Loading [MathJax]/jax/output/SVG/jax.js

Vertex control of flows in networks

  • Received: 01 April 2008 Revised: 01 June 2008
  • 34B45, 93B05, 47N70

  • We study a transport equation in a network and control it in a single vertex. We describe all possible reachable states and prove a criterion of Kalman type for those vertices in which the problem is maximally controllable. The results are then applied to concrete networks to show the complexity of the problem.

    Citation: Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya. Vertex control of flows in networks[J]. Networks and Heterogeneous Media, 2008, 3(4): 709-722. doi: 10.3934/nhm.2008.3.709

    Related Papers:

    [1] Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya . Vertex control of flows in networks. Networks and Heterogeneous Media, 2008, 3(4): 709-722. doi: 10.3934/nhm.2008.3.709
    [2] Christian Budde, Marjeta Kramar Fijavž . Bi-Continuous semigroups for flows on infinite networks. Networks and Heterogeneous Media, 2021, 16(4): 553-567. doi: 10.3934/nhm.2021017
    [3] Klaus-Jochen Engel, Marjeta Kramar FijavŽ . Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12(2): 319-337. doi: 10.3934/nhm.2017014
    [4] Fabio Camilli, Raul De Maio, Andrea Tosin . Transport of measures on networks. Networks and Heterogeneous Media, 2017, 12(2): 191-215. doi: 10.3934/nhm.2017008
    [5] Luca Di Persio, Giacomo Ziglio . Gaussian estimates on networks with applications to optimal control. Networks and Heterogeneous Media, 2011, 6(2): 279-296. doi: 10.3934/nhm.2011.6.279
    [6] Zhong-Jie Han, Gen-Qi Xu . Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks and Heterogeneous Media, 2010, 5(2): 315-334. doi: 10.3934/nhm.2010.5.315
    [7] Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267
    [8] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
    [9] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [10] András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43
  • We study a transport equation in a network and control it in a single vertex. We describe all possible reachable states and prove a criterion of Kalman type for those vertices in which the problem is maximally controllable. The results are then applied to concrete networks to show the complexity of the problem.


  • This article has been cited by:

    1. Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi, Approximate controllability of network systems, 2021, 10, 2163-2480, 749, 10.3934/eect.2020091
    2. Mauro Garavello, Benedetto Piccoli, Time-varying Riemann solvers for conservation laws on networks, 2009, 247, 00220396, 447, 10.1016/j.jde.2008.12.017
    3. Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž, Asymptotic periodicity of flows in time-depending networks, 2013, 8, 1556-181X, 843, 10.3934/nhm.2013.8.843
    4. Christian Budde, Marjeta Kramar Fijavž, Bi-Continuous semigroups for flows on infinite networks, 2021, 16, 1556-1801, 553, 10.3934/nhm.2021017
    5. B. Dorn, M. Kramar Fijavž, R. Nagel, A. Radl, The semigroup approach to transport processes in networks, 2010, 239, 01672789, 1416, 10.1016/j.physd.2009.06.012
    6. Marjeta Kramar Fijavž, Aleksandra Puchalska, Semigroups for dynamical processes on metric graphs, 2020, 378, 1364-503X, 20190619, 10.1098/rsta.2019.0619
    7. Fabio Bagagiolo, Dario Bauso, Rosario Maggistro, Marta Zoppello, Game Theoretic Decentralized Feedback Controls in Markov Jump Processes, 2017, 173, 0022-3239, 704, 10.1007/s10957-017-1078-3
    8. Georges Bastin, Jean-Michel Coron, 2016, Chapter 3, 978-3-319-32060-1, 85, 10.1007/978-3-319-32062-5_3
    9. Klaus-Jochen Engel, Marjeta Kramar Fijavž, Bernd Klöss, Rainer Nagel, Eszter Sikolya, Maximal Controllability for Boundary Control Problems, 2010, 62, 0095-4616, 205, 10.1007/s00245-010-9101-1
    10. Klaus-Jochen Engel, Marjeta Kramar FijavŽ, Exact and positive controllability of boundary control systems, 2017, 12, 1556-181X, 319, 10.3934/nhm.2017014
    11. Georges Bastin, Jean-Michel Coron, Exponential stability of networks of density-flow conservation laws under PI boundary control, 2013, 46, 14746670, 221, 10.3182/20130925-3-FR-4043.00029
    12. Fabio Bagagiolo, Rosario Maggistro, Hybrid Thermostatic Approximations of Junctions for Some Optimal Control Problems on Networks, 2019, 57, 0363-0129, 2415, 10.1137/17M111907X
    13. Mohamed El Azzouzi, Hammadi Bouslous, Lahcen Maniar, Said Boulite, Constrained approximate controllability of boundary control systems, 2016, 33, 0265-0754, 669, 10.1093/imamci/dnv002
    14. Hans Zwart, Yann Le Gorrec, Bernhard Maschke, Javier Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, 2010, 16, 1292-8119, 1077, 10.1051/cocv/2009036
    15. Yves Achdou, Salomé Oudet, Nicoletta Tchou, Hamilton–Jacobi equations for optimal control on junctions and networks, 2015, 21, 1292-8119, 876, 10.1051/cocv/2014054
    16. Georges Bastin, Jean-Michel Coron, Simona Oana Tamasoiu, Stability of linear density-flow hyperbolic systems under PI boundary control, 2015, 53, 00051098, 37, 10.1016/j.automatica.2014.12.025
    17. Fabio Camilli, Raul De Maio, Andrea Tosin, Transport of measures on networks, 2017, 12, 1556-181X, 191, 10.3934/nhm.2017008
    18. Manh Khang Dao, Hamilton-Jacobi equations for optimal control on networks with entry or exit costs, 2019, 25, 1292-8119, 15, 10.1051/cocv/2018003
    19. Klaus-Jochen Engel, Generator property and stability for generalized difference operators, 2013, 13, 1424-3199, 311, 10.1007/s00028-013-0179-1
    20. Yves Achdou, Fabio Camilli, Alessandra Cutrì, Nicoletta Tchou, Hamilton–Jacobi equations constrained on networks, 2013, 20, 1021-9722, 413, 10.1007/s00030-012-0158-1
    21. Alexander Dobrick, On the asymptotic behaviour of semigroups for flows in infinite networks, 2022, 104, 0037-1912, 256, 10.1007/s00233-021-10250-6
    22. Fabio Camilli, Claudio Marchi, Dirk Schieborn, The vanishing viscosity limit for Hamilton–Jacobi equations on networks, 2013, 254, 00220396, 4122, 10.1016/j.jde.2013.02.013
    23. Atte Aalto, Jarmo Malinen, Compositions of passive boundary control systems, 2013, 3, 2156-8499, 1, 10.3934/mcrf.2013.3.1
    24. Yves Achdou, Nicoletta Tchou, Hamilton-Jacobi Equations on Networks as Limits of Singularly Perturbed Problems in Optimal Control: Dimension Reduction, 2015, 40, 0360-5302, 652, 10.1080/03605302.2014.974764
    25. Christian Budde, Bálint Farkas, A Desch–Schappacher perturbation theorem for bi‐continuous semigroups, 2020, 293, 0025-584X, 1053, 10.1002/mana.201800534
    26. Klaus-Jochen Engel, Marjeta Kramar Fijavž, Flows on metric graphs with general boundary conditions, 2022, 513, 0022247X, 126214, 10.1016/j.jmaa.2022.126214
    27. Mohamed El Azzouzi, Abdellah Lourini, Mohamed Laabissi, Null Controllability of Networks Systems, 2022, 1079-2724, 10.1007/s10883-022-09623-z
    28. Fu Zheng, 2010, Well-posedness of flows in networks with output, 978-1-4244-6791-4, 98, 10.1109/ISKE.2010.5680803
    29. Bernd Klöss, Difference operators as semigroup generators, 2010, 81, 0037-1912, 461, 10.1007/s00233-010-9232-3
    30. Cyril Imbert, Régis Monneau, Hasnaa Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, 2013, 19, 1292-8119, 129, 10.1051/cocv/2012002
    31. Marjeta Kramar Fijavž, Delio Mugnolo, Serge Nicaise, Linear hyperbolic systems on networks: well-posedness and qualitative properties, 2021, 27, 1292-8119, 7, 10.1051/cocv/2020091
    32. Thami Akrid, Mahmoud Baroun,
    μ
    -Pseudo almost periodic solutions to some semilinear boundary equations on networks, 2024, 35, 1012-9405, 10.1007/s13370-023-01148-3
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3725) PDF downloads(262) Cited by(32)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog