From a systems theory of sociology to modeling the onset and evolution of criminality

  • Received: 01 October 2014 Revised: 01 January 2015
  • 35Q91, 91C99, 91D10.

  • This paper proposes a systems theory approach to the modeling of onset and evolution of criminality in a territory. This approach aims at capturing the complexity features of social systems. Complexity is related to the fact that individuals have the ability to develop specific heterogeneously distributed strategies, which depend also on those expressed by the other individuals. The modeling is developed by methods of generalized kinetic theory where interactions and decisional processes are modeled by theoretical tools of stochastic game theory.

    Citation: Nicola Bellomo, Francesca Colasuonno, Damián Knopoff, Juan Soler. From a systems theory of sociology to modeling the onset and evolution of criminality[J]. Networks and Heterogeneous Media, 2015, 10(3): 421-441. doi: 10.3934/nhm.2015.10.421

    Related Papers:

    [1] Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209
    [2] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [3] Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362
    [4] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [5] Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57
    [6] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [7] Jun Zhai, Bilin Xu . Research on meme transmission based on individual heterogeneity. Mathematical Biosciences and Engineering, 2021, 18(5): 5176-5193. doi: 10.3934/mbe.2021263
    [8] Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu . Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295
    [9] Shanjing Ren . Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1337-1360. doi: 10.3934/mbe.2017069
    [10] Junyuan Yang, Rui Xu, Xiaofeng Luo . Dynamical analysis of an age-structured multi-group SIVS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(2): 636-666. doi: 10.3934/mbe.2019031
  • This paper proposes a systems theory approach to the modeling of onset and evolution of criminality in a territory. This approach aims at capturing the complexity features of social systems. Complexity is related to the fact that individuals have the ability to develop specific heterogeneously distributed strategies, which depend also on those expressed by the other individuals. The modeling is developed by methods of generalized kinetic theory where interactions and decisional processes are modeled by theoretical tools of stochastic game theory.


    [1] G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economical systems by functional subsystems representation, Kinet. Relat. Models, 1 (2008), 249-278. doi: 10.3934/krm.2008.1.249
    [2] L. Arlotti, E. De Angelis, L. Fermo, M. Lachowicz and N. Bellomo, On a class of integro-differential equations modeling complex systems with nonlinear interactions, Appl. Math. Lett., 25 (2012), 490-495. doi: 10.1016/j.aml.2011.09.043
    [3] W. B. Arthur, S. N. Durlauf and D. A. Lane, Eds., The Economy as an Evolving Complex System II, Studies in the Sciences of Complexity, XXVII, Addison-Wesley, 1997.
    [4] K. D. Baily, Sociology and the New System Theory - Towards a Theoretical Synthesis, Suny Press, 1994.
    [5] P. Ball, Why Society is a Complex Matter: Meeting Twenty-first Century Challenges with a New Kind of Science, Springer-Verlag, Heidelberg, 2012. doi: 10.1007/978-3-642-29000-8
    [6] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237. doi: 10.1073/pnas.0711437105
    [7] N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multicellular biological growing systems: Hyperbolic limits towards macroscopic description, Math. Models Methods Appl. Sci., 17 (2007), 1675-1692. doi: 10.1142/S0218202507002431
    [8] N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflicts: Looking for the Black Swan, Kinet. Relat. Mod., 6 (2013), 459-479. doi: 10.3934/krm.2013.6.459
    [9] N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci., 22 (2012), paper No.1230004. doi: 10.1142/S0218202512300049
    [10] N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), paper No.1140006. doi: 10.1142/S0218202511400069
    [11] N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life, "complexity'', and mathematical sciences, Math. Models Methods Appl. Sci., 23 (2013), 1861-1913. doi: 10.1142/S021820251350053X
    [12] N. Bellomo and M. Pulvirenti, Eds., Modeling in Applied Sciences - A Kinetic Theory Approach, Birkhäuser, Boston, 2000. doi: 10.1007/978-1-4612-0513-5
    [13] A. Bellouquid, E. De Angelis and D. Knopoff, From the modeling of the immune hallmarks of cancer to a black swan in biology, Math. Models Methods Appl. Sci., 23 (2013), 949-978. doi: 10.1142/S0218202512500650
    [14] B. Berenji, T. Chou and M. D'Orsogna, Recidivism and rehabilitation of criminal offenders: A carrot and stick evolutionary games, PLOS ONE, 9 (2014), 885531. doi: 10.1371/journal.pone.0085531
    [15] H. Berestycki, J. Wei and M. Winter, Existence of symmetric and asymmetric spikes of a crime hotspot model, SAM J. Math. Anal., 46 (2014), 691-719. doi: 10.1137/130922744
    [16] L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kohnert and G. B. West, Growth, innovation, scaling, and the pace of life in cities, Proc. Natl. Acad. Sci. USA, 104 (2007), 7301-7306. doi: 10.1073/pnas.0610172104
    [17] J. J. Bissell, C. C. S. Caiado, M. Goldstein and B. Straughan, Compartmental modelling of social dynamics with generalized peer incidence, Math. Models Methods Appl. Sci., 24 (2014), 719-750. doi: 10.1142/S0218202513500656
    [18] F. Colasuonno and M. C. Salvatori, Existence and uniqueness of solutions to a Cauchy problem modeling the dynamics of socio-political conflicts, in Recent Trends in Nonlinear Partial Differential Equations I: Evolution Problems (eds. J. B. Serrin, E. L. Mitidieri and V. D. Radulescu), Series Cont. Math. AMS, Providence, USA, Contemporary Mathematics, 594 (2013), 155-165. doi: 10.1090/conm/594/11789
    [19] T. Davies, H. Fry, A. Wilson and S. Bishop, A Mathematical Model of the London Riots and Their Policing, Scientific Report, 2013. doi: 10.1038/srep01303
    [20] E. De Angelis, On the mathematical theory of post-Darwinian mutations, selection, and evolution, Math. Models Methods Appl. Sci., 24 (2014), 2723-2742. doi: 10.1142/S0218202514500353
    [21] S. De Lillo, M. Delitala and M. C. Salvatori, Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. Models Methods Appl. Sci., 19 (2009), 1405-1425. doi: 10.1142/S0218202509003838
    [22] M. Dolfin and M. Lachowicz, Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions, Math. Models Methods Appl. Sci., 24 (2014), 2361-2381. doi: 10.1142/S0218202514500237
    [23] M. D'Orsogna, R. Kendall, M. McBride and M. B. Short, Criminal defectors lead to the emergence of cooperation in an experimental,adversarial game, PLOS ONE, 8 (2013), e61458. doi: 10.1371/journal.pone.0061458
    [24] M. D'Orsogna and M. Perc, Statistical physics of crime: A review, Phys. Life Rev., 12 (2014), 1-21.
    [25] B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, P. R. Soc. London, 465 (2009), 3687-3708. doi: 10.1098/rspa.2009.0239
    [26] P. Fajnzlber, D. Lederman and N. Loayza, Inequality and violent crime, J. Law Econ., 45 (2002), 1-39. doi: 10.1086/338347
    [27] M. Felson, What every mathematician should know about modelling crime, Eur. J. Appl. Math., 21 (2010), 275-281. doi: 10.1017/S0956792510000070
    [28] S. Harrendorf, M. Heiskanen and S. Malby, International Statistics on Crime and Justice, European Institute for Crime Prevention and Control, affiliated with the United Nations (HEUNI), 2010.
    [29] D. Helbing, Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes, 2nd edition, Springer, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-11546-2
    [30] C. C. Hsieh and M. D. Pugh, Poverty, income inequality, and violent crime: A meta-analysis of recent aggregate data studies, Crim. Just. Rev., 18 (1993), 182-202. doi: 10.1177/073401689301800203
    [31] E. Jager and L. Segel, On the distribution of dominance in populations of social organisms, SIAM J. Appl. Math., 52 (1992), 1442-1468. doi: 10.1137/0152083
    [32] A. P. Kirman and N. J. Vriend, Learning to be loyal. A study of the Marseille fish market, in Interaction and Market Structure, Lecture Notes in Economics and Mathematical Systems, 484, Springer-Verlag, Heidelberg, 2000, 33-56. doi: 10.1007/978-3-642-57005-6_3
    [33] D. Knopoff, On the modeling of migration phenomena on small networks, Math. Models Methods Appl. Sci., 23 (2013), 541-563. doi: 10.1142/S0218202512500558
    [34] D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci., 24 (2014), 405-426. doi: 10.1142/S0218202513400137
    [35] R. M. May, Uses and abuses of mathematics in biology, Science, 303 (2004), 790-793. doi: 10.1126/science.1094442
    [36] S. McCalla, M. Short and P. J. Brantingham, The effects of sacred value networks within and evolutionary, adversarial game, J. Stat. Phys., 151 (2013), 673-688. doi: 10.1007/s10955-012-0678-4
    [37] G. Mohler and M. Short, Geographic profiling form kinetic models of criminal behavior, SIAM J. Appl. Math., 72 (2012), 163-180. doi: 10.1137/100794080
    [38] M. A. Nowak, Evolutionary Dynamics. Exploring the Equations of Life, Harvard University Press, 2006.
    [39] J. C. Nuño, M. A. Herrero and M. Primicerio, A mathematical model of a criminal-prone society, Discr. Cont. Dyn. Syst. S, 4 (2011), 193-207. doi: 10.3934/dcdss.2011.4.193
    [40] H. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392
    [41] P. Ormerod, Crime: Economic incentives and social networks, IEA Hobart Paper, 151 (2005), 1-54. doi: 10.2139/ssrn.879716
    [42] L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, USA, 2013.
    [43] P. Pucci and M. C. Salvatori, On an initial value problem modeling evolution and selection in living systems, Disc. Cont. Dyn. Syst. S, 7 (2014), 807-821. doi: 10.3934/dcdss.2014.7.807
    [44] M. B. Short, P. J. Brantingham and M. R. D'Orsogna, Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society, Phys. Rev. E, 82 (2010), 066114, 7pp. doi: 10.1103/PhysRevE.82.066114
    [45] M. B. Short, M. R. D'Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18 (2008), 1249-1267. doi: 10.1142/S0218202508003029
    [46] H. A. Simon, Models of Bounded Rationality: Empirically Grounded Economic Reason, Volume 3, MIT Press, Cambridge, MA, 1997.
    [47] P. E. Tetlock, Thinking the unthinkable: Sacred values and taboo cognitions, Trends Cogn. Sci., 7 (2003), 320-324. doi: 10.1016/S1364-6613(03)00135-9
  • This article has been cited by:

    1. Ling Zhang, Jingmei Pang, Jinliang Wang, Stability Analysis of a Multigroup Epidemic Model with General Exposed Distribution and Nonlinear Incidence Rates, 2013, 2013, 1085-3375, 1, 10.1155/2013/354287
    2. Lianwen Wang, Zhijun Liu, Xingan Zhang, Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence, 2016, 284, 00963003, 47, 10.1016/j.amc.2016.02.058
    3. Wei Duan, Zhichao Song, Xiaogang Qiu, Heterogeneous edge weights promote epidemic diffusion in weighted evolving networks, 2016, 30, 0217-9849, 1650300, 10.1142/S0217984916503000
    4. Aberrahman Iggidr, Gauthier Sallet, Max O. Souza, On the dynamics of a class of multi-group models for vector-borne diseases, 2016, 441, 0022247X, 723, 10.1016/j.jmaa.2016.04.003
    5. Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, 2018, 77, 0303-6812, 1871, 10.1007/s00285-018-1227-9
    6. Haitao Song, Weihua Jiang, Shengqiang Liu, Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays, 2016, 09, 1793-5245, 1650046, 10.1142/S1793524516500467
    7. Jinliang Wang, Xianning Liu, Modeling diseases with latency and nonlinear incidence rates: global dynamics of a multi-group model, 2016, 39, 01704214, 1964, 10.1002/mma.3613
    8. Jinhu Xu, Yicang Zhou, Global stability of a multi-group model with vaccination age, distributed delay and random perturbation, 2015, 12, 1551-0018, 1083, 10.3934/mbe.2015.12.1083
    9. GLOBAL DYNAMICS IN A MULTI-GROUP EPIDEMIC MODEL FOR DISEASE WITH LATENCY SPREADING AND NONLINEAR TRANSMISSION RATE, 2016, 6, 2156-907X, 47, 10.11948/2016005
    10. F. Capone, V. De Cataldis, R. De Luca, On the Stability of a SEIR Reaction Diffusion Model for Infections Under Neumann Boundary Conditions, 2014, 132, 0167-8019, 165, 10.1007/s10440-014-9899-7
    11. Matthias Ehrhardt, Ján Gašper, Soňa Kilianová, SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity, 2019, 37, 18777503, 101027, 10.1016/j.jocs.2019.101027
    12. Florinda Capone, Valentina De Cataldis, Roberta De Luca, Influence of diffusion on the stability of equilibria in a reaction–diffusion system modeling cholera dynamic, 2015, 71, 0303-6812, 1107, 10.1007/s00285-014-0849-9
    13. R. N. Mohapatra, Donald Porchia, Zhisheng Shuai, 2015, Chapter 51, 978-81-322-2484-6, 619, 10.1007/978-81-322-2485-3_51
    14. F. Capone, V. De Cataldis, R. De Luca, On the nonlinear stability of an epidemic SEIR reaction-diffusion model, 2013, 62, 0035-5038, 161, 10.1007/s11587-013-0151-y
    15. Xiaomei Feng, Zhidong Teng, Fengqin Zhang, Global dynamics of a general class of multi-group epidemic models with latency and relapse, 2015, 12, 1551-0018, 99, 10.3934/mbe.2015.12.99
    16. Huicong Li, Rui Peng, An SIS epidemic model with mass action infection mechanism in a patchy environment, 2022, 0022-2526, 10.1111/sapm.12553
    17. Lin Zhao, Propagation dynamics for a time-periodic reaction-diffusion two group SIR epidemic model, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024114
    18. Hyukpyo Hong, Eunjin Eom, Hyojung Lee, Sunhwa Choi, Boseung Choi, Jae Kyoung Kim, Overcoming bias in estimating epidemiological parameters with realistic history-dependent disease spread dynamics, 2024, 15, 2041-1723, 10.1038/s41467-024-53095-7
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4926) PDF downloads(150) Cited by(38)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog