Loading [MathJax]/jax/output/SVG/jax.js

On Lyapunov stability of linearised Saint-Venant equations for a sloping channel

  • Received: 01 October 2008 Revised: 01 January 2009
  • Primary: 58F15, 58F17; Secondary: 53C35.

  • We address the issue of the exponential stability (in L2-norm) of the classical solutions of the linearised Saint-Venant equations for a sloping channel. We give an explicit sufficient dissipative condition which guarantees the exponential stability under subcritical flow conditions without additional assumptions on the size of the bottom and friction slopes. The stability analysis relies on the same strict Lyapunov function as in our previous paper [5]. The special case of a single pool is first treated. Then, the analysis is extended to the case of the boundary feedback control of a general channel with a cascade of n pools.

    Citation: Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel[J]. Networks and Heterogeneous Media, 2009, 4(2): 177-187. doi: 10.3934/nhm.2009.4.177

    Related Papers:

    [1] Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel . On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 2009, 4(2): 177-187. doi: 10.3934/nhm.2009.4.177
    [2] Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267
    [3] Nadia Bedjaoui, Erik Weyer, Georges Bastin . Methods for the localization of a leak in open water channels. Networks and Heterogeneous Media, 2009, 4(2): 189-210. doi: 10.3934/nhm.2009.4.189
    [4] Xavier Litrico, Vincent Fromion . Modal decomposition of linearized open channel flow. Networks and Heterogeneous Media, 2009, 4(2): 325-357. doi: 10.3934/nhm.2009.4.325
    [5] Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec . A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks and Heterogeneous Media, 2009, 4(2): 249-266. doi: 10.3934/nhm.2009.4.249
    [6] Maya Briani, Benedetto Piccoli . Fluvial to torrential phase transition in open canals. Networks and Heterogeneous Media, 2018, 13(4): 663-690. doi: 10.3934/nhm.2018030
    [7] Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie . A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11(1): 1-27. doi: 10.3934/nhm.2016.11.1
    [8] Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel . Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2(4): 751-759. doi: 10.3934/nhm.2007.2.751
    [9] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013
    [10] Seung-Yeal Ha, Shi Jin, Jinwook Jung . A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks and Heterogeneous Media, 2019, 14(2): 317-340. doi: 10.3934/nhm.2019013
  • We address the issue of the exponential stability (in L2-norm) of the classical solutions of the linearised Saint-Venant equations for a sloping channel. We give an explicit sufficient dissipative condition which guarantees the exponential stability under subcritical flow conditions without additional assumptions on the size of the bottom and friction slopes. The stability analysis relies on the same strict Lyapunov function as in our previous paper [5]. The special case of a single pool is first treated. Then, the analysis is extended to the case of the boundary feedback control of a general channel with a cascade of n pools.


  • This article has been cited by:

    1. Mamadou Diagne, Shu-Xia Tang, Ababacar Diagne, Miroslav Krstic, Control of shallow waves of two unmixed fluids by backstepping, 2017, 44, 13675788, 211, 10.1016/j.arcontrol.2017.09.003
    2. Georges Bastin, Jean-Michel Coron, Amaury Hayat, Peipei Shang, Boundary feedback stabilization of hydraulic jumps, 2019, 7, 24686018, 100026, 10.1016/j.ifacsc.2019.100026
    3. Ben Mansour Dia, Exponential stability of shallow water equations with arbitrary time dependent action, 2014, 2, 2195-268X, 247, 10.1007/s40435-014-0056-y
    4. Mathias Dus, Francesco Ferrante, Christophe Prieur, Spectral stabilization of linear transport equations with boundary and in-domain couplings, 2022, 360, 1778-3569, 219, 10.5802/crmath.288
    5. Simone Göttlich, Peter Schillen, Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization, 2017, 35, 09473580, 11, 10.1016/j.ejcon.2017.02.002
    6. Rasha Al Jamal, Nejib Smaoui, A single bounded input‐feedback control to the generalized Korteweg–de Vries–Burgers–Kuramoto–Sivashinsky equation, 2023, 46, 0170-4214, 2222, 10.1002/mma.8640
    7. Felipe Castillo, Emmanuel Witrant, Christophe Prieur, Vincent Talon, Luc Dugard, Fresh Air Fraction Control in Engines Using Dynamic Boundary Stabilization of LPV Hyperbolic Systems, 2015, 23, 1063-6536, 963, 10.1109/TCST.2014.2356858
    8. Alexandre Janon, Maëlle Nodet, Christophe Prieur, Clémentine Prieur, Global sensitivity analysis for the boundary control of an open channel, 2016, 28, 0932-4194, 10.1007/s00498-015-0151-4
    9. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    10. Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang, Probabilistic constrained optimization on flow networks, 2022, 23, 1389-4420, 1, 10.1007/s11081-021-09619-x
    11. R. Aloev, I. Abdullah, A. Akbarova, S. H. Juraev, 2023, 2484, 0094-243X, 030011, 10.1063/5.0112851
    12. Serge Nicaise, Stability results of some first order viscous hyperbolic systems, 2019, 25, 1292-8119, 33, 10.1051/cocv/2018020
    13. Iasson Karafyllis, Miroslav Krstic, 2022, Spill-Free Transfer and Stabilization of Viscous Liquid, 978-1-6654-5196-3, 2385, 10.23919/ACC53348.2022.9867470
    14. Enrique Zuazua, 2013, Chapter 9, 978-3-642-32159-7, 463, 10.1007/978-3-642-32160-3_9
    15. Dong-Xia Zhao, Jun-Min Wang, 2013, On the stabilization of an irrigation channel with a cascade of 2 pools: A linearized case, 978-1-4673-5769-2, 1, 10.1109/ASCC.2013.6606160
    16. Rasha al Jamal, Kirsten Morris, 2015, Distributed control of the Kuramoto-Sivashinsky equation using approximations, 978-1-4799-8684-2, 3322, 10.1109/ACC.2015.7171845
    17. Iasson Karafyllis, Miroslav Krstic, Spill-Free Transfer and Stabilization of Viscous Liquid, 2022, 67, 0018-9286, 4585, 10.1109/TAC.2022.3162551
    18. Mapundi K. Banda, Gediyon Y. Weldegiyorgis, Numerical boundary feedback stabilisation of non-uniform hyperbolic systems of balance laws, 2020, 93, 0020-7179, 1428, 10.1080/00207179.2018.1509133
    19. Van Thang Pham, Didier Georges, Gildas Besancon, 2012, Predictive Control with terminal constraint for 2×2 hyperbolic systems of conservation laws, 978-1-4673-2066-5, 6412, 10.1109/CDC.2012.6426538
    20. Markus Dick, Martin Gugat, Gunter Leugering, 2012, Feedback stabilization of quasilinear hyperbolic systems with varying delays, 978-1-4673-2124-2, 125, 10.1109/MMAR.2012.6347931
    21. Georges Bastin, Jean-Michel Coron, Simona Oana Tamasoiu, Stability of linear density-flow hyperbolic systems under PI boundary control, 2015, 53, 00051098, 37, 10.1016/j.automatica.2014.12.025
    22. Mathias Dus, The discretized backstepping method: An application to a general system of 2×2 linear balance laws, 2023, 13, 2156-8472, 500, 10.3934/mcrf.2022006
    23. Boussad Hamroun, Alexandru Dimofte, Laurent Lefèvre, Eduardo Mendes, Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations, 2010, 16, 09473580, 545, 10.3166/ejc.16.545-563
    24. Felipe Castillo, Emmanuel Witrant, Christophe Prieur, Luc Dugard, 2016, Chapter 9, 978-3-319-26367-0, 169, 10.1007/978-3-319-26369-4_9
    25. Mouhamadou Samsidy Goudiaby, Abdou Sene, Gunilla Kreiss, A delayed feedback control for network of open canals, 2013, 1, 2195-268X, 316, 10.1007/s40435-013-0028-7
    26. Van Thang Pham, Didier Georges, Gildas Besançon, Infinite-Dimensional Predictive Control for Hyperbolic Systems, 2014, 52, 0363-0129, 3592, 10.1137/110838200
    27. Martin Gugat, Vincent Perrollaz, Lionel Rosier, Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms, 2018, 18, 1424-3199, 1471, 10.1007/s00028-018-0449-z
    28. Pierre-Olivier Lamare, Antoine Girard, Christophe Prieur, Switching Rules for Stabilization of Linear Systems of Conservation Laws, 2015, 53, 0363-0129, 1599, 10.1137/140953952
    29. Alexandre Janon, Maelle Nodet, Christophe Prieur, Clementine Prieur, 2014, Global sensitivity analysis for the boundary control of an open channel, 978-1-4673-6090-6, 589, 10.1109/CDC.2014.7039445
    30. Genqi Xu, Min Li, Stability of Wave Networks on Elastic and Viscoelastic Media, 2021, 175, 0167-8019, 10.1007/s10440-021-00437-y
    31. Christophe Prieur, Aneel Tanwani, 2017, Chapter 8, 978-3-319-51297-6, 201, 10.1007/978-3-319-51298-3_8
    32. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 2, 978-3-030-93014-1, 5, 10.1007/978-3-030-93015-8_2
    33. Vincent Perrollaz, Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law, 2013, 30, 0294-1449, 879, 10.1016/j.anihpc.2012.12.003
    34. Ngoc-Tu Trinh, Vincent Andrieu, Cheng-Zhong Xu, Boundary PI controllers for a star-shaped network of 2 × 2 systems governed by hyperbolic partial differential equations, 2017, 50, 24058963, 7070, 10.1016/j.ifacol.2017.08.1354
    35. Peng Qu, Time-periodic solutions to quasilinear hyperbolic systems with time-periodic boundary conditions, 2020, 139, 00217824, 356, 10.1016/j.matpur.2019.10.010
    36. Georges Bastin, Jean-Michel Coron, Further results on boundary feedback stabilisation of 2 × 2 hyperbolic systems over a bounded interval, 2010, 43, 14746670, 1081, 10.3182/20100901-3-IT-2016.00167
    37. Martin Gugat, Rüdiger Schultz, Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data, 2018, 56, 0363-0129, 1491, 10.1137/16M1090156
    38. Ngoc-Tu Trinh, Vincent Andrieu, Cheng-Zhong Xu, Output regulation for a cascaded network of 2 × 2 hyperbolic systems with PI controller, 2018, 91, 00051098, 270, 10.1016/j.automatica.2018.01.010
    39. Martin Gugat, Falk M. Hante, On the Turnpike Phenomenon for Optimal Boundary Control Problems with Hyperbolic Systems, 2019, 57, 0363-0129, 264, 10.1137/17M1134470
    40. F. Castillo, E. Witrant, L. Dugard, Dynamic Boundary Stabilization of Linear Parameter Varying Hyperbolic Systems: Application to a Poiseuille Flow, 2013, 46, 14746670, 349, 10.3182/20130204-3-FR-4031.00071
    41. Christophe Prieur, Frédéric Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws, 2012, 24, 0932-4194, 111, 10.1007/s00498-012-0074-2
    42. Thang V. Pham, Didier Georges, Gildas Besançon, On the Use of a Global Control Lyapunov Functional in Infinite-dimensional Predictive Control, 2010, 43, 14746670, 363, 10.3182/20100915-3-IT-2017.00055
    43. Mathias Dus, BV Exponential Stability for Systems of Scalar Conservation Laws Using Saturated Controls, 2021, 59, 0363-0129, 1656, 10.1137/20M1323837
    44. Florent Di Meglio, Federico Bribiesca Argomedo, Long Hu, Miroslav Krstic, Stabilization of coupled linear heterodirectional hyperbolic PDE–ODE systems, 2018, 87, 00051098, 281, 10.1016/j.automatica.2017.09.027
    45. Iasson Karafyllis, Filippos Vokos, Miroslav Krstic, Feedback Stabilization of Tank-Liquid System with Robustness to Wall Friction, 2022, 28, 1292-8119, 81, 10.1051/cocv/2022076
    46. Corentin Briat, 2015, Chapter 4, 978-3-662-44049-0, 123, 10.1007/978-3-662-44050-6_4
    47. Amaury Hayat, Peipei Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, 2021, 153, 00217824, 187, 10.1016/j.matpur.2021.07.001
    48. Jean-Michel Coron, Amaury Hayat, Shengquan Xiang, Christophe Zhang, Stabilization of the Linearized Water Tank System, 2022, 244, 0003-9527, 1019, 10.1007/s00205-022-01778-0
    49. Aziza Akbarova, 2021, 2365, 0094-243X, 020026, 10.1063/5.0056878
    50. 2009, Chapter 1, 978-1-84882-623-6, 1, 10.1007/978-1-84882-624-3_1
    51. Simone Göttlich, Peter Schillen, Numerical Feedback Stabilization with Applications to Networks, 2017, 2017, 1026-0226, 1, 10.1155/2017/6896153
    52. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    53. Iasson Karafyllis, Filippos Vokos, Miroslav Krstic, Output-feedback control of viscous liquid–tank system and its numerical approximation, 2023, 149, 00051098, 110827, 10.1016/j.automatica.2022.110827
    54. Georges Bastin, Jean-Michel Coron, Amaury Hayat, Peipei Shang, Exponential boundary feedback stabilization of a shock steady state for the inviscid Burgers equation, 2019, 29, 0218-2025, 271, 10.1142/S021820251950009X
    55. Ying Tang, Christophe Prieur, Antoine Girard, 2014, Boundary control synthesis for hyperbolic systems: A singular perturbation approach, 978-1-4673-6090-6, 2840, 10.1109/CDC.2014.7039825
    56. Ben Mansour Dia, Jesper Oppelstrup, Stabilizing local boundary conditions for two-dimensional shallow water equations, 2018, 10, 1687-8140, 168781401772695, 10.1177/1687814017726953
    57. Amaury Hayat, Boundary stabilization of 1D hyperbolic systems, 2021, 52, 13675788, 222, 10.1016/j.arcontrol.2021.10.009
    58. Rasha al Jamal, Kirsten Morris, Linearized Stability of Partial Differential Equations with Application to Stabilization of the Kuramoto--Sivashinsky Equation, 2018, 56, 0363-0129, 120, 10.1137/140993417
    59. Felipe Castillo, Emmanuel Witrant, Christophe Prieur, Luc Dugard, 2012, Dynamic boundary stabilization of linear and quasi-linear hyperbolic systems, 978-1-4673-2066-5, 2952, 10.1109/CDC.2012.6426802
    60. Simone Göttlich, Michael Herty, Gediyon Weldegiyorgis, Input-to-State Stability of a Scalar Conservation Law with Nonlocal Velocity, 2021, 10, 2075-1680, 12, 10.3390/axioms10010012
    61. Dong-xia Zhao, Dong-xia Fan, Ya-ping Guo, The Spectral Analysis and Exponential Stability of a 1-d 2 × 2 Hyperbolic System with Proportional Feedback Control, 2022, 20, 1598-6446, 2633, 10.1007/s12555-021-0507-0
    62. Amaury Hayat, Peipei Shang, A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope, 2019, 100, 00051098, 52, 10.1016/j.automatica.2018.10.035
    63. Georges Bastin, Jean-Michel Coron, On boundary feedback stabilization of non-uniform linear hyperbolic systems over a bounded interval, 2011, 60, 01676911, 900, 10.1016/j.sysconle.2011.07.008
    64. Michael Herty, Hui Yu, 2016, Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes, 978-1-5090-1837-6, 5577, 10.1109/CDC.2016.7799126
    65. Martin Gugat, Contamination Source Determination in Water Distribution Networks, 2012, 72, 0036-1399, 1772, 10.1137/110859269
    66. Marta Strani, Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval, 2014, 13, 1534-0392, 1653, 10.3934/cpaa.2014.13.1653
    67. Ferdinand Thein, Stabilization of a Multi‐Dimensional System of Hyperbolic Balance Laws – A Case Study, 2023, 22, 1617-7061, 10.1002/pamm.202200056
    68. Georges Bastin, Jean-Michel Coron, 2016, Chapter 1, 978-3-319-32060-1, 1, 10.1007/978-3-319-32062-5_1
    69. Florent Di Meglio, Rafael Vazquez, Miroslav Krstic, Stabilization of a System of n+1 Coupled First-Order Hyperbolic Linear PDEs With a Single Boundary Input, 2013, 58, 0018-9286, 3097, 10.1109/TAC.2013.2274723
    70. Andre F. Caldeira, Christophe Prieur, Daniel Coutinho, Valter J. S. Leite, 2015, Modeling and control of flow with dynamical boundary actions, 978-1-4799-7787-1, 1579, 10.1109/CCA.2015.7320835
    71. Martin Gugat, Michaël Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, 2011, 17, 1292-8119, 28, 10.1051/cocv/2009035
    72. Fatemeh Zarmehi, Ali Tavakoli, Majid Rahimpour, On numerical stabilization in the solution of Saint-Venant equations using the finite element method, 2011, 62, 08981221, 1957, 10.1016/j.camwa.2011.06.039
    73. Markus Dick, Martin Gugat, Michael Herty, Günter Leugering, Sonja Steffensen, Ke Wang, 2014, Chapter 31, 978-3-319-05082-9, 487, 10.1007/978-3-319-05083-6_31
    74. B. Hamroun, L. Lefèvre, E. Mendes, Energy shaping based control for open irrigation channel using a reduced port hamiltonian model, 2010, 43, 14746670, 855, 10.3182/20100901-3-IT-2016.00196
    75. Iasson Karafyllis, Miroslav Krstic, Control of a Linearized Viscous Liquid–Tank System with Surface Tension, 2024, 62, 0363-0129, 1034, 10.1137/23M158749X
    76. Michael Herty, Ferdinand Thein, Boundary feedback control for hyperbolic systems, 2024, 30, 1292-8119, 71, 10.1051/cocv/2024062
    77. Abdumauvlen Berdyshev, Rakhmatillo Aloev, Zhanars Abdiramanov, Mohinur Ovlayeva, An Explicit–Implicit Upwind Difference Splitting Scheme in Directions for a Mixed Boundary Control Problem for a Two-Dimensional Symmetric t-Hyperbolic System, 2023, 15, 2073-8994, 1863, 10.3390/sym15101863
    78. S.S. Beknazarova, S.X. Abdullayev, O.S. Abdullayeva, Z.S. Abdullayev, Shahriyor Sadullozoda, Ramazona Abdullozoda, 2024, Methods of increasing the contrast of images in video information systems, 9781510674486, 32, 10.1117/12.3025016
    79. Buse Tacal Ucun, Şeref Naci Engin, Towards optimizing canal system operations: Extremum-seeking controller design via a frequency-based control approach, 2024, 15, 20904479, 102832, 10.1016/j.asej.2024.102832
    80. Rakhmatillo Aloev, Abdumauvlen Berdyshev, 2023, 2746, 0094-243X, 060003, 10.1063/5.0152270
    81. Amaury Hayat, Yating Hu, Peipei Shang, PI Control for the Cascade Channels Modeled by General Saint-Venant Equations, 2024, 69, 0018-9286, 4974, 10.1109/TAC.2023.3341767
    82. Rakhmatillo Djuraevich Aloev, Abdumauvlen Suleimanovich Berdyshev, Vasila Alimova, Kymbat Slamovna Bekenayeva, Exponential Stability of the Numerical Solution of a Hyperbolic System with Nonlocal Characteristic Velocities, 2024, 13, 2075-1680, 334, 10.3390/axioms13050334
    83. Rakhmatillo Aloev, Aziza Akbarova, Ram Jiwari, Vikas Kumar, 2023, 2746, 0094-243X, 060002, 10.1063/5.0152242
    84. R. D. Aloev, M. U. Khudoyberganov, Implicit Upwind Difference Scheme for a Symmetric t
    -Hyperbolic System with Variable Coefficients and Lowest Terms, 2023, 44, 1995-0802, 510, 10.1134/S1995080223020075
    85. R. Al Jamal, N. Smaoui, A single actuator vs. multi-actuator design of an input-feedback control for the generalized Kuramoto–Sivashinsky equation, 2023, 111, 0924-090X, 19371, 10.1007/s11071-023-08861-5
    86. Saida Beknazarova, Zamira Ishanxadjayeva, Mexriban Jaumitbaeva, D. Bazarov, Media resources in video information systems, 2023, 401, 2267-1242, 03068, 10.1051/e3sconf/202340103068
    87. Michael Herty, Ferdinand Thein, On the relation between approaches for boundary feedback control of hyperbolic systems, 2025, 82, 09473580, 101182, 10.1016/j.ejcon.2025.101182
    88. Iasson Karafyllis, Filippos Vokos, Miroslav Krstic, Feedback stabilisation of tank-liquid system with robustness to surface tension, 2025, 0020-7179, 1, 10.1080/00207179.2025.2462241
    89. Seydou Sore, Yacouba Simpore, Optimal Control of Sediment Deposition in Shallow Waters, 2025, 0143-2087, 10.1002/oca.3269
    90. Irina Kmit, Viktor Tkachenko, 2025, Chapter 20, 978-3-031-77377-8, 343, 10.1007/978-3-031-77378-5_20
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4804) PDF downloads(158) Cited by(90)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog