Citation: Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond. Time-delayed follow-the-leader model for pedestrians walking in line[J]. Networks and Heterogeneous Media, 2015, 10(3): 579-608. doi: 10.3934/nhm.2015.10.579
[1] | Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056 |
[2] | Andreas Hiltebrand, Siddhartha Mishra . Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145 |
[3] | Leqiang Zou, Yanzi Zhang . Efficient numerical schemes for variable-order mobile-immobile advection-dispersion equation. Networks and Heterogeneous Media, 2025, 20(2): 387-405. doi: 10.3934/nhm.2025018 |
[4] | Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711 |
[5] | JinJun Yong, Changlun Ye, Xianbing Luo . A fully discrete HDG ensemble Monte Carlo algorithm for a heat equation under uncertainty. Networks and Heterogeneous Media, 2025, 20(1): 65-88. doi: 10.3934/nhm.2025005 |
[6] | Liuchao Xiao, Wenbo Li, Leilei Wei, Xindong Zhang . A fully discrete local discontinuous Galerkin method for variable-order fourth-order equation with Caputo-Fabrizio derivative based on generalized numerical fluxes. Networks and Heterogeneous Media, 2023, 18(2): 532-546. doi: 10.3934/nhm.2023022 |
[7] | Salim Meddahi, Ricardo Ruiz-Baier . A new DG method for a pure–stress formulation of the Brinkman problem with strong symmetry. Networks and Heterogeneous Media, 2022, 17(6): 893-916. doi: 10.3934/nhm.2022031 |
[8] | Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye . A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12(4): 619-642. doi: 10.3934/nhm.2017025 |
[9] | Timothy Blass, Rafael de la Llave . Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6(2): 241-255. doi: 10.3934/nhm.2011.6.241 |
[10] | Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021 |
In this article, we prove the non-existence of solutions to the following quasilinear elliptic problem which has degenerate coercivity in their principal part by approximation,
$ {−div(a(x,u,∇u))+|u|q−1u=λ,x∈Ω,u=0,x∈∂Ω, $ | (1) |
where
$ a(x,t,ξ)⋅ξ≥c|ξ|p(1+|t|)θ(p−1), $ | (2) |
$ |a(x,t,ξ)|≤c0(|ξ|p−1+b(x)), $ | (3) |
$ [a(x,t,ξ)−a(x,t,ξ′)]⋅[ξ−ξ′]>0, $ | (4) |
for almost every
It is well-known that[3,9], problem
$ {−Δu+|u|q−1u=δ0,x∈Ω,u=0,x∈∂Ω. $ |
In the famous work [9], Brezis proved that if
$ {−Δun+|un|q−1un=fn,x∈Ω,un=0,x∈∂Ω, $ | (5) |
with
$ limn→∞∫Ω∖Bϱ(0)|fn−f|=0. $ |
Then
$ {−Δu+|u|q−1u=f,x∈Ω,u=0,x∈∂Ω. $ |
This fact shows that
The main goal of this paper is to study the non-existence of solutions to problem (1). More precisely, consider the limit of approximating equation (9)(see Theorem 1.2 below), our main task is to understand which is the limit of solutions to (9) and what equation it satisfies. A point worth emphasizing is that, even if
In order to state the main results of this paper, we need some definitions.
Let
$ capr(K,Ω)=inf{‖u‖rW1,r0:u∈C∞c(Ω),u≥χK}, $ |
where
Let
If
Let
$ limn→+∞∫Ωf+nφdx=∫Ωφdλ+,limn→+∞∫Ωf−nφdx=∫Ωφdλ−, $ | (6) |
for every function
$ ‖f+n‖L1(Ω)≤C,‖f−n‖L1(Ω)≤C. $ | (7) |
For all
$ Tk(s)=max{−k,min{k,s}},Gk(s)=s−Tk(s). $ |
Firstly we stale the existence result.
Theorem 1.1. Let
$ {−div(a(x,u,∇u))+|u|q−1u=g,x∈Ω,u=0,x∈∂Ω. $ | (8) |
if
$ q<N(1−θ)N−(1+θ(p−1)). $ |
Moreover,
$ u∈Mp1(Ω),|∇u|∈Mp2(Ω), $ |
where
$ p1=N(p−1)(1−θ)N−p,p2=N(p−1)(1−θ)N−(1+θ(p−1)). $ |
Remark 1. The previous result gives existence and uniqueness of the entropy solution
Our main results are following:
Theorem 1.2. Let
$ {−div(a(x,un,∇un))+|un|q−1un=fn+gn,x∈Ω,un=0,x∈∂Ω. $ | (9) |
Then
$ σ<pq(q+1+θ(p−1))(p−1), $ |
if
$ q>r(p−1)[1+θ(p−1)]r−p, $ | (10) |
where
$ limn→+∞∫Ω|un|q−1unφdx=∫Ω|u|q−1uφdx+∫Ωφdλ,∀φ∈C(Ω). $ | (11) |
Remark 2. The above theorem shows that there is not a solution to problem (1) can be obtained by approximation, if
Remark 3. Boccardo et.al [7] considered the non-existence result to the following problem
$ {−div(a(x,∇u)(1+u)γ)+u=μ,x∈Ω,u=0,x∈∂Ω, $ | (12) |
where
The structure of this paper is as follows: Section 2 mainly gives some lemmas which play a important role in the process of proof of the main theorem. The proof of theorem 1.1 and 1.2 are given in Section 3.
In the following,
In order to prove Theorem 1.1 and 1.2, the following basic lemmas and definitions are required.
Lemma 2.1. (see Lemma 2.1 of [22]) Let
$ 0≤ψ+δ≤1,0≤ψ−δ≤1,∫Ω|∇ψ+δ|rdx≤δ,∫Ω|∇ψ−δ|rdx≤δ,0≤∫Ω(1−ψ+δ)dλ+≤δ,0≤∫Ω(1−ψ−δ)dλ−≤δ,0≤∫Ωψ−δdλ+≤δ,0≤∫Ωψ+δ)dλ−≤δ,ψ+δ≡1,x∈K+,ψ+δ≤1,x∈K−, $ | (13) |
for every
Definition 2.2. Let
$ ∇Tk(u)=vχ{|u|≤k},a.einΩandforeveryk>0. $ |
Define the gradient of
Definition 2.3. Let
$ ∫Ωa(x,u,∇u)⋅∇Tk(u−φ)dx+∫Ω|u|q−1uTk(u−φ)dx≤∫ΩgTk(u−φ)dx, $ |
for every
Definition 2.4. Marcinkiewicz space
$ |{|υ|≥k}|≤Cks, $ |
for any
If
$ Ls(Ω)⊂Ms(Ω)⊂Ls−ε(Ω). $ |
Lemma 2.5. Let
$ ∫Ω|∇Tk(u)|pdx≤Ckρ, $ |
for some positive constant
$ |∇u|∈Mpss+ρ(Ω). $ |
Proof. Let
$ |{|∇u|>σ}|=|{|∇u|>σ,|u|≤k}|+|{|∇u|>σ,|u|>k}|≤|{|∇Tk(u)|>σ}|+|{|u|>k}|. $ | (14) |
Moreover,
$ |{|∇Tk(u)|>σ}|≤1σp∫Ω|∇Tk(u)|pdx≤Ckρσp. $ | (15) |
Since
$ |{|u|>k}|≤Cks. $ | (16) |
Combining (14)-(16), we have
$ |{|∇u|>σ}|≤Ckρσp+Cks≤Ckpss+ρ. $ |
Therefore, by Definition 2.4, we get
Lemma 2.6. Let
$ ∫Ω|∇Tk(un)|pdx≤Ckρ, $ |
for any
Lemma 2.7. Let
$ ∫{k<|u|<k+h}|∇u|pdx≤Ckθ(p−1). $ |
Proof. For any given
$ Tk,h(s)=Th(s−Tk(s))={s−ksgn(s),k≤|s|<k+h,h,|s|≥k+h,0,|s|≤k. $ |
Take
$ ∫{k<|u|<k+h}(a(x,u,∇u)⋅∇u)dx+∫Ω|u|q−1uTk,h(u)dx=∫ΩgTk,h(u)dx. $ | (17) |
Since
$ ∫{k<|u|<k+h}(a(x,u,∇u)⋅∇u)dx≤∫ΩgTk,h(u)dx, $ | (18) |
and
$ ∫ΩgTk,h(u)dx≤h∫{|u|>k}|g|dx≤C. $ | (19) |
According to the assumption (2) and (17)-(19), we get,
$ ∫{k<|u|<k+h}|∇u|pdx≤Ckθ(p−1). $ |
Proposition 1. Let
$ ∫{|u|<k}|∇u|pdx≤Ckρ $ | (20) |
for every
$ |{|u|>k}|≤Ck−p1. $ |
Proof. For every
$ ‖Tk(u)‖p∗≤C(N,p,θ)‖∇Tk(u)‖p≤Ckρp, $ |
where
$ {|u|≥η}={|Tk(u)≥η|}. $ |
Hence
$ |{|u|>η}|≤‖Tk(u)‖p∗p∗ηp∗≤C(kρ)p∗pη−p∗. $ |
Setting
$ |{|u|>k}|≤Ck−N(p−ρ)N−p. $ |
This fact shows that
Proposition 2. Assume that
$ |{|∇u|>h}|≤Ch−p2, $ |
for every
Proof. For
$ ψ(k,λ)=|{|∇u|p>λ,|u|>k}|. $ |
Using the fact that the function
$ ψ(0,λ)=|{|∇u|p>λ}|≤1λ∫λ0ψ(0,s)ds≤ψ(k,0)+1λ∫λ0ψ(0,s)−ψ(k,s)ds. $ | (21) |
By Proposition 1,
$ ψ(k,0)≤Ck−p1, $ | (22) |
where
$ ∫∞0ψ(0,s)−ψ(k,s)ds=∫{|u|<k}|∇u|pdx≤Ckρ. $ | (23) |
Combining (21)-(23), we arrive at
$ ψ(0,λ)≤Ckρλ+Ck−p1. $ | (24) |
Let
$ |{|∇u|>h}|≤Ch−N(p−ρ)N−ρ. $ |
That is
In this section we prove Theorem 1.1 and 1.2 combining the results of Sections 2.
In the proofs of Theorem 1.1 and 1.2,
$ limδ→0+limm→+∞limn→+∞ω(n,m,δ)=0. $ |
If the quantity does not depend on one or more of the three parameters
$ limδ→0+limn→+∞ω(n,δ)=0. $ |
The proof of Theorem 1.1 will be divided in several steps.
Proof. (1)Uniqueness: Let
Step 1. Assume that
$ I:=∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=−∫Ω|u1|q−1u1Tk(u1−Thu2)dx−∫Ω|u2|q−1u2Tk(u2−Thu1)dx+∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx. $ | (25) |
Step 2. Denote
$ A0={x∈Ω:|u1−u2|<k,|u1|<h,|u2|<h},A1={x∈Ω:|u1−Thu2|<k,|u2|≥h},A2={x∈Ω:|u1−Thu2|<k,|u2|<h,|u1|≥h}. $ |
For
$ ∇Tk(u1−Thu2)=∇(u1−u2) $ |
and
$ ∇Tk(u2−Thu1)=∇Tk(u2−u1). $ |
Thus, for every
$ ∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx:=I0. $ | (26) |
For
$ ∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx=∫A1a(x,u1,∇u1)⋅∇u1dx≥0. $ | (27) |
For
$ ∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx≥−∫A2a(x,u1,∇u1)⋅∇u2dx. $ | (28) |
Similarly, denote
$ A∗1={x∈Ω:|u2−Thu1|<k,|u1|≥h},A∗2={x∈Ω:|u2−Thu1|<k,|u1|<h,|u2|≥h}. $ |
Then for
$ ∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A∗1a(x,u2,∇u2)⋅∇u2dx≥0. $ | (29) |
For
$ ∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx≥−∫A∗2a(x,u2,∇u2)⋅∇u1dx. $ | (30) |
Summing up (26)-(30) in the form
$ I1=∫A2a(x,u1,∇u1)⋅∇u2dx+∫A∗2a(x,u2,∇u2)⋅∇u1dx:=I11+I12. $ |
Now, we estimate
$ I11≤‖a(x,u1,∇u1)‖Lp′({h≤|u1|≤h+k})‖∇u2‖Lp({h−k≤|u2|≤h})≤c0(‖∇u1‖p−1Lp′({h≤|u1|≤h+k})+‖b(x)‖Lp′({|u1|≥h}))‖∇u2‖Lp({h−k≤|u2|≤h}). $ |
Therefore, by Lemma 2.7 and Proposition 2,
Hence, we find
$ ∫Ωa(x,u1,∇u1)⋅∇Tk(u1−Thu2)dx+∫Ωa(x,u2,∇u2)⋅∇Tk(u2−Thu1)dx=∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx+ε(h). $ | (31) |
Step 3. Now estimate the terms on the right hand side of (25). Denote
$ B0={x∈Ω:|u1|<h,|u2|<h},B1={x∈Ω:|u1|≥h},B2={x∈Ω:|u2|≥h}. $ |
For
$ ∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx=∫B0(|u1|q−1u1−|u2|q−1u2)Tk(u1−u2)dx≥0, $ | (32) |
and
$ ∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx=∫B0(g1−g2)Tk(u1−u2)dx≤0. $ | (33) |
For
$ ∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx≤k∫B1(|u1|q−1u1+|u2|q−1u2)dx:=J1, $ |
and
$ ∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx≤k∫B1(|g1|+|g2|)dx:=J2. $ |
For
$ ∫Ω|u1|q−1u1Tk(u1−Thu2)dx+∫Ω|u2|q−1u2Tk(u2−Thu1)dx≤k∫B2(|u1|q−1u1+|u2|q−1u2)dx:=J∗1, $ |
and
$ ∫Ωg1Tk(u1−Thu2)dx+∫Ωg2Tk(u2−Thu1)dx≤k∫B2(|g1|+|g2|)dx:=J∗2. $ |
According to
$ J1+J2+J∗1+J∗2→0ash→∞. $ | (34) |
Step 4. Combining (25) and (31)-(34), we have
$ ∫A0[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx≤ε(h), $ |
where
$ ∫{|u1−u2|<k}[a(x,u1,∇u1)−a(x,u2,∇u2)]⋅∇(u1−u2)dx≤0, $ |
for all
(2) Existence:
Step 1. Let
$ F(x,u)=g(x)−β(u), $ |
where
Let
$ γn(s)=βn(s)+1n|s|p−2s. $ |
Then by [20], there exists
$ {−diva(x,un,∇un)+γn(x,un)=gn,x∈Ω,un=0,x∈∂Ω, $ | (35) |
holds in the sense of distributions in
By density arguments, we can take
$ ∫{k≤|un|<k+h}a(x,un,∇un)⋅∇undx+∫{|un|>k}γnTh(un−Tk(un))dx=∫{|un|>k}gnTh(un−Tk(un))dx, $ | (36) |
and
$ ∫{|un|>k}a(x,un,∇un)⋅∇undx+∫ΩγnTk(un)dx=∫ΩgnTk(un)dx. $ | (37) |
Combine (36) with (2) (fix the ellipticity constant
$ ∫{k<|un|<k+h}|∇un|pdx≤hkθ(p−1)∫{|un|>k}gndx≤hkθ(p−1)‖gn‖L1(Ω)=Ckθ(p−1). $ | (38) |
Since
$ ∫{|un|>k}|γn(un)|dx≤∫{|un|>k}|gn|dx≤‖gn‖L1(Ω)≤C. $ | (39) |
Combine (37) with
$ ∫{|un|<k}|∇un|pdx≤Ck1+θ(p−1). $ | (40) |
Step 2. Convergence. Using (38) and Proposition 1, we have
Next we prove that
For
$ {|un−um|>t}⊂{|un|>k}∪{|um|>k}∪{|Tk(un)−Tk(um)|>t}. $ |
Thus
$ |{|un−um|>t}|≤|{|un|>k}|+|{|um|>k}|+|{|Tk(un)−Tk(um)|>t}|. $ |
Choosing
$ Tk(un)→Tk(u)inLploc(Ω)anda.einΩ. $ |
Then
$ |{|Tk(un)−Tk(um)|>t}∩BR|≤t−q∫Ω∩BR|Tk(un)−Tk(um)|qdx≤ϵ, $ |
for all
Now to prove that
$ {|∇un−∇um|>t}∩BR⊂{|un−um|≤k,|∇un|≤l,|∇um|≤l,|∇un−∇um|>t}∪{|∇un|>l}∪{|∇um|>l}∪({|un−um|>k}∩BR). $ |
Choose
$ [a(x,t,ξ)−a(x,t,ξ′)]⋅[ξ−ξ′]≥μ. $ |
This is a consequence of continuity and strict monotonicity of
$ dn=gn−γn(x,un). $ | (41) |
Taking
$ ∫{|un−um|<k}[a(x,un,∇un)−a(x,um,∇um)]⋅∇(un−um)dx=∫Ω(dn−dm)Tk(un−um)dx≤Ck1+θ(p−1). $ |
Then
$ {|un−um|≤k,|∇un|≤l,|∇um|≤l,|∇un−∇um|>t}≤1μ∫{|un−um|<k}[a(x,un,∇un)−a(x,um,∇um)]⋅∇(un−um)dx≤1μCk1+θ(p−1)≤ϵ, $ |
if
Since
Finally, since
Step 3. In order to prove the existence of the solution completely, we still need to prove that sequence
$ q∈(1,N(1−θ)N−(1+θ(p−1))). $ |
Indeed, by Proposition 2,
$ a(x,un,∇un)→a(x,u,∇u). $ |
It follows that
$ a(x,u,∇u)∈MN(1−θ)N−(1+θ(p−1))⊂Lqloc(Ω), $ |
for all
In this subsection, we give the proof of Theorem 1.2 following some ideas in [11,22].
Proof. Step 1 (A priori estimates). Firstly, choosing
$ ∫Ωa(x,un,∇un)⋅∇Tk(un)(1−φδ)sdx+∫Ω|un|q−1unTk(un)(1−φδ)sdx=s∫Ωa(x,un,∇un)⋅∇φδTk(un)(1−φδ)s−1dx+∫ΩgnTk(un)(1−φδ)sdx+∫Ωf+nTk(un)(1−φδ)sdx+∫Ωf−nTk(un)(1−φδ)sdx. $ | (42) |
By (2), we get
$ ∫Ωa(x,un,∇un)⋅∇Tk(un)dμ≥c∫Ω|∇Tk(un)|p(1+|Tk(un)|)θ(p−1)dμ, $ | (43) |
here
Since
$ ∫Ω|un|q−1unTk(un)(1−φδ)sdx≥∫{|un|≥k}|un|q−1unTk(un)dμ≥kq+1μ({|un|≥k}). $ | (44) |
Using (3) and the Young inequality, we find
$ ∫Ω|a(x,un,∇un)⋅∇φδTk(un)(1−φδ)s−1|dx≤c0k∫Ω(|∇un|p−1+b(x))(|∇φ+δ|+|∇φ+δ|)(1−φδ)s−1dx≤Ck∫Ω(|∇un|(p−1)r′+|b(x)|r′)(1−φδ)(s−1)r′dx+Ck∫Ω(|∇φ+δ|r+|∇φ+δ|r)dx≤Ck(∫Ω(|∇un|(p−1)r′+|b(x)|r′)(1−φδ)(s−1)r′dx+δ). $ | (45) |
Combine (42)-(45), by (7) and
$ ∫Ω|∇Tk(un)|p(1+|Tk(un)|)θ(p−1)dμ+kq+1μ({|un|≥k})≤Ck(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ(Ω). $ | (46) |
For a fixed
$ μ({|∇un|>σ})=μ({|∇un|>σ,|un|<k})+μ({|∇un|>σ,|un|≥k})≤1σp∫Ω|∇Tk(un)|pdμ+μ({|u|>k})≤(1+k)θ(p−1)σp∫Ω|∇Tk(un)|p(1+|Tk(un)|)θ(p−1)dμ+μ({|u|>k})≤C(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ(Ω))((1+k)1+θ(p−1)σp+1kq), $ |
which implies
$ μ|{|∇un|>σ}|≤Cσ−pqq+1+θ(p−1)(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ|Ω|). $ | (47) |
Let
$ (p−1)r′<η<pqq+1+θ(p−1). $ | (48) |
Clearly, such
$ ∫Ω|∇un|ηdμ≤C(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ(Ω)). $ |
By the Holder's inequality,
$ ∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx≤C(∫Ω|∇un|ηdμ)(p−1)r′η≤C(∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx+δ+μ|Ω|)(p−1)r′η. $ |
By Lemma 2.1,
$ ∫Ω|∇un|(p−1)r′(1−φδ)(s−1)r′dx≤C(δ+μ|Ω|)≤C(δ). $ | (49) |
Using (46) and (49), we conclude that
$ ∫Ω|∇Tk(un)|pdx≤Ck1+θ(p−1). $ | (50) |
According to Lemma 2.5, we have
By (50) and Lemma 2.6, there exists a subsequence, still denoted by
Since
$ a(x,un,∇un)→a(x,u,∇u)stronglyin(Ls(Ω))N, $ | (51) |
for every
Step 2 (Energy estimates). Let
$ ∫{un>2m}uqn(1−ψδ)dx=ω(n,m,δ), $ | (52) |
and
$ ∫{un<−2m}|un|q(1−ψδ)dx=ω(n,m,δ). $ | (53) |
Choose
$ βm(s)={sm−1,m<s≤2m,1,s>2m,0,s≤m. $ |
We obtain
$ 1m∫{m<un<2m}a(x,un,∇un)⋅∇un(1−ψδ)dx(A)−∫Ωa(x,un,∇un)⋅∇ψδβm(un)dx(B)+∫Ω|un|q−1unβm(un)(1−ψδ)dx(C)=∫Ωf+nβm(un)(1−ψδ)dx(D)−∫Ωf−nβm(un)(1−ψδ)dx(E)+∫Ωgnβm(un)(1−ψδ)dx.(F) $ |
Since
$ −(B)=∫Ωa(x,u,∇u)⋅∇ψδβm(u)dx+ω(n)=ω(n,m), $ |
and
$ (C)≥∫{un>2m}uqn(1−ψδ)dx. $ |
By
$ (D)≤∫Ωf+n(1−ψδ)dx=∫Ω(1−ψ+δ)dλ+−∫Ωψ−δdλ−+ω(n)=ω(n,δ), $ |
and
$ (F)=ω(n,m). $ |
We get (52), the proof of (53) is identical.
Step 3 (Passing to the limit). Now we show that
$ ∫Ωa(x,un,∇un)⋅∇Tk(un−φ)(1−ψδ)dx(A)−∫Ωa(x,un,∇un)⋅∇ψδTk(un−φ)dx(B)+∫Ω|un|q−1unTk(un−φ)(1−ψδ)dx(C)=∫Ωf+nTk(un−φ)(1−ψδ)dx(D) $ |
$ −∫Ωf−nTk(un−φ)(1−ψδ)dx(E)+∫ΩgnTk(un−φ)(1−ψδ)dx.(F) $ |
By (13),
$ (A)=∫{|un−φ|<k}a(x,un,∇un)⋅∇un(1−ψδ)dx−∫{|un−φ|<k}a(x,un,∇un)⋅∇φ(1−ψδ)dx, $ |
while
$ ∫{|un−φ|<k}a(x,un,∇un)⋅∇φ(1−ψδ)dx=∫{|u−φ|<k}a(x,u,∇u)⋅∇φdx+ω(n,δ). $ |
The Fatou lemma implies
$ ∫{|u−φ|<k}a(x,u,∇u)⋅∇udx≤limn→∞inf∫{|un−φ|<k}a(x,un,∇un)⋅∇undx. $ |
Using (13), (51), we have
$ −(B)=∫Ωa(x,u,∇u)⋅∇ψδTk(u−φ)dx+ω(n)=ω(n,δ). $ |
While
$ (F)=∫ΩgTk(u−φ)dx+ω(n,δ), $ |
and
$ |(D)|+|(E)|=∫Ω(f+n+f−n)Tk(un−φ)(1−ψδ)dx≤k∫Ω(f+n+f−n)(1−ψδ)dx=ω(n,δ). $ |
So that we only need to deal with
$ (C)=∫{−2m≤un≤2m}|un|q−1unTk(un−φ)(1−ψδ)dx(G)+k∫{un>2m}uqn(1−ψδ)dx+k∫{un<−2m}|un|q(1−ψδ)dx.(H) $ |
By (52) and (53), we get
$ (H)=ω(n,m,δ), $ |
and
$ (G)=∫Ω|u|q−1uTk(u−φ)(1−ψδ)dx+ω(n,m)=∫Ω|u|q−1uTk(u−φ)dx+ω(n,m,δ). $ |
Summing up the result of (A)-(H), we have
$ ∫Ωa(x,u,∇u)⋅∇Tk(u−φ)dx+∫Ω|u|q−1uTk(u−φ)dx≤∫ΩgTk(u−φ)dx. $ |
Thus
Finally we prove (10). Choose
$ ∫Ωa(x,un,∇un)⋅∇φdx+∫Ω|un|q−1unφdx=∫Ω(fn+gn)φdx. $ |
Thanks to the assumptions of
$ limn→+∞∫Ω|un|q−1unφdx=−∫Ωa(x,u,∇u)⋅∇φdx+∫Ωgφdx+∫Ωφdλ. $ | (54) |
Since the entropy solution of (8) is also a distributional solution of the same problem, for the same
$ ∫Ωa(x,u,∇u)⋅∇φdx+∫Ω|u|q−1uφdx=∫Ωgφdx. $ | (55) |
Together with (54) and (55), we find
$ limn→+∞∫Ω|un|q−1unφdx=∫Ω|u|q−1uφdx+∫Ωφdλ. $ |
Thus (11) holds for every
The authors also would like to thank the anonymous referees for their valuable comments which has helped to improve the paper.
[1] |
C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heter. Media., 6 (2011), 351-381. doi: 10.3934/nhm.2011.6.351
![]() |
[2] |
A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955
![]() |
[3] | R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New-York, 1963. |
[4] |
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345. doi: 10.1142/S0218202508003054
![]() |
[5] |
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations and perspectives, SIAM Review, 53 (2011), 409-463. doi: 10.1137/090746677
![]() |
[6] |
S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heter. Media., 6 (2011), 401-423. doi: 10.3934/nhm.2011.6.401
![]() |
[7] |
C. Burstedde, K. Klauck , A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525. doi: 10.1016/S0378-4371(01)00141-8
![]() |
[8] |
R. E. Chandler, R. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operations Res., 6 (1958), 165-184. doi: 10.1287/opre.6.2.165
![]() |
[9] |
M. Chraibi, A. Seyfried and A. Schadschneider, Generalized centrifugal-force model for pedestrian dynamics, Phys. Rev. E, 82 (2010), 046111. doi: 10.1103/PhysRevE.82.046111
![]() |
[10] |
R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567. doi: 10.1002/mma.624
![]() |
[11] |
V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247. doi: 10.1142/S0218202508003017
![]() |
[12] |
D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567. doi: 10.1287/opre.9.4.545
![]() |
[13] |
S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha and P. Dubey, Clearpath: Highly parallel collision avoidance for multi-agent simulation, in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 177-187. doi: 10.1145/1599470.1599494
![]() |
[14] |
P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068. doi: 10.1007/s10955-013-0805-x
![]() |
[15] |
P. Degond, C. Appert-Rolland, J. Pettre and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839. doi: 10.3934/krm.2013.6.809
![]() |
[16] |
P. Degond and J. Hua, Self-Organized Hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013), 299-319. doi: 10.1016/j.jcp.2012.11.033
![]() |
[17] |
M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362. doi: 10.1016/j.jde.2010.10.015
![]() |
[18] |
D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310. doi: 10.1002/bs.3830360405
![]() |
[19] | D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415. |
[20] |
D. Helbing and P. Molnàr, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286. doi: 10.1103/PhysRevE.51.4282
![]() |
[21] | D. Helbing and P. Molnàr, Self-organization phenomena in pedestrian crowds, in Self-Organization of Complex Structures: From Individual to Collective Dynamics (ed. F. Schweitzer), Gordon and Breach, London, 1997, 569-577. |
[22] |
L. F. Henderson, On the fluid mechanics of human crowd motion, Transp. Res., 8 (1974), 509-515. doi: 10.1016/0041-1647(74)90027-6
![]() |
[23] |
S. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control and differential games, Optimal Control Appl. Methods, 24 (2003), 153-172. doi: 10.1002/oca.727
![]() |
[24] |
W. H. Huang, B. R. Fajen, J. R. Fink and W. H. Warren, Visual navigation and obstacle avoidance using a steering potential function, Robotic and Autonomous Systems, 54 (2006), 288-299. doi: 10.1016/j.robot.2005.11.004
![]() |
[25] |
L. Huang, S. C. Wong, M. Zhang, C.-W. Shu and W. H. K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. B, 43 (2009), 127-141. doi: 10.1016/j.trb.2008.06.003
![]() |
[26] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. B, 36 (2002), 507-535. doi: 10.1016/S0191-2615(01)00015-7
![]() |
[27] |
R. L. Hughes, The flow of human crowds, Ann. Rev. Fluid Mech., 35 (2003), 169-182. doi: 10.1146/annurev.fluid.35.101101.161136
![]() |
[28] | A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line - Fundamental diagrams, Phys. Rev. E, 85 (2012), 036111. |
[29] | A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line. II. stepping behavior, Phys. Rev. E, 86 (2012), 046111. |
[30] |
D. Jezbera, D. Kordek, J. Kříž, Petr Šeba and P. Šroll, Walkers on the circle, J. Stat. Mech. Theory Exp., 2010 (2010), L01001. doi: 10.1088/1742-5468/2010/01/L01001
![]() |
[31] |
Y.-q. Jiang, P. Zhang, S. C. Wong and R.-x. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635. doi: 10.1016/j.physa.2010.05.003
![]() |
[32] |
A. Johansson, Constant-net-time headway as a key mechanism behind pedestrian flow dynamics, Phys. Rev. E, 80 (2009), 026120. doi: 10.1103/PhysRevE.80.026120
![]() |
[33] |
S. Lemercier, A. Jelić, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer Graphics Forum, 31 (2012), 489-498. doi: 10.1111/j.1467-8659.2012.03028.x
![]() |
[34] |
S. Lemercier, M. Moreau, M. Moussaïd, G. Theraulaz, S. Donikian and J. Pettré, Reconstructing motion capture data for human crowd study, in Motion in Games, Lecture Notes in Computer Science, 7060, Springer, Berlin-Heidelberg, 2011, 365-376. doi: 10.1007/978-3-642-25090-3_31
![]() |
[35] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion models, Netw. Heterog. Media, 6 (2011), 485-519. doi: 10.3934/nhm.2011.6.485
![]() |
[36] | M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-organized Pedestrian Crowds, PLoS Comput. Biol., 8 (2012), e1002442. |
[37] | M. Moussaïd, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Nat. Acad. Sci., 108 (2011), 6884-6888. |
[38] | K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider, Extended floor field CA model for evacuation dynamics, IEICE Transp. Inf. & Syst., E87-D (2004), 726-732. |
[39] |
J. Ondrej, J. Pettré, A. H. Olivier and S. Donikian, A Synthetic-vision based steering approach for crowd simulation, in SIGGRAPH'10, 29 (2010), p123. doi: 10.1145/1833349.1778860
![]() |
[40] |
S. Paris, J. Pettré and S. Donikian, Pedestrian reactive navigation for crowd simulation: A predictive approach, Eurographics, 26 (2007), 665-674. doi: 10.1111/j.1467-8659.2007.01090.x
![]() |
[41] | J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual and S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 189-198. |
[42] |
B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x
![]() |
[43] | L. Pontrjagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl. Ser. 2, 1 (1955), 95-110. |
[44] | C. W. Reynolds, Steering behaviors for autonomous characters, in Proceedings of Game Developers Conference, San Jose, California, 1999, 763-782. |
[45] |
A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech. Theory Exp., 2005 (2005), P10002. doi: 10.1088/1742-5468/2005/10/P10002
![]() |
[46] |
A. Seyfried, B. Steffen and T. Lippert, Basics of modelling the pedestrian flow, Phys. A, 368 (2006), 232-238. doi: 10.1016/j.physa.2005.11.052
![]() |
[47] | J. van den Berg and H. Overmars, Planning time-minimal safe paths amidst unpredictably moving obstacles, Int. Journal on Robotics Research, 27 (2008), 1274-1294. |
[48] |
J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. Theory Exp., 2012 (2012), P02002. doi: 10.1088/1742-5468/2012/02/P02002
![]() |
1. | A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, S. Aly, Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response, 2023, 616, 03784371, 128604, 10.1016/j.physa.2023.128604 | |
2. | D. Burini, N. Chouhad, Virus models in complex frameworks: Towards modeling space patterns of SARS-CoV-2 epidemics, 2022, 32, 0218-2025, 2017, 10.1142/S0218202522500476 | |
3. | N. Bellomo, F. Brezzi, M. A. J. Chaplain, New trends of mathematical sciences towards modeling virus pandemics in a globally connected world, 2022, 32, 0218-2025, 1923, 10.1142/S0218202522010011 | |
4. | A. M. Elaiw, A. S. Shflot, A. D. Hobiny, Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model, 2022, 8, 2473-6988, 6136, 10.3934/math.2023310 | |
5. | A. M. Elaiw, N. H. AlShamrani, E. Dahy, A. A. Abdellatif, Aeshah A. Raezah, Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection, 2023, 11, 2227-7390, 592, 10.3390/math11030592 | |
6. | Ahmed M. Elaiw, Abdullah J. Alsaedi, Afnan Diyab Al Agha, Aatef D. Hobiny, Global Stability of a Humoral Immunity COVID-19 Model with Logistic Growth and Delays, 2022, 10, 2227-7390, 1857, 10.3390/math10111857 | |
7. | Giulia Bertaglia, Chuan Lu, Lorenzo Pareschi, Xueyu Zhu, Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread, 2022, 32, 0218-2025, 1949, 10.1142/S0218202522500452 | |
8. | Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity, 2022, 10, 2227-7390, 4382, 10.3390/math10224382 | |
9. | Ryan Weightman, Anthony Sbarra, Benedetto Piccoli, Coupling compartmental models with Markov chains and measure evolution equations to capture virus mutability, 2022, 32, 0218-2025, 2099, 10.1142/S0218202522500506 | |
10. | Jiying Ma, Shasha Ma, Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China, 2022, 20, 1551-0018, 3070, 10.3934/mbe.2023145 | |
11. | Marcelo Bongarti, Luke Diego Galvan, Lawford Hatcher, Michael R. Lindstrom, Christian Parkinson, Chuntian Wang, Andrea L. Bertozzi, Alternative SIAR models for infectious diseases and applications in the study of non-compliance, 2022, 32, 0218-2025, 1987, 10.1142/S0218202522500464 | |
12. | N. Bellomo, M. Esfahanian, V. Secchini, P. Terna, What is life? Active particles tools towards behavioral dynamics in social-biology and economics, 2022, 43, 15710645, 189, 10.1016/j.plrev.2022.10.001 | |
13. | Ahmed M. Elaiw, Abdulsalam S. Shflot, Aatef D. Hobiny, Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host, 2022, 10, 2227-7390, 4756, 10.3390/math10244756 | |
14. | Henrique A. Tórtura, José F. Fontanari, The synergy between two threats: Disinformation and COVID-19, 2022, 32, 0218-2025, 2077, 10.1142/S021820252250049X | |
15. | Juan Pablo Agnelli, Bruno Buffa, Damián Knopoff, Germán Torres, A Spatial Kinetic Model of Crowd Evacuation Dynamics with Infectious Disease Contagion, 2023, 85, 0092-8240, 10.1007/s11538-023-01127-6 | |
16. | A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, Global stability of a delayed SARS-CoV-2 reactivation model with logistic growth, antibody immunity and general incidence rate, 2022, 61, 11100168, 12475, 10.1016/j.aej.2022.05.034 | |
17. | A. D. Al Agha, A. M. Elaiw, Global dynamics of SARS-CoV-2/malaria model with antibody immune response, 2022, 19, 1551-0018, 8380, 10.3934/mbe.2022390 | |
18. | Diletta Burini, Nadia Chouhad, Nicola Bellomo, Waiting for a Mathematical Theory of Living Systems from a Critical Review to Research Perspectives, 2023, 15, 2073-8994, 351, 10.3390/sym15020351 | |
19. | Ahmed M. Elaiw, Afnan D. Al Agha, Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model, 2022, 10, 2227-7390, 4390, 10.3390/math10224390 | |
20. | A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny, Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity, 2022, 20, 1551-0018, 3873, 10.3934/mbe.2023182 | |
21. | Ali Algarni, Afnan D. Al Agha, Aisha Fayomi, Hakim Al Garalleh, Kinetics of a Reaction-Diffusion Mtb/SARS-CoV-2 Coinfection Model with Immunity, 2023, 11, 2227-7390, 1715, 10.3390/math11071715 | |
22. | Matthew O. Adewole, Farah A. Abdullah, Majid K. M. Ali, 2024, 3203, 0094-243X, 030007, 10.1063/5.0225272 | |
23. | Elsayed Dahy, Ahmed M. Elaiw, Aeshah A. Raezah, Hamdy Z. Zidan, Abd Elsattar A. Abdellatif, Global Properties of Cytokine-Enhanced HIV-1 Dynamics Model with Adaptive Immunity and Distributed Delays, 2023, 11, 2079-3197, 217, 10.3390/computation11110217 | |
24. | Nicola Bellomo, Jie Liao, Annalisa Quaini, Lucia Russo, Constantinos Siettos, Human behavioral crowds review, critical analysis and research perspectives, 2023, 33, 0218-2025, 1611, 10.1142/S0218202523500379 | |
25. | Diletta Burini, Damian A. Knopoff, Epidemics and society — A multiscale vision from the small world to the globally interconnected world, 2024, 34, 0218-2025, 1567, 10.1142/S0218202524500295 | |
26. | Ahmed M. Elaiw, Aeshah A. Raezah, Matuka A. Alshaikh, Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies, 2023, 11, 2227-7390, 3138, 10.3390/math11143138 | |
27. | Nicola Bellomo, Massimo Egidi, From Herbert A. Simon’s legacy to the evolutionary artificial world with heterogeneous collective behaviors, 2024, 34, 0218-2025, 145, 10.1142/S0218202524400049 | |
28. | Ryan Weightman, Benedetto Piccoli, 2024, Chapter 7, 978-3-031-56793-3, 157, 10.1007/978-3-031-56794-0_7 | |
29. | Luca Serena, 2023, Methodological Aspects of Multilevel Modeling and Simulation, 979-8-3503-3784-6, 111, 10.1109/DS-RT58998.2023.00025 | |
30. | Aeshah A. Raezah, A.M. Elaiw, M.A. Alshaikh, Global stability of secondary DENV infection models with non-specific and strain-specific CTLs, 2024, 10, 24058440, e25391, 10.1016/j.heliyon.2024.e25391 | |
31. | Nicola Bellomo, Raluca Eftimie, Guido Forni, What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems, 2024, 19, 1556-1801, 655, 10.3934/nhm.2024029 | |
32. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936 | |
33. | Yunfeng Xiong, Chuntian Wang, Yuan Zhang, Tom Britton, Interacting particle models on the impact of spatially heterogeneous human behavioral factors on dynamics of infectious diseases, 2024, 20, 1553-7358, e1012345, 10.1371/journal.pcbi.1012345 | |
34. | Ahmed M. Elaiw, Ghadeer S. Alsaadi, Aatef D. Hobiny, Global co-dynamics of viral infections with saturated incidence, 2024, 9, 2473-6988, 13770, 10.3934/math.2024671 | |
35. | Matthew O. Adewole, Taye Samuel Faniran, Farah A. Abdullah, Majid K.M. Ali, COVID-19 dynamics and immune response: Linking within-host and between-host dynamics, 2023, 173, 09600779, 113722, 10.1016/j.chaos.2023.113722 | |
36. | Giulia Bertaglia, Andrea Bondesan, Diletta Burini, Raluca Eftimie, Lorenzo Pareschi, Giuseppe Toscani, New trends on the systems approach to modeling SARS-CoV-2 pandemics in a globally connected planet, 2024, 34, 0218-2025, 1995, 10.1142/S0218202524500301 | |
37. | Nicola Bellomo, Seung-Yeal Ha, Jie Liao, Wook Yoon, Behavioral swarms: A mathematical theory toward swarm intelligence, 2024, 34, 0218-2025, 2305, 10.1142/S0218202524500490 | |
38. | Mohamed Zagour, 2024, Chapter 6, 978-3-031-56793-3, 127, 10.1007/978-3-031-56794-0_6 | |
39. | Nisrine Outada, A forward look to perspectives, 2023, 47, 15710645, 133, 10.1016/j.plrev.2023.10.011 | |
40. | Luca Serena, Moreno Marzolla, Gabriele D’Angelo, Stefano Ferretti, A review of multilevel modeling and simulation for human mobility and behavior, 2023, 127, 1569190X, 102780, 10.1016/j.simpat.2023.102780 | |
41. | Christian Parkinson, Weinan Wang, Analysis of a Reaction-Diffusion SIR Epidemic Model with Noncompliant Behavior, 2023, 83, 0036-1399, 1969, 10.1137/23M1556691 | |
42. | D. Burini, N. Chouhad, Cross-diffusion models in complex frameworks from microscopic to macroscopic, 2023, 33, 0218-2025, 1909, 10.1142/S0218202523500458 | |
43. | Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Global properties of SARS‐CoV‐2 and IAV coinfection model with distributed‐time delays and humoral immunity, 2024, 47, 0170-4214, 9340, 10.1002/mma.10074 | |
44. | B. Bellomo, M. Esfahanian, V. Secchini, P. Terna, From a mathematical science of living systems to biology and economics, 2023, 47, 15710645, 264, 10.1016/j.plrev.2023.11.002 | |
45. | Ahmed M. Elaiw, Amani S. Alsulami, Aatef D. Hobiny, Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity, 2024, 9, 2473-6988, 1046, 10.3934/math.2024052 | |
46. | Bishal Chhetri, Krishna Kiran Vamsi Dasu, Stability and bifurcation analysis of a nested multi-scale model for COVID-19 viral infection, 2024, 12, 2544-7297, 10.1515/cmb-2024-0006 | |
47. | Vinicius V. L. Albani, Jorge P. Zubelli, Stochastic transmission in epidemiological models, 2024, 88, 0303-6812, 10.1007/s00285-023-02042-z | |
48. | Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun, Mathematical modeling of trend cycle: Fad, fashion and classic, 2024, 01672789, 134500, 10.1016/j.physd.2024.134500 | |
49. | Juan Pablo Agnelli, Claudio Armas, Damián A. Knopoff, Spatial Kinetic Modeling of Crowd Evacuation: Coupling Social Behavior and Infectious Disease Contagion, 2025, 17, 2073-8994, 123, 10.3390/sym17010123 | |
50. | Gabriel Benedetti, Ryan Weightman, Benedetto Piccoli, Optimizing overlapping non-pharmaceutical interventions with a socio-demographic model, 2025, 1972-6724, 10.1007/s40574-025-00477-4 | |
51. | Jorge P Zubelli, Jennifer Loria, Vinicius V L Albani, On the estimation of the time-dependent transmission rate in epidemiological models, 2025, 41, 0266-5611, 065001, 10.1088/1361-6420/add55b |