right) ^{s} $, with $ 0 < s\leq 1, $ the corollary is obtained.

    When $ q\rightarrow 1 $ in Theorem 3, we get the classical case:

    Theorem 4. Consider $ f\in \mathcal{A} $ and $ g $ an analytic function univalent in $ U $ with the properties $ g\left(z\right) \neq 0 $ and $ \dfrac{zg^{\prime }\left(z\right) }{g\left(z\right) } $ is starlike univalent in $ U $, with real numbers $ m, l $, $ l > -1 $, and $ \lambda, n\in \mathbb{N}. $ Assuming that

    $ Re(2cd(g(z))2+bdg(z))>0,forb,c,dC,d0,
    $
    (2.16)

    and the function $ \psi _{m, l, \lambda }\left(n, a, b, c, d;z\right) $ is defined in relation (2.10), if the differential superordination

    $ a+bg(z)+c(g(z))2+dzg(z)g(z)ψm,l,λ(n,a,b,c,d;z)
    $
    (2.17)

    is fulfilled for the function $ g $, for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ then the differential superordination

    $ g(z)(DλzI(m,1,l)f(z)z)n
    $
    (2.18)

    holds and $ g $ is the best subordinant for it.

    Proof. The proof of the theorem follows the same steps as the proof of Theorem 3 and it is omitted.

    The sandwich-type result is obtained by combining Theorems 1 and 3.

    Theorem 5. Consider $ f\in \mathcal{A} $ and $ g_{1}, $ $ g_{2} $ analytic functions univalent in $ U $ with the properties that $ g_{1}\left(z\right) \neq 0, $ $ g_{2}\left(z\right) \neq 0 $, $ \forall $ $ z\in U $, and, respectively, $ \dfrac{zg_{1}^{\prime }\left(z\right) }{g_{1}\left(z\right) } $, $ \dfrac{zg_{2}^{\prime }\left(z\right) }{g_{2}\left(z\right) } $ are starlike univalent, with real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1 $, and $ \lambda, n\in \mathbb{N}. $ Assuming that relation (2.5) is verified by the function $ g_{1} $ and the relation (2.13) is verified by the function $ g_{2} $, and the function $ \psi _{\lambda }^{m, l, q}\left(n, a, b, c, d;z\right) $ defined by relation (2.6) is univalent in $ U $, if the sandwich-type relation

    $ a+bg1(z)+c(g1(z))2+dzg1(z)g1(z)ψm,l,qλ(n,a,b,c,d;z)a+bg2(z)+c(g2(z))2+dzg2(z)g2(z)
    $

    is satisfied for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ then the below sandwich-type relation

    $ g1(z)(DλzIm,lqf(z)z)ng2(z)
    $

    holds for $ g_{1} $ as the best subordinant and $ g_{2} $ the best dominant.

    Considering in Theorem 5 the functions $ g_{1}\left(z\right) = \dfrac{ \alpha _{1}z+1}{\beta _{1}z+1} $, $ g_{2}\left(z\right) = \dfrac{\alpha _{2}z+1 }{\beta _{2}z+1} $, with $ -1\leq \beta _{2} < \beta _{1} < \alpha _{1} < \alpha _{2}\leq 1 $, the following corollary holds.

    Corollary 5. Suppose that relations (2.5) and (2.13) are fulfilled for real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1, $ and $ \lambda, n\in \mathbb{N} $. If the sandwich-type relation

    $ a+bα1z+1β1z+1+c(α1z+1β1z+1)2+d(α1β1)z(α1z+1)(β1z+1)ψm,l,qλ(n,a,b,c,d;z)
    $
    $ a+bα2z+1β2z+1+cχ(α2z+1β2z+1)2+d(α2β2)z(α2z+1)(β2z+1)
    $

    is satisfied for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ $ -1\leq \beta _{2}\leq \beta _{1} < \alpha _{1}\leq \alpha _{2}\leq 1 $, and the function $ \psi _{\lambda }^{m, l, q} $ is defined by the relation (2.6), then the following sandwich-type relation

    $ α1z+1β1z+1(DλzIm,lqf(z)z)nα2z+1β2z+1
    $

    holds for $ g_{1}\left(z\right) = \dfrac{\alpha _{1}z+1}{\beta _{1}z+1} $ as the best subordinant and $ g_{2}\left(z\right) = \dfrac{\alpha _{2}z+1}{\beta _{2}z+1} $ the best dominant.

    Considering in Theorem 5 the functions $ g_{1}\left(z\right) = \left(\dfrac{z+1}{1-z}\right) ^{s_{1}} $, $ g_{2}\left(z\right) = \left(\dfrac{z+1}{ 1-z}\right) ^{s_{2}} $, with $ 0 < s_{1}, s_{2}\leq 1 $, the following corollary holds.

    Corollary 6. Assume that the relations (2.5) and (2.13) are satisfied for real numbers $ q, m, l $, $ q\in \left(0, 1\right) $, $ l > -1, $ and $ \lambda, n\in \mathbb{N} $. If the sandwich-type relation

    $ a+b(z+11z)s1+c(z+11z)2s1+2s1dz1z2ψm,l,qλ(n,a,b,c,d;z)
    $
    $ a+b(z+11z)s2+v(z+11z)2s2+2s2dz1z2
    $

    holds for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ $ -1\leq \beta _{2}\leq \beta _{1} < \alpha _{1}\leq \alpha _{2}\leq 1 $, and the function $ \psi _{\lambda }^{m, l, q} $ is defined by the relation (2.6), then the following sandwich-type relation

    $ (z+11z)s1(DλzIm,lqf(z)z)n(z+11z)s2
    $

    is satisfied for $ g_{1}\left(z\right) = \left(\dfrac{z+1}{1-z}\right) ^{s_{1}} $ as the best subordinant and $ g_{2}\left(z\right) = \left(\dfrac{z+1}{1-z} \right) ^{s_{2}} $ the best dominant.

    The sandwich-type result is obtained by combining Theorems 2 and 4 for the classical case when $ q\rightarrow 1 $.

    Theorem 6. Consider $ f\in \mathcal{A} $ and $ g_{1}, $ $ g_{2} $ analytic functions univalent in $ U $ with the properties that $ g_{1}\left(z\right) \neq 0, $ $ g_{2}\left(z\right) \neq 0 $, $ \forall $ $ z\in U $, and, respectively, $ \dfrac{ zg_{1}^{\prime }\left(z\right) }{g_{1}\left(z\right) } $, $ \dfrac{ zg_{2}^{\prime }\left(z\right) }{g_{2}\left(z\right) } $ are starlike univalent, with real numbers $ m, l $, $ l > -1 $, and $ \lambda, n\in \mathbb{N}. $ Assuming that relation (2.9) is verified by the function $ g_{1} $ and relation (2.16) is verified by the function $ g_{2} $, and the function $ \psi _{m, l, \lambda }\left(n, a, b, c, d;z\right) $ from relation (2.10) is univalent in $ U $, if the sandwich-type relation

    $ a+bg1(z)+c(g1(z))2+dzg1(z)g1(z)ψm,l,λ(n,a,b,c,d;z)a+bg2(z)+c(g2(z))2+dzg2(z)g2(z),
    $

    is satified for $ a, b, c, d\in \mathbb{C} $, $ d\neq 0, $ then the below sandwich-type relation

    $ g1(z)(DλzI(m,1,l)f(z)z)ng2(z)
    $

    holds for $ g_{1} $ as the best subordinant and $ g_{2} $ the best dominant.

    The results presented in this paper are determined as applications of fractional calculus combined with $ q $-calculus in geometric functions theory. We obtain a new operator described in Definition 7 by applying a fractional integral to the $ q $-analogue of the multiplier transformation. The new fractional $ q $-analogue of the multiplier transformation operator introduced in this paper yields new subordination and superordination results.

    The subordination theory used in Theorem 1 gives the best dominant of the differential subordination and, considering well-known functions in geometric functions theory as the best dominant, some illustrative corollaries are obtained. Using the duality, the superordination theory used in Theorem 3 gives the best subordinant of the differential superordination, and illustrative corollaries are established taking the same well-known functions. Combining Theorem 1 and Theorem 3, we present a sandwich-type theorem involving the two dual theories of differential subordination and superordination. Considering the functions studied in the previous corollaries, we establish the other sandwich-type results. The classical case when $ q\rightarrow 1 $ is also presented.

    For future studies, using the fractional integral of the $ q $-analogue of the multiplier transformation introduced in this paper, and following [27] and [28], we can define $ q $- subclasses of univalent functions and study some properties, such as coefficient estimates, closure theorems, distortion theorems, neighborhoods, radii of starlikeness, convexity, and close-to-convexity of functions belonging to the defined subclass.

    The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

    The publication of this research was supported by the University of Oradea, Romania and Mustansiriyah University (www.uomustansiriyah.edu.iq) in Baghdad, Iraq. All thanks to their support.

    The authors declare that they have no conflicts of interest.

    [1] G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis, Arch. Rat. Mech. Anal., 202 (2011), 295-348. doi: 10.1007/s00205-011-0427-x
    [2] L. Ambrosio, Metric space valued functions of bounded variations, Ann. Scuola Normale Sup. Pisa Cl. Sci. (4), 17 (1990), 439-478.
    [3] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 67-90.
    [4] S. Baldo and G. Belletini, $\Gamma$-convergence and numerical analysis: An application to the minimal partition problem, Ricerche Mat., 40 (1991), 33-64.
    [5] H. Ben Belgacem, S. Conti, A. DeSimone and S. Müller, Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates, Journal of Nonlinear Science, 10 (2000), 661-683. doi: 10.1007/s003320010007
    [6] B. Benešová, Global optimization numerical strategies for rate-independent processes, J. Global Optim., 50 (2011), 197-220. doi: 10.1007/s10898-010-9560-6
    [7] W. F. Brown, Virtues and weaknesses of the domain concept, Revs. Mod. Physics, 17 (1945), 15-19.
    [8] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. Scientific Computing, 16 (1995), 1190-1208. doi: 10.1137/0916069
    [9] C. Collins, D. Kinderlehrer and M. Luskin, Numerical approximation of the solution of a variational problem with a double well potential, SIAM J. Num. Anal., 28 (1991), 321-332. doi: 10.1137/0728018
    [10] R. Conti, C. Tamagnini and A. DeSimone, Critical softening in Cam-Clay plasticity: Adaptive viscous regularization, dilated time and numerical integration across stress-strain jump discontinuities, Comput. Methods Appl. Mech. Engrg., 258 (2013), 118-133. doi: 10.1016/j.cma.2013.02.002
    [11] J. Cooper, "Working Analysis," Elsevier Academic Press, 2005. doi: 10.1249/00005768-199205001-00495
    [12] G. Dal Maso, "An Introduction to $\Gamma$-Convegence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8
    [13] G. Dal Maso and A. DeSimone, Quasistatic evolution for Cam-Clay plasticity: Examples of spatially homogeneous solutions, Math. Model. Meth. Appl. Sci., 19 (2009), 1643-1711. doi: 10.1142/S0218202509003942
    [14] G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening, Arch. Rat. Mech. Anal., 189 (2008), 469-544. doi: 10.1007/s00205-008-0117-5
    [15] G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: A weak formulation via viscoplastic regularization and time rescaling, Calc. Var. PDE, 40 (2011), 125-181. doi: 10.1007/s00526-010-0336-0
    [16] G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solutions, Calc. Var. PDE, 44 (2012), 495-541. doi: 10.1007/s00526-011-0443-6
    [17] R. Delville, R. D. James, U. Salman, A. Finel and D. Schryvers, Transmission electron microscopy study of low-hysteresis shape memory alloys, in "Proceedings of ESOMAT 2009," 2009. doi: 10.1051/esomat/200902005
    [18] A. DeSimone, Hysteresis and imperfection sensitivity in small ferromagnetic particles, Meccanica, 30 (1995), 591-603. doi: 10.1007/BF01557087
    [19] A. DeSimone, N. Grunewald and F. Otto, A new model for contact angle hysteresis, Netw. Heterog. Media, 2 (2007), 211-225. doi: 10.3934/nhm.2007.2.211
    [20] A. DeSimone and L. Teresi, Elastic energies for nematic elastomers, Europ. Phys. J. E, 29 (2009), 191-204. doi: 10.1140/epje/i2009-10467-9
    [21] L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
    [22] H. Garcke, "On Mathematical Models for Phase Separation in Elastically Stressed Solids," Habilitation Thesis, University of Bonn, Bonn, 2000.
    [23] P. Germain, Q. Nguyen and P. Suquet, Continuum thermodynamics, J. Applied Mechanics, 50 (1983), 1010-1020. doi: 10.1115/1.3167184
    [24] L. Fedeli, A. Turco and A. DeSimone, Metastable equilibria of capillary drops on solid surfaces: A phase field approach, Cont. Mech. Thermodyn., 23 (2011), 453-471. doi: 10.1007/s00161-011-0189-6
    [25] G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91. doi: 10.1515/CRELLE.2006.044
    [26] R. D. James, Hysteresis in phase transformations, in "ICIAM 95" (Hamburg, 1995), Math. Res., 87, Akademie Verlag, Berlin, (1996), 133-154.
    [27] L. Juhász, H. Andrä and O. Hesebeck, A simple model for shape memory alloys under multi-axial non-proportional loading, in "Smart Materials" (ed. K.-H. Hoffmann), Proceedings of the 1st Caesarium, Springer, Berlin, (2000), 51-66.
    [28] M. Kružík and M. Luskin, The computation of martensitic microstructure with piecewise laminates, Journal of Scientific Computing, 19 (2003), 293-308. doi: 10.1023/A:1025364227563
    [29] M. Kružík, A. Mielke and T. Roubíček, Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi, Meccanica, 40 (2005), 389-418. doi: 10.1007/s11012-005-2106-1
    [30] M. Kružík and F. Otto, A phenomenological model for hysteresis in polycrystalline shape memory alloys, ZAMM Z. Angew. Math. Mech., 84 (2004), 835-842. doi: 10.1002/zamm.200310139
    [31] S. Leclerq, G. Bourbon and C. Lexcellent, Plasticity like model of martensite phase transition in shape memory alloys, J. Physique IV France, 5 (1995), 513-518. doi: 10.1051/jp4:1995279
    [32] S. Leclerq and C. Lexcellent, A general macroscopic description of thermomechanical behavior of shape memory alloys, J. Mech. Phys. Solids, 44 (1996), 953-980. doi: 10.1016/0022-5096(96)00013-0
    [33] C. Lexcellent, S. Moyne, A. Ishida and S. Miyazaki, Deformation behavior associated with stress-induced martensitic transformation in Ti-Ni thin films and their thermodynamical modelling, Thin Solid Films, 324 (1998), 184-189. doi: 10.1016/S0040-6090(98)00352-6
    [34] A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var., 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4
    [35] A. Mielke and F. Theil, Mathematical model for rate-independent phase transformations, in "Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering" (eds. H.-D. Alber, R. Balean and R. Farwig), Shaker-Verlag, Aachen, (1999), 117-129.
    [36] A. Mielke and F. Theil, On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl., 11 (2004), 151-189. doi: 10.1007/s00030-003-1052-7
    [37] A. Mielke, F. Theil and V. Levitas, A variational formulation of rate-independent phase transformations using extremum principle, Arch. Rat. Mech. Anal., 162 (2002), 137-177. doi: 10.1007/s002050200194
    [38] I. Müller, Modelling and simulation of phase transition in shape memory metals, in "Smart Materials" (ed. K.-H. Hoffmann), Proceedings of the 1st Caesarium, Springer, Berlin, (2000), 97-114.
    [39] F. Nishimura, T. Hayashi, C. Lexcellent and K. Tanaka, Phenomenological analysis of subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads, Mech. of Mat., 19 (1995), 281-292.
    [40] T. Roubíček, Evolution model for martensitic phase transformation in shape-memory alloys, Interfaces and Free Boundaries, 4 (2002), 111-136. doi: 10.4171/IFB/55
    [41] Y. C. Shu and J. H. Yen, Multivariant model of martensitic microstructure in thin films, Acta Materialia, 56 (2008), 3969-3981. doi: 10.1016/j.actamat.2008.04.018
    [42] M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Discr. Cont. Dyn. Syst. Ser. S, 6 (2013), 235-255. doi: 10.3934/dcdss.2013.6.235
    [43] J. M. T. Thomson and G. W. Hunt, "Elastic Instability Phenomena," J. Wiley and Sons, Chichester, 1984.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3463) PDF downloads(59) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog