Processing math: 100%

Time-delayed follow-the-leader model for pedestrians walking in line

  • Received: 01 October 2014 Revised: 01 January 2015
  • Primary: 90B06, 90B20; Secondary: 91C99, 65L99.

  • We use the results of a pedestrian tracking experiment to identify a follow-the-leader model for pedestrians walking-in-line. We demonstrate the existence of a time-delay between a subject's response and the predecessor's corresponding behavior. This time-delay induces an instability which can be damped out by a suitable relaxation. By comparisons with the experimental data, we show that the model reproduces well the emergence of large-scale structures such as congestions waves. The resulting model can be used either for modeling pedestrian queuing behavior or can be incorporated into bi-dimensional models of pedestrian traffic.

    Citation: Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond. Time-delayed follow-the-leader model for pedestrians walking in line[J]. Networks and Heterogeneous Media, 2015, 10(3): 579-608. doi: 10.3934/nhm.2015.10.579

    Related Papers:

    [1] Mengjun Yu, Kun Li . A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations. Networks and Heterogeneous Media, 2024, 19(3): 1309-1335. doi: 10.3934/nhm.2024056
    [2] Andreas Hiltebrand, Siddhartha Mishra . Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145
    [3] Leqiang Zou, Yanzi Zhang . Efficient numerical schemes for variable-order mobile-immobile advection-dispersion equation. Networks and Heterogeneous Media, 2025, 20(2): 387-405. doi: 10.3934/nhm.2025018
    [4] Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
    [5] JinJun Yong, Changlun Ye, Xianbing Luo . A fully discrete HDG ensemble Monte Carlo algorithm for a heat equation under uncertainty. Networks and Heterogeneous Media, 2025, 20(1): 65-88. doi: 10.3934/nhm.2025005
    [6] Liuchao Xiao, Wenbo Li, Leilei Wei, Xindong Zhang . A fully discrete local discontinuous Galerkin method for variable-order fourth-order equation with Caputo-Fabrizio derivative based on generalized numerical fluxes. Networks and Heterogeneous Media, 2023, 18(2): 532-546. doi: 10.3934/nhm.2023022
    [7] Salim Meddahi, Ricardo Ruiz-Baier . A new DG method for a pure–stress formulation of the Brinkman problem with strong symmetry. Networks and Heterogeneous Media, 2022, 17(6): 893-916. doi: 10.3934/nhm.2022031
    [8] Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye . A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12(4): 619-642. doi: 10.3934/nhm.2017025
    [9] Timothy Blass, Rafael de la Llave . Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6(2): 241-255. doi: 10.3934/nhm.2011.6.241
    [10] Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021
  • We use the results of a pedestrian tracking experiment to identify a follow-the-leader model for pedestrians walking-in-line. We demonstrate the existence of a time-delay between a subject's response and the predecessor's corresponding behavior. This time-delay induces an instability which can be damped out by a suitable relaxation. By comparisons with the experimental data, we show that the model reproduces well the emergence of large-scale structures such as congestions waves. The resulting model can be used either for modeling pedestrian queuing behavior or can be incorporated into bi-dimensional models of pedestrian traffic.


    In this article, we prove the non-existence of solutions to the following quasilinear elliptic problem which has degenerate coercivity in their principal part by approximation,

    $ {div(a(x,u,u))+|u|q1u=λ,xΩ,u=0,xΩ, $ (1)

    where $ 1<p<N, q>1 $ and $ \lambda $ is a Radon measure. $ \Omega $ is a bounded smooth subset of $ \mathbb{R}^N(N>2) $. $ a(x, t, \xi):\Omega\times \mathbb{R}\times \mathbb{R}^N\to \mathbb{R}^N $ is the Carathéodory function (i.e: $ a(x, t, \xi) $ is measure on $ \Omega $ for every $ (t, \xi) $ in $ \mathbb{R}\times \mathbb{R}^N $, and $ a(\cdot, t, \xi) $ is continuous on $ \mathbb{R}\times \mathbb{R}^N $ for almost every $ x $ in $ \Omega $), such that the following assumptions hold,

    $ a(x,t,ξ)ξc|ξ|p(1+|t|)θ(p1), $ (2)
    $ |a(x,t,ξ)|c0(|ξ|p1+b(x)), $ (3)
    $ [a(x,t,ξ)a(x,t,ξ)][ξξ]>0, $ (4)

    for almost every $ x\in\Omega, t\in \mathbb{R}, \xi, \xi'\in \mathbb{R}^N $ with $ \xi\neq\xi' $, where $ 0\leq\theta<1 $, $ c $ and $ c_0 $ are two positive constants, $ b\in L^{p'}(\Omega) $ is a non-negative function, $ p' $ is the conjugate Hölder exponent of $ p $.

    It is well-known that[3,9], problem $ -\Delta u+|u|^{q-1}u = \delta_0 $ has no distributional solution if $ q\geq\frac{N}{N-2} $. On the other hand, if $ q<\frac{N}{N-2} $, then there exists a unique solution to

    $ {Δu+|u|q1u=δ0,xΩ,u=0,xΩ. $

    In the famous work [9], Brezis proved that if $ \{u_n\} $ is sequence of solution to the nonlinear elliptic problem

    $ {Δun+|un|q1un=fn,xΩ,un=0,xΩ, $ (5)

    with $ q>\frac{N}{N-2} $, and $ {f_n}\in L^\infty (\Omega) $ is a sequence functions such that, for any $ \varrho>0 $,

    $ limnΩBϱ(0)|fnf|=0. $

    Then $ u_n $ converges to the unique solution $ u $ to the following equation

    $ {Δu+|u|q1u=f,xΩ,u=0,xΩ. $

    This fact shows that $ B_\varrho(0) $ is a removable singularity set of solution to equation (5) provided $ q>\frac{N}{N-2} $. Orsina and Prignet[24] extended the result of [9] to more general operator $ -\text{div}(a(x, u, \nabla u)) $, where $ a(x, u, \nabla u) $ satisfies (2)-(4) with $ \theta = 0 $. The main results of [24] shown that problem (1) with $ \theta = 0 $ has a solution for every given bounded measure $ \lambda $ if $ q <\frac{r(p-1)}{r-p} $. Some other related results see [12,6,10,8,14,23,26,27,21,19,16] and references therein.

    The main goal of this paper is to study the non-existence of solutions to problem (1). More precisely, consider the limit of approximating equation (9)(see Theorem 1.2 below), our main task is to understand which is the limit of solutions to (9) and what equation it satisfies. A point worth emphasizing is that, even if $ p = 2 $, the convergence of solutions is not true if the right hand side are distributions weakly converging in $ W^{-1, 2}(\Omega) $, see [5] for some counterexamples.

    In order to state the main results of this paper, we need some definitions.

    Let $ K $ be a compact subset of $ \Omega $, $ r>1 $ is a real number. The $ r $ capacity of $ K $ respect to $ \Omega $ is defined as

    $ capr(K,Ω)=inf{urW1,r0:uCc(Ω),uχK}, $

    where $ \chi_K $ is the characteristic function of $ K $.

    Let $ \lambda $ be a bounded measure on $ \Omega $, we say that $ \lambda $ is concentrated on a set $ E $ if $ \lambda(B) = \lambda(B\cap E) $ for every Borel subset $ B $ of $ \Omega $. Thanks to the Hahn decomposition, $ \lambda $ can be decomposed as the difference of two nonnegative mutually singular measure, that is $ \lambda = \lambda^+-\lambda^- $.

    If $ \lambda $ is concentrated on a set $ E $, as a consequence of the fact that $ \lambda^+ $ and $ \lambda^- $ are mutually singular, we have that $ \lambda^+ $ and $ \lambda^- $ concentrated a set $ E^+ $ and $ E^- $ respectively and $ {E^+}\cap{E^-} = \emptyset $.

    Let $ \lambda = \lambda^+-\lambda^- $ be a measure, $ f_n = f^+_n-f^-_n $ approximations of $ \lambda $ in the following way:

    $ limn+Ωf+nφdx=Ωφdλ+,limn+Ωfnφdx=Ωφdλ, $ (6)

    for every function $ \varphi $, which is continuous and bounded on $ \Omega $, where $ \{f^+_n\} $ and $ \{f^-_n\} $ are sequences of nonnegative $ L^\infty(\Omega) $ functions. We not assume that $ f^+_n $ and $ f^-_n $ are the positive and negative part of $ f_n $. Observe that choosing $ \varphi\equiv1 $ in (6), we obtain

    $ f+nL1(Ω)C,fnL1(Ω)C. $ (7)

    For all $ k>0, s\in \mathbb{R} $, define

    $ Tk(s)=max{k,min{k,s}},Gk(s)=sTk(s). $

    Firstly we stale the existence result.

    Theorem 1.1. Let $ \Omega $ be a bounded smooth subset of $ \mathbb{R}^N(N>2) $, $ 1<p<N $, $ g\in L^1(\Omega) $ and (2)-(4) hold. Then there exists a unique entropy solution $ u\in W_0^{1, p}(\Omega) $ to problem

    $ {div(a(x,u,u))+|u|q1u=g,xΩ,u=0,xΩ. $ (8)

    if

    $ q<N(1θ)N(1+θ(p1)). $

    Moreover,

    $ uMp1(Ω),|u|Mp2(Ω), $

    where $ M^{p_1}, M^{p_2} $ represents the Marcinkiewicz space with exponent

    $ p1=N(p1)(1θ)Np,p2=N(p1)(1θ)N(1+θ(p1)). $

    Remark 1. The previous result gives existence and uniqueness of the entropy solution $ u\in W_0^{1, p}(\Omega) $ to (8) for every $ 1<p<N $ and $ 0<\theta<1 $. If $ \theta = 0 $, the same result for (8) can be proved by the same techniques of [2].

    Our main results are following:

    Theorem 1.2. Let $ 1<p<r\leq N $ and $ \lambda = \lambda^+-\lambda^- $ be a bounded Radon measure which is concentrated on a set $ E $ with zero $ r $ capacity. Let $ f_n = f^+_n-f^-_n $ be a sequence of $ L^\infty(\Omega) $ functions which converge to $ \lambda $ in the sense of (6). $ g\in L^1(\Omega) $ and let $ g_n $ is a sequence of $ L^\infty(\Omega) $ functions which converge to $ g $ weakly in $ L^1(\Omega) $. Suppose $ u_n\in W_0^{1, p}(\Omega) $ is the solution to problem:

    $ {div(a(x,un,un))+|un|q1un=fn+gn,xΩ,un=0,xΩ. $ (9)

    Then $ |\nabla u_n|^{p-1} $ strong converges to $ |\nabla u|^{p-1} $ in $ L^\sigma(\Omega) $ as $ n\to \infty $ for

    $ σ<pq(q+1+θ(p1))(p1), $

    if

    $ q>r(p1)[1+θ(p1)]rp, $ (10)

    where $ u $ is unique solution of (8). Moreover,

    $ limn+Ω|un|q1unφdx=Ω|u|q1uφdx+Ωφdλ,φC(Ω). $ (11)

    Remark 2. The above theorem shows that there is not a solution to problem (1) can be obtained by approximation, if $ q $ is large enough and the measure $ \lambda $ is concentrated on a set with zero $ r $ capacity.

    Remark 3. Boccardo et.al [7] considered the non-existence result to the following problem

    $ {div(a(x,u)(1+u)γ)+u=μ,xΩ,u=0,xΩ, $ (12)

    where $ \gamma>1 $ and $ \mu $ is a non-negative Radon measure, concentrated on a set $ E $ with zero harmonic capacity, $ a(x, \xi) $ satisfies (2)-(4) with $ \theta = 0 $, $ p = 2 $ and $ b(x) = 0 $. While in Theorem 1.2, $ \lambda $ is a bounded Radon measure concentrated on a set $ E $ with zero $ r $ capacity with $ p<r\leq N $, instead of $ p $ capacity. Therefore Theorem 1.2 is not a triviality extend the results of Theorem 4.1 of [7]. Furthermore, in Theorem 1.2, $ \theta(p-1)\in (0, p-1) $ since $ \theta\in (0, 1) $. Note that, in problem (12), they required that $ \gamma>1 $. It is worth pointing out that different ranges of $ \gamma $ have an important impact on the behavior of solutions to problem (12), more details see [25,18,1,17,13,4].

    The structure of this paper is as follows: Section 2 mainly gives some lemmas which play a important role in the process of proof of the main theorem. The proof of theorem 1.1 and 1.2 are given in Section 3.

    In the following, $ C $ is a constant and its value may changes from line to line.

    In order to prove Theorem 1.1 and 1.2, the following basic lemmas and definitions are required.

    Lemma 2.1. (see Lemma 2.1 of [22]) Let $ K^+ $ and $ K^- $ be two disjoin compact subsets of $ \Omega $ with zero $ r $ capacity, $ \lambda = \lambda^+-\lambda^- $ be a measure which is concentrated on a set with zero $ r $ capacity with $ 1<r\leq N $, Then there exist two functions $ \psi_\delta^+ $ and $ \psi_\delta^- $ in $ C_c^\infty(\Omega) $, such that

    $ 0ψ+δ1,0ψδ1,Ω|ψ+δ|rdxδ,Ω|ψδ|rdxδ,0Ω(1ψ+δ)dλ+δ,0Ω(1ψδ)dλδ,0Ωψδdλ+δ,0Ωψ+δ)dλδ,ψ+δ1,xK+,ψ+δ1,xK, $ (13)

    for every $ \delta>0 $.

    Definition 2.2. Let $ u $ be an measurable function on $ \Omega $ such that $ T_k(u)\in W_0^{1, p}(\Omega) $ for every $ k>0 $. Then there exist a unique measurable function $ v:\Omega\rightarrow \mathbb{R}^N $ such that

    $ Tk(u)=vχ{|u|k},a.einΩandforeveryk>0. $

    Define the gradient of $ u $ as the function $ v $ and denote it by $ v = \nabla u $.

    Definition 2.3. Let $ f\in L^1(\Omega) $, $ q>0 $ and (2)-(4) hold. A measurable function $ u $ is an entropy solution to problem (8), if $ T_k(u)\in W_0^{1, p}(\Omega) $ for every $ k>0 $, $ |u|^q\in L^1(\Omega) $ and

    $ Ωa(x,u,u)Tk(uφ)dx+Ω|u|q1uTk(uφ)dxΩgTk(uφ)dx, $

    for every $ \varphi\in W_0^{1, p}(\Omega)\cap L^1(\Omega) $.

    Definition 2.4. Marcinkiewicz space $ M^s(\Omega)(s>0) $ is the space composed of all the measurable functions $ v $ that satisfy

    $ |{|υ|k}|Cks, $

    for any $ k>0 $, where the constant $ C>0 $.

    If $ |\Omega| $ is bounded and $ 0<\varepsilon<s-1 $, then the following embedding relationship hold:

    $ Ls(Ω)Ms(Ω)Lsε(Ω). $

    Lemma 2.5. Let $ u\in M^s(\Omega) $ with $ s>0 $. If there exist a constant $ \rho>0 $, such that for any $ k>0 $,

    $ Ω|Tk(u)|pdxCkρ, $

    for some positive constant $ C $. Then

    $ |u|Mpss+ρ(Ω). $

    Proof. Let $ \sigma $ be a fixed positive real number, for every $ k>0 $,

    $ |{|u|>σ}|=|{|u|>σ,|u|k}|+|{|u|>σ,|u|>k}||{|Tk(u)|>σ}|+|{|u|>k}|. $ (14)

    Moreover,

    $ |{|Tk(u)|>σ}|1σpΩ|Tk(u)|pdxCkρσp. $ (15)

    Since $ u\in M^s(\Omega) $, by Definition 2.4, there exist a constant $ C $ such that

    $ |{|u|>k}|Cks. $ (16)

    Combining (14)-(16), we have

    $ |{|u|>σ}|Ckρσp+CksCkpss+ρ. $

    Therefore, by Definition 2.4, we get $ |\nabla u|\in M^{\frac{ps}{s+\rho}} $.

    Lemma 2.6. Let $ \{u_n\} $ be a sequence in $ W_0^{1, p}(\Omega) $ and assume that there exist positive constants $ \rho $ and $ C $ with $ p>\rho $, such that

    $ Ω|Tk(un)|pdxCkρ, $

    for any $ k $ and $ n $. Then there exists a subsequence, still denoted by $ \{u_n\} $, which converges to a measurable function $ v $ almost everywhere in $ \Omega $.

    Lemma 2.7. Let $ u $ be an entropy solution to (8), then

    $ {k<|u|<k+h}|u|pdxCkθ(p1). $

    Proof. For any given $ h $ and $ k>0, s\in \mathbb{R} $, define

    $ Tk,h(s)=Th(sTk(s))={sksgn(s),k|s|<k+h,h,|s|k+h,0,|s|k. $

    Take $ T_{k, h}(u) $ as test function in (8), we have

    $ {k<|u|<k+h}(a(x,u,u)u)dx+Ω|u|q1uTk,h(u)dx=ΩgTk,h(u)dx. $ (17)

    Since $ uT_{k, h}(u)\geq0 $, we find

    $ {k<|u|<k+h}(a(x,u,u)u)dxΩgTk,h(u)dx, $ (18)

    and

    $ ΩgTk,h(u)dxh{|u|>k}|g|dxC. $ (19)

    According to the assumption (2) and (17)-(19), we get,

    $ {k<|u|<k+h}|u|pdxCkθ(p1). $

    Proposition 1. Let $ u\in W_0^{1, p}(\Omega) $ be an entropy solution to (8) and satisfy

    $ {|u|<k}|u|pdxCkρ $ (20)

    for every $ k>0 $ and $ p>\rho $. Then $ u\in M^{p_1}(\Omega) $, where $ p_1 = {N(p-\rho)}/{(N-p)} $. More precisely, there exists $ C = C(N, p, \theta)>0 $ such that

    $ |{|u|>k}|Ckp1. $

    Proof. For every $ k>0 $, by the Sobolev embedding theorem and (20),

    $ Tk(u)pC(N,p,θ)Tk(u)pCkρp, $

    where $ p^* = \frac{Np}{N-p} $. For $ 0<\eta\leq k $, we have

    $ {|u|η}={|Tk(u)η|}. $

    Hence

    $ |{|u|>η}|Tk(u)ppηpC(kρ)ppηp. $

    Setting $ \eta = k $, we obtain

    $ |{|u|>k}|CkN(pρ)Np. $

    This fact shows that $ u\in M^{p_1}(\Omega) $ with $ p_1 = {N(p-\rho)}/{(N-p)} $.

    Proposition 2. Assume that $ u\in W_0^{1, p}(\Omega) $ is an entropy solution to (8), which satisfies (20) for every $ k $. Then $ \nabla u\in M^{p_2}(\Omega) $, where $ p_2 = {N(p-\rho)}/{(N-\rho)} $, that is there exists $ C = C(N, p, \theta)>0 $ such that

    $ |{|u|>h}|Chp2, $

    for every $ h>0 $.

    Proof. For $ k, \lambda>0 $, set

    $ ψ(k,λ)=|{|u|p>λ,|u|>k}|. $

    Using the fact that the function $ \lambda\mapsto\psi(k, \lambda) $ is nonincreasing, we get, for $ k, \lambda>0 $,

    $ ψ(0,λ)=|{|u|p>λ}|1λλ0ψ(0,s)dsψ(k,0)+1λλ0ψ(0,s)ψ(k,s)ds. $ (21)

    By Proposition 1,

    $ ψ(k,0)Ckp1, $ (22)

    where $ p_1 = {N(p-\rho)}/{(N-p)} $. Since $ \psi(0, s)-\psi(k, s) = |\{|\nabla u|^p>s, |u|<k\}| $, thanks to (20), we have

    $ 0ψ(0,s)ψ(k,s)ds={|u|<k}|u|pdxCkρ. $ (23)

    Combining (21)-(23), we arrive at

    $ ψ(0,λ)Ckρλ+Ckp1. $ (24)

    Let $ \frac{Ck^{\rho}}{\lambda} = Ck^{-p_1} $ and $ \lambda = h^p $, (24) implies that

    $ |{|u|>h}|ChN(pρ)Nρ. $

    That is $ \nabla u\in M^{p_2}(\Omega) $ with $ p_2 = {N(p-\rho)}/{(N-\rho)} $.

    In this section we prove Theorem 1.1 and 1.2 combining the results of Sections 2.

    In the proofs of Theorem 1.1 and 1.2, $ \omega(n, m, \delta) $ will denote any quantity (depending on $ n, m $ and $ \delta $) such that

    $ limδ0+limm+limn+ω(n,m,δ)=0. $

    If the quantity does not depend on one or more of the three parameters $ n, m $ and $ \delta $, we will omit the dependence from it in $ \omega $. For example, $ \omega(n, \delta) $ is any quantity such that

    $ limδ0+limn+ω(n,δ)=0. $

    The proof of Theorem 1.1 will be divided in several steps.

    Proof. (1)Uniqueness: Let $ u_1 $ and $ u_2 $ be two entropy solutions to equation (8). The proof of the fact that $ u_1 = u_2 $ will follow from the following four steps.

    Step 1. Assume that $ g_i\in L^1(\Omega), (i = 1, 2) $. Choosing $ T_k(u_1-T_hu_2) $ and $ T_k(u_2-T_hu_1) $ as test function in (8) respectively, we get

    $ I:=Ωa(x,u1,u1)Tk(u1Thu2)dx+Ωa(x,u2,u2)Tk(u2Thu1)dx=Ω|u1|q1u1Tk(u1Thu2)dxΩ|u2|q1u2Tk(u2Thu1)dx+Ωg1Tk(u1Thu2)dx+Ωg2Tk(u2Thu1)dx. $ (25)

    Step 2. Denote

    $ A0={xΩ:|u1u2|<k,|u1|<h,|u2|<h},A1={xΩ:|u1Thu2|<k,|u2|h},A2={xΩ:|u1Thu2|<k,|u2|<h,|u1|h}. $

    For $ x\in A_0 $,

    $ Tk(u1Thu2)=(u1u2) $

    and

    $ Tk(u2Thu1)=Tk(u2u1). $

    Thus, for every $ x\in A_0 $,

    $ Ωa(x,u1,u1)Tk(u1Thu2)dx+Ωa(x,u2,u2)Tk(u2Thu1)dx=A0[a(x,u1,u1)a(x,u2,u2)](u1u2)dx:=I0. $ (26)

    For $ x\in A_1 $, $ \nabla T_k(u_1-T_hu_2) = \nabla (u_1-h) = \nabla u_1 $. By (2), we get

    $ Ωa(x,u1,u1)Tk(u1Thu2)dx=A1a(x,u1,u1)u1dx0. $ (27)

    For $ x\in A_2 $, $ \nabla T_k(u_1-T_hu_2) = \nabla (u_1-u_2) $. Thus

    $ Ωa(x,u1,u1)Tk(u1Thu2)dxA2a(x,u1,u1)u2dx. $ (28)

    Similarly, denote

    $ A1={xΩ:|u2Thu1|<k,|u1|h},A2={xΩ:|u2Thu1|<k,|u1|<h,|u2|h}. $

    Then for $ x\in A_1^* $, $ \nabla T_k(u_2-T_hu_1) = \nabla (u_2-h) = \nabla u_2 $. By (2), we get

    $ Ωa(x,u2,u2)Tk(u2Thu1)dx=A1a(x,u2,u2)u2dx0. $ (29)

    For $ x\in A_2^* $, $ \nabla T_k(u_2-T_hu_1) = \nabla (u_2-u_1) $. Thus

    $ Ωa(x,u2,u2)Tk(u2Thu1)dxA2a(x,u2,u2)u1dx. $ (30)

    Summing up (26)-(30) in the form $ I\geq I_0-I_1 $, where

    $ I1=A2a(x,u1,u1)u2dx+A2a(x,u2,u2)u1dx:=I11+I12. $

    Now, we estimate $ I_{11} $. By the Hölder inequality and (3), we have

    $ I11a(x,u1,u1)Lp({h|u1|h+k})u2Lp({hk|u2|h})c0(u1p1Lp({h|u1|h+k})+b(x)Lp({|u1|h}))u2Lp({hk|u2|h}). $

    Therefore, by Lemma 2.7 and Proposition 2, $ I_{11}\rightarrow0 $ as $ h\rightarrow\infty $ for every $ k>0 $. $ I_{12}\rightarrow0 $ as $ h\rightarrow\infty $ for every $ k>0 $ can be obtained in the same way.

    Hence, we find

    $ Ωa(x,u1,u1)Tk(u1Thu2)dx+Ωa(x,u2,u2)Tk(u2Thu1)dx=A0[a(x,u1,u1)a(x,u2,u2)](u1u2)dx+ε(h). $ (31)

    Step 3. Now estimate the terms on the right hand side of (25). Denote

    $ B0={xΩ:|u1|<h,|u2|<h},B1={xΩ:|u1|h},B2={xΩ:|u2|h}. $

    For $ x\in B_0 $, since $ T_k(u_1-T_hu_2) = T_k(u_1-u_2) $ and $ T_k(u_2-T_hu_1) = T_k(u_2-u_1) $, we arrive at

    $ Ω|u1|q1u1Tk(u1Thu2)dx+Ω|u2|q1u2Tk(u2Thu1)dx=B0(|u1|q1u1|u2|q1u2)Tk(u1u2)dx0, $ (32)

    and

    $ Ωg1Tk(u1Thu2)dx+Ωg2Tk(u2Thu1)dx=B0(g1g2)Tk(u1u2)dx0. $ (33)

    For $ x\in B_1 $, since $ T_k(u_2-T_hu_1) = T_k(u_2-h) $. Then

    $ Ω|u1|q1u1Tk(u1Thu2)dx+Ω|u2|q1u2Tk(u2Thu1)dxkB1(|u1|q1u1+|u2|q1u2)dx:=J1, $

    and

    $ Ωg1Tk(u1Thu2)dx+Ωg2Tk(u2Thu1)dxkB1(|g1|+|g2|)dx:=J2. $

    For $ x\in B_2 $, since $ T_k(u_1-T_hu_2) = T_k(u_1-h) $, we get

    $ Ω|u1|q1u1Tk(u1Thu2)dx+Ω|u2|q1u2Tk(u2Thu1)dxkB2(|u1|q1u1+|u2|q1u2)dx:=J1, $

    and

    $ Ωg1Tk(u1Thu2)dx+Ωg2Tk(u2Thu1)dxkB2(|g1|+|g2|)dx:=J2. $

    According to $ |B_1|\rightarrow0, |B_2|\rightarrow0 $ as $ h\rightarrow\infty $ and $ |u|^q\in L^1(\Omega) $ for fixed $ k>0 $, we get

    $ J1+J2+J1+J20ash. $ (34)

    Step 4. Combining (25) and (31)-(34), we have

    $ A0[a(x,u1,u1)a(x,u2,u2)](u1u2)dxε(h), $

    where $ \varepsilon(h)\rightarrow0 $ as $ h\rightarrow\infty $. Since $ A_0 $ converges to $ \{x\in\Omega:|u_1-u_2|<k\} $ by measure as $ h\rightarrow\infty $ for fixed $ k>0 $, we conclude that

    $ {|u1u2|<k}[a(x,u1,u1)a(x,u2,u2)](u1u2)dx0, $

    for all $ k>0 $. This fact, combine with (4), implies that $ \nabla u_1 = \nabla u_2 $ a.e in $ \Omega $. Then we get $ u_1 = u_2 $ a.e in $ \Omega $.

    (2) Existence:

    Step 1. Let

    $ F(x,u)=g(x)β(u), $

    where $ \beta(u) = |u|^{q-1}u $, which is continuous with respect to $ u $. Then $ g(x) = F(x, 0)\in L^1(\mathbb{R}^N) $ and $ \beta $ is monotonous nondecreasing with respect to $ u $ with $ \beta(0) = 0 $ and $ \beta(u)u\geq0 $.

    Let $ g_n\in C_0^\infty $, such that $ g_n $ converges to $ g $ in $ L^1(\Omega) $, with $ \|g_n\|_{L^1(\Omega)}\leq\|g\|_{L^1(\Omega)} $ for every $ n\geq1 $. Define $ \beta_n(s) = T_n(\beta) $. In this way, $ |\beta_n(s)|\leq|\beta(s)| $ for every $ s\in \mathbb{R} $ and $ x\in \Omega $. Finally we take

    $ γn(s)=βn(s)+1n|s|p2s. $

    Then by [20], there exists $ u_n\in W_0^{1, p}(\Omega) $ such that

    $ {diva(x,un,un)+γn(x,un)=gn,xΩ,un=0,xΩ, $ (35)

    holds in the sense of distributions in $ \Omega $.

    By density arguments, we can take $ T_h(u_n-T_k(u_n)) $ and $ T_k(u_n) $ as the test function in (35) respectively, we have

    $ {k|un|<k+h}a(x,un,un)undx+{|un|>k}γnTh(unTk(un))dx={|un|>k}gnTh(unTk(un))dx, $ (36)

    and

    $ {|un|>k}a(x,un,un)undx+ΩγnTk(un)dx=ΩgnTk(un)dx. $ (37)

    Combine (36) with (2) (fix the ellipticity constant $ c = 1 $) and $ \gamma_nT_h(u_n-T_k(u_n))\geq0 $, we get,

    $ {k<|un|<k+h}|un|pdxhkθ(p1){|un|>k}gndxhkθ(p1)gnL1(Ω)=Ckθ(p1). $ (38)

    Since $ a(x, u_n, \nabla u_n)\cdot\nabla u_n\geq 0 $ by (2), we have

    $ {|un|>k}|γn(un)|dx{|un|>k}|gn|dxgnL1(Ω)C. $ (39)

    Combine (37) with $ \gamma_nT_k(u_n)\geq0 $, we have

    $ {|un|<k}|un|pdxCk1+θ(p1). $ (40)

    Step 2. Convergence. Using (38) and Proposition 1, we have $ |\{|u_n|>k\}| $ is bounded uniformly for every $ k>0 $. Thanks to (40), we see that $ \{\nabla T_k(u_n)\} $ is bounded in $ L^p_{\text loc}(\Omega) $ for every $ k>0 $.

    Next we prove that $ u_n\rightarrow u $ locally in measure.

    For $ t, \epsilon>0 $, we have

    $ {|unum|>t}{|un|>k}{|um|>k}{|Tk(un)Tk(um)|>t}. $

    Thus

    $ |{|unum|>t}||{|un|>k}|+|{|um|>k}|+|{|Tk(un)Tk(um)|>t}|. $

    Choosing $ k $ large enough such that $ |\{|u_n|>k\}|<\epsilon $ and $ |\{|u_m|>k\}|<\epsilon $. Since $ \{\nabla T_k(u_n)\}_n $ is bounded in $ L^p(\Omega) $ and $ T_k(u_n)\in W_0^{1, p}(\Omega) $ for every $ k>0 $. Assume that $ \{T_k(u_n)\} $ is a Cauchy sequence in $ L^q(\Omega\cap B_R) $ for any $ q<pN/(N-p) $ and any $ R>0 $,

    $ Tk(un)Tk(u)inLploc(Ω)anda.einΩ. $

    Then

    $ |{|Tk(un)Tk(um)|>t}BR|tqΩBR|Tk(un)Tk(um)|qdxϵ, $

    for all $ n, m\geq n_0(k, t, R) $. This show that $ \{u_n\} $ is a Cauchy sequence in $ B_R $. Hence that $ u_n\rightarrow u $ locally.

    Now to prove that $ \nabla u_n $ converges to some function $ v $ locally. We need to prove that $ \{\nabla u_n\} $ is a Cauchy sequence in any ball $ B_R $. Let $ t, \epsilon>0 $ again, then

    $ {|unum|>t}BR{|unum|k,|un|l,|um|l,|unum|>t}{|un|>l}{|um|>l}({|unum|>k}BR). $

    Choose $ l $ large enough such that $ |\{|\nabla u_n|>l\}|\leq\epsilon $ for all $ n\in \mathbb{N} $. If $ a $ is a continuous function independent of $ x $, then by (4), there exists a $ \mu>0 $, such that $ |\xi|<l, |\xi'|<l $ and $ |\xi-\xi'|>t $ means

    $ [a(x,t,ξ)a(x,t,ξ)][ξξ]μ. $

    This is a consequence of continuity and strict monotonicity of $ a $. Set

    $ dn=gnγn(x,un). $ (41)

    Taking $ T_k(u_n-u_m) $ as the test function of (35) and by (37), (41), we have

    $ {|unum|<k}[a(x,un,un)a(x,um,um)](unum)dx=Ω(dndm)Tk(unum)dxCk1+θ(p1). $

    Then

    $ {|unum|k,|un|l,|um|l,|unum|>t}1μ{|unum|<k}[a(x,un,un)a(x,um,um)](unum)dx1μCk1+θ(p1)ϵ, $

    if $ k $ is small enough such that $ k^{1+\theta(p-1)}\leq\mu\epsilon/C $.

    Since $ l $ and $ k $ have been confirmed, if $ n_0 $ large enough, we have $ |(\{|u_n-u_m|>k\}\cap B_R)|\leq\epsilon $ for $ n, m\geq n_0 $. Then we get $ |\{|\nabla u_n-\nabla u_m|>t\}\cap B_R|\leq4\epsilon $. This prove that $ \nabla u_n $ converges to some function $ v $ locally.

    Finally, since $ \{\nabla T_k(u_n)\}_n\in L^p(\Omega) $ for every $ k>0 $, it converges weakly to $ \{\nabla T_k(u)\} $ in $ L^p_{\text loc}(\Omega) $. We have $ u\in W_0^{1, p}(\Omega) $ and $ \nabla u = v $ a.e in $ \Omega $.

    Step 3. In order to prove the existence of the solution completely, we still need to prove that sequence $ \{a(x, u, \nabla u)\}_n $ is bounded in $ L^q_{\text loc}(\Omega) $ for all

    $ q(1,N(1θ)N(1+θ(p1))). $

    Indeed, by Proposition 2, $ |\nabla u_n|^{p-1}\in M^{\frac{N(1-\theta)}{N-(1+\theta(p-1))}}\subset L^q_{\text loc}(\Omega) $. And by (3), we have $ |a(x, u_n, \nabla u_n)|\in L^{p'}(\Omega)\subset L^q_{\text loc}(\Omega) $. According to the Nemitskii's theorem, $ \nabla u_n\rightarrow\nabla u $ implies that

    $ a(x,un,un)a(x,u,u). $

    It follows that

    $ a(x,u,u)MN(1θ)N(1+θ(p1))Lqloc(Ω), $

    for all $ q\in\left(1, \frac{N(1-\theta)}{N-(1+\theta(p-1))}\right) $.

    In this subsection, we give the proof of Theorem 1.2 following some ideas in [11,22].

    Proof. Step 1 (A priori estimates). Firstly, choosing $ T_k(u_n)(1-\varphi_\delta)^s $ as test function in the weak formulation of (9), where $ s = \frac{\eta}{\eta-p+1} $ and $ \eta $ will be given in (48), we have

    $ Ωa(x,un,un)Tk(un)(1φδ)sdx+Ω|un|q1unTk(un)(1φδ)sdx=sΩa(x,un,un)φδTk(un)(1φδ)s1dx+ΩgnTk(un)(1φδ)sdx+Ωf+nTk(un)(1φδ)sdx+ΩfnTk(un)(1φδ)sdx. $ (42)

    By (2), we get

    $ Ωa(x,un,un)Tk(un)dμcΩ|Tk(un)|p(1+|Tk(un)|)θ(p1)dμ, $ (43)

    here $ d\mu: = (1-\varphi_\delta)^sdx $.

    Since $ u_nT_k(u_n)\geq0 $,

    $ Ω|un|q1unTk(un)(1φδ)sdx{|un|k}|un|q1unTk(un)dμkq+1μ({|un|k}). $ (44)

    Using (3) and the Young inequality, we find

    $ Ω|a(x,un,un)φδTk(un)(1φδ)s1|dxc0kΩ(|un|p1+b(x))(|φ+δ|+|φ+δ|)(1φδ)s1dxCkΩ(|un|(p1)r+|b(x)|r)(1φδ)(s1)rdx+CkΩ(|φ+δ|r+|φ+δ|r)dxCk(Ω(|un|(p1)r+|b(x)|r)(1φδ)(s1)rdx+δ). $ (45)

    Combine (42)-(45), by (7) and $ \{g_n\}\in L^1(\Omega) $, $ b\in L^{p'}(\Omega) $, we have

    $ Ω|Tk(un)|p(1+|Tk(un)|)θ(p1)dμ+kq+1μ({|un|k})Ck(Ω|un|(p1)r(1φδ)(s1)rdx+δ+μ(Ω). $ (46)

    For a fixed $ \sigma\geq0 $, thanks to (46), we get

    $ μ({|un|>σ})=μ({|un|>σ,|un|<k})+μ({|un|>σ,|un|k})1σpΩ|Tk(un)|pdμ+μ({|u|>k})(1+k)θ(p1)σpΩ|Tk(un)|p(1+|Tk(un)|)θ(p1)dμ+μ({|u|>k})C(Ω|un|(p1)r(1φδ)(s1)rdx+δ+μ(Ω))((1+k)1+θ(p1)σp+1kq), $

    which implies

    $ μ|{|un|>σ}|Cσpqq+1+θ(p1)(Ω|un|(p1)r(1φδ)(s1)rdx+δ+μ|Ω|). $ (47)

    Let

    $ (p1)r<η<pqq+1+θ(p1). $ (48)

    Clearly, such $ \eta $ exists by (10). In view of (47)-(48), we have

    $ Ω|un|ηdμC(Ω|un|(p1)r(1φδ)(s1)rdx+δ+μ(Ω)). $

    By the Holder's inequality,

    $ Ω|un|(p1)r(1φδ)(s1)rdxC(Ω|un|ηdμ)(p1)rηC(Ω|un|(p1)r(1φδ)(s1)rdx+δ+μ|Ω|)(p1)rη. $

    By Lemma 2.1, $ 1-\varphi_\delta $ is zero both on a neighbourhood of $ K^+ $ and $ K^- $. Hence

    $ Ω|un|(p1)r(1φδ)(s1)rdxC(δ+μ|Ω|)C(δ). $ (49)

    Using (46) and (49), we conclude that

    $ Ω|Tk(un)|pdxCk1+θ(p1). $ (50)

    According to Lemma 2.5, we have $ |\nabla u_n|\in M^s(\Omega) $, where $ s = \frac{pq}{q+1+\theta(p-1)} $.

    By (50) and Lemma 2.6, there exists a subsequence, still denoted by $ u_n $, which converges to a measurable function $ u $ almost everywhere in $ \Omega $. So $ T_k(u_n)\rightarrow T_k(u) $ in $ \Omega $ for every $ k>0 $.

    Since $ T_k(u_n)\in W_0^{1, p}(\Omega) $, by the weak lower semi-continuity of the norm, $ T_k(u)\in W_0^{1, p}(\Omega) $ for every $ k>0 $. Thus $ u $ has an gradient $ \nabla u $ in the sense of Definition 2.2, as a consequence of the a priori estimates on $ \nabla u_n $ and (4), we have

    $ a(x,un,un)a(x,u,u)stronglyin(Ls(Ω))N, $ (51)

    for every $ s<\frac{pq}{(q+1+\theta(p-1))(p-1)} $.

    Step 2 (Energy estimates). Let $ \psi_\delta = \psi_\delta^++\psi_\delta^- $, where $ \psi_\delta^+ $ and $ \psi_\delta^- $ are as in Lemma 2.1. Then

    $ {un>2m}uqn(1ψδ)dx=ω(n,m,δ), $ (52)

    and

    $ {un<2m}|un|q(1ψδ)dx=ω(n,m,δ). $ (53)

    Choose $ \beta_m(u_n)(1-\psi_\delta) $ as test function in the weak formulation of (9), where

    $ βm(s)={sm1,m<s2m,1,s>2m,0,sm. $

    We obtain

    $ 1m{m<un<2m}a(x,un,un)un(1ψδ)dx(A)Ωa(x,un,un)ψδβm(un)dx(B)+Ω|un|q1unβm(un)(1ψδ)dx(C)=Ωf+nβm(un)(1ψδ)dx(D)Ωfnβm(un)(1ψδ)dx(E)+Ωgnβm(un)(1ψδ)dx.(F) $

    Since $ (A) $ and $ -(E) $ are non-negative, we can get rid of them. And since $ \beta_m(u_m) $ converges to $ \beta_m(u) $ almost everywhere in $ \Omega $ and in the weak$ \ast $topology of $ L^\infty(\Omega) $, $ \beta_m(u_n) $ converges to zero in the weak$ \ast $topology of $ L^\infty(\Omega) $ as $ m\rightarrow \infty $, we have

    $ (B)=Ωa(x,u,u)ψδβm(u)dx+ω(n)=ω(n,m), $

    and

    $ (C){un>2m}uqn(1ψδ)dx. $

    By $ \psi_\delta = \psi_\delta^++\psi_\delta^- $ and (6),

    $ (D)Ωf+n(1ψδ)dx=Ω(1ψ+δ)dλ+Ωψδdλ+ω(n)=ω(n,δ), $

    and

    $ (F)=ω(n,m). $

    We get (52), the proof of (53) is identical.

    Step 3 (Passing to the limit). Now we show that $ u $ is an entropy solution to (8) with datum $ g $. Choose $ T_k(u_n-\varphi)(1-\psi_\delta) $ as test function in the weak formulation of (9), we get

    $ Ωa(x,un,un)Tk(unφ)(1ψδ)dx(A)Ωa(x,un,un)ψδTk(unφ)dx(B)+Ω|un|q1unTk(unφ)(1ψδ)dx(C)=Ωf+nTk(unφ)(1ψδ)dx(D) $
    $ ΩfnTk(unφ)(1ψδ)dx(E)+ΩgnTk(unφ)(1ψδ)dx.(F) $

    By (13),

    $ (A)={|unφ|<k}a(x,un,un)un(1ψδ)dx{|unφ|<k}a(x,un,un)φ(1ψδ)dx, $

    while

    $ {|unφ|<k}a(x,un,un)φ(1ψδ)dx={|uφ|<k}a(x,u,u)φdx+ω(n,δ). $

    The Fatou lemma implies

    $ {|uφ|<k}a(x,u,u)udxlimninf{|unφ|<k}a(x,un,un)undx. $

    Using (13), (51), we have

    $ (B)=Ωa(x,u,u)ψδTk(uφ)dx+ω(n)=ω(n,δ). $

    While

    $ (F)=ΩgTk(uφ)dx+ω(n,δ), $

    and

    $ |(D)|+|(E)|=Ω(f+n+fn)Tk(unφ)(1ψδ)dxkΩ(f+n+fn)(1ψδ)dx=ω(n,δ). $

    So that we only need to deal with $ (C) $. Let $ m>k+\|\varphi\|_{L^\infty(\Omega)} $ be fixed,

    $ (C)={2mun2m}|un|q1unTk(unφ)(1ψδ)dx(G)+k{un>2m}uqn(1ψδ)dx+k{un<2m}|un|q(1ψδ)dx.(H) $

    By (52) and (53), we get

    $ (H)=ω(n,m,δ), $

    and

    $ (G)=Ω|u|q1uTk(uφ)(1ψδ)dx+ω(n,m)=Ω|u|q1uTk(uφ)dx+ω(n,m,δ). $

    Summing up the result of (A)-(H), we have

    $ Ωa(x,u,u)Tk(uφ)dx+Ω|u|q1uTk(uφ)dxΩgTk(uφ)dx. $

    Thus $ u $ is the entropy solution of (8).

    Finally we prove (10). Choose $ \varphi\in C_c^\infty(\Omega) $ as test function in the weak formulation of (9), we get

    $ Ωa(x,un,un)φdx+Ω|un|q1unφdx=Ω(fn+gn)φdx. $

    Thanks to the assumptions of $ f_n $, $ g_n $ and by (51),

    $ limn+Ω|un|q1unφdx=Ωa(x,u,u)φdx+Ωgφdx+Ωφdλ. $ (54)

    Since the entropy solution of (8) is also a distributional solution of the same problem, for the same $ \varphi $,

    $ Ωa(x,u,u)φdx+Ω|u|q1uφdx=Ωgφdx. $ (55)

    Together with (54) and (55), we find

    $ limn+Ω|un|q1unφdx=Ω|u|q1uφdx+Ωφdλ. $

    Thus (11) holds for every $ \varphi\in C_c^\infty(\Omega) $. Since $ |u_n|^{q-1}u_n $ is bounded in $ L^1(\Omega) $, (11) can be extended by density to the functions in $ C_c(\Omega) $.

    The authors also would like to thank the anonymous referees for their valuable comments which has helped to improve the paper.

    [1] C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heter. Media., 6 (2011), 351-381. doi: 10.3934/nhm.2011.6.351
    [2] A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955
    [3] R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New-York, 1963.
    [4] N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345. doi: 10.1142/S0218202508003054
    [5] N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations and perspectives, SIAM Review, 53 (2011), 409-463. doi: 10.1137/090746677
    [6] S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heter. Media., 6 (2011), 401-423. doi: 10.3934/nhm.2011.6.401
    [7] C. Burstedde, K. Klauck , A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525. doi: 10.1016/S0378-4371(01)00141-8
    [8] R. E. Chandler, R. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operations Res., 6 (1958), 165-184. doi: 10.1287/opre.6.2.165
    [9] M. Chraibi, A. Seyfried and A. Schadschneider, Generalized centrifugal-force model for pedestrian dynamics, Phys. Rev. E, 82 (2010), 046111. doi: 10.1103/PhysRevE.82.046111
    [10] R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567. doi: 10.1002/mma.624
    [11] V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247. doi: 10.1142/S0218202508003017
    [12] D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567. doi: 10.1287/opre.9.4.545
    [13] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha and P. Dubey, Clearpath: Highly parallel collision avoidance for multi-agent simulation, in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 177-187. doi: 10.1145/1599470.1599494
    [14] P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068. doi: 10.1007/s10955-013-0805-x
    [15] P. Degond, C. Appert-Rolland, J. Pettre and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839. doi: 10.3934/krm.2013.6.809
    [16] P. Degond and J. Hua, Self-Organized Hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013), 299-319. doi: 10.1016/j.jcp.2012.11.033
    [17] M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362. doi: 10.1016/j.jde.2010.10.015
    [18] D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310. doi: 10.1002/bs.3830360405
    [19] D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415.
    [20] D. Helbing and P. Molnàr, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286. doi: 10.1103/PhysRevE.51.4282
    [21] D. Helbing and P. Molnàr, Self-organization phenomena in pedestrian crowds, in Self-Organization of Complex Structures: From Individual to Collective Dynamics (ed. F. Schweitzer), Gordon and Breach, London, 1997, 569-577.
    [22] L. F. Henderson, On the fluid mechanics of human crowd motion, Transp. Res., 8 (1974), 509-515. doi: 10.1016/0041-1647(74)90027-6
    [23] S. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control and differential games, Optimal Control Appl. Methods, 24 (2003), 153-172. doi: 10.1002/oca.727
    [24] W. H. Huang, B. R. Fajen, J. R. Fink and W. H. Warren, Visual navigation and obstacle avoidance using a steering potential function, Robotic and Autonomous Systems, 54 (2006), 288-299. doi: 10.1016/j.robot.2005.11.004
    [25] L. Huang, S. C. Wong, M. Zhang, C.-W. Shu and W. H. K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. B, 43 (2009), 127-141. doi: 10.1016/j.trb.2008.06.003
    [26] R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. B, 36 (2002), 507-535. doi: 10.1016/S0191-2615(01)00015-7
    [27] R. L. Hughes, The flow of human crowds, Ann. Rev. Fluid Mech., 35 (2003), 169-182. doi: 10.1146/annurev.fluid.35.101101.161136
    [28] A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line - Fundamental diagrams, Phys. Rev. E, 85 (2012), 036111.
    [29] A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line. II. stepping behavior, Phys. Rev. E, 86 (2012), 046111.
    [30] D. Jezbera, D. Kordek, J. Kříž, Petr Šeba and P. Šroll, Walkers on the circle, J. Stat. Mech. Theory Exp., 2010 (2010), L01001. doi: 10.1088/1742-5468/2010/01/L01001
    [31] Y.-q. Jiang, P. Zhang, S. C. Wong and R.-x. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635. doi: 10.1016/j.physa.2010.05.003
    [32] A. Johansson, Constant-net-time headway as a key mechanism behind pedestrian flow dynamics, Phys. Rev. E, 80 (2009), 026120. doi: 10.1103/PhysRevE.80.026120
    [33] S. Lemercier, A. Jelić, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer Graphics Forum, 31 (2012), 489-498. doi: 10.1111/j.1467-8659.2012.03028.x
    [34] S. Lemercier, M. Moreau, M. Moussaïd, G. Theraulaz, S. Donikian and J. Pettré, Reconstructing motion capture data for human crowd study, in Motion in Games, Lecture Notes in Computer Science, 7060, Springer, Berlin-Heidelberg, 2011, 365-376. doi: 10.1007/978-3-642-25090-3_31
    [35] B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion models, Netw. Heterog. Media, 6 (2011), 485-519. doi: 10.3934/nhm.2011.6.485
    [36] M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-organized Pedestrian Crowds, PLoS Comput. Biol., 8 (2012), e1002442.
    [37] M. Moussaïd, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Nat. Acad. Sci., 108 (2011), 6884-6888.
    [38] K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider, Extended floor field CA model for evacuation dynamics, IEICE Transp. Inf. & Syst., E87-D (2004), 726-732.
    [39] J. Ondrej, J. Pettré, A. H. Olivier and S. Donikian, A Synthetic-vision based steering approach for crowd simulation, in SIGGRAPH'10, 29 (2010), p123. doi: 10.1145/1833349.1778860
    [40] S. Paris, J. Pettré and S. Donikian, Pedestrian reactive navigation for crowd simulation: A predictive approach, Eurographics, 26 (2007), 665-674. doi: 10.1111/j.1467-8659.2007.01090.x
    [41] J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual and S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 189-198.
    [42] B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x
    [43] L. Pontrjagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl. Ser. 2, 1 (1955), 95-110.
    [44] C. W. Reynolds, Steering behaviors for autonomous characters, in Proceedings of Game Developers Conference, San Jose, California, 1999, 763-782.
    [45] A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech. Theory Exp., 2005 (2005), P10002. doi: 10.1088/1742-5468/2005/10/P10002
    [46] A. Seyfried, B. Steffen and T. Lippert, Basics of modelling the pedestrian flow, Phys. A, 368 (2006), 232-238. doi: 10.1016/j.physa.2005.11.052
    [47] J. van den Berg and H. Overmars, Planning time-minimal safe paths amidst unpredictably moving obstacles, Int. Journal on Robotics Research, 27 (2008), 1274-1294.
    [48] J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. Theory Exp., 2012 (2012), P02002. doi: 10.1088/1742-5468/2012/02/P02002
  • This article has been cited by:

    1. A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, S. Aly, Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response, 2023, 616, 03784371, 128604, 10.1016/j.physa.2023.128604
    2. D. Burini, N. Chouhad, Virus models in complex frameworks: Towards modeling space patterns of SARS-CoV-2 epidemics, 2022, 32, 0218-2025, 2017, 10.1142/S0218202522500476
    3. N. Bellomo, F. Brezzi, M. A. J. Chaplain, New trends of mathematical sciences towards modeling virus pandemics in a globally connected world, 2022, 32, 0218-2025, 1923, 10.1142/S0218202522010011
    4. A. M. Elaiw, A. S. Shflot, A. D. Hobiny, Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model, 2022, 8, 2473-6988, 6136, 10.3934/math.2023310
    5. A. M. Elaiw, N. H. AlShamrani, E. Dahy, A. A. Abdellatif, Aeshah A. Raezah, Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection, 2023, 11, 2227-7390, 592, 10.3390/math11030592
    6. Ahmed M. Elaiw, Abdullah J. Alsaedi, Afnan Diyab Al Agha, Aatef D. Hobiny, Global Stability of a Humoral Immunity COVID-19 Model with Logistic Growth and Delays, 2022, 10, 2227-7390, 1857, 10.3390/math10111857
    7. Giulia Bertaglia, Chuan Lu, Lorenzo Pareschi, Xueyu Zhu, Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread, 2022, 32, 0218-2025, 1949, 10.1142/S0218202522500452
    8. Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Modeling and Stability Analysis of Within-Host IAV/SARS-CoV-2 Coinfection with Antibody Immunity, 2022, 10, 2227-7390, 4382, 10.3390/math10224382
    9. Ryan Weightman, Anthony Sbarra, Benedetto Piccoli, Coupling compartmental models with Markov chains and measure evolution equations to capture virus mutability, 2022, 32, 0218-2025, 2099, 10.1142/S0218202522500506
    10. Jiying Ma, Shasha Ma, Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China, 2022, 20, 1551-0018, 3070, 10.3934/mbe.2023145
    11. Marcelo Bongarti, Luke Diego Galvan, Lawford Hatcher, Michael R. Lindstrom, Christian Parkinson, Chuntian Wang, Andrea L. Bertozzi, Alternative SIAR models for infectious diseases and applications in the study of non-compliance, 2022, 32, 0218-2025, 1987, 10.1142/S0218202522500464
    12. N. Bellomo, M. Esfahanian, V. Secchini, P. Terna, What is life? Active particles tools towards behavioral dynamics in social-biology and economics, 2022, 43, 15710645, 189, 10.1016/j.plrev.2022.10.001
    13. Ahmed M. Elaiw, Abdulsalam S. Shflot, Aatef D. Hobiny, Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host, 2022, 10, 2227-7390, 4756, 10.3390/math10244756
    14. Henrique A. Tórtura, José F. Fontanari, The synergy between two threats: Disinformation and COVID-19, 2022, 32, 0218-2025, 2077, 10.1142/S021820252250049X
    15. Juan Pablo Agnelli, Bruno Buffa, Damián Knopoff, Germán Torres, A Spatial Kinetic Model of Crowd Evacuation Dynamics with Infectious Disease Contagion, 2023, 85, 0092-8240, 10.1007/s11538-023-01127-6
    16. A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, Global stability of a delayed SARS-CoV-2 reactivation model with logistic growth, antibody immunity and general incidence rate, 2022, 61, 11100168, 12475, 10.1016/j.aej.2022.05.034
    17. A. D. Al Agha, A. M. Elaiw, Global dynamics of SARS-CoV-2/malaria model with antibody immune response, 2022, 19, 1551-0018, 8380, 10.3934/mbe.2022390
    18. Diletta Burini, Nadia Chouhad, Nicola Bellomo, Waiting for a Mathematical Theory of Living Systems from a Critical Review to Research Perspectives, 2023, 15, 2073-8994, 351, 10.3390/sym15020351
    19. Ahmed M. Elaiw, Afnan D. Al Agha, Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model, 2022, 10, 2227-7390, 4390, 10.3390/math10224390
    20. A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny, Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity, 2022, 20, 1551-0018, 3873, 10.3934/mbe.2023182
    21. Ali Algarni, Afnan D. Al Agha, Aisha Fayomi, Hakim Al Garalleh, Kinetics of a Reaction-Diffusion Mtb/SARS-CoV-2 Coinfection Model with Immunity, 2023, 11, 2227-7390, 1715, 10.3390/math11071715
    22. Matthew O. Adewole, Farah A. Abdullah, Majid K. M. Ali, 2024, 3203, 0094-243X, 030007, 10.1063/5.0225272
    23. Elsayed Dahy, Ahmed M. Elaiw, Aeshah A. Raezah, Hamdy Z. Zidan, Abd Elsattar A. Abdellatif, Global Properties of Cytokine-Enhanced HIV-1 Dynamics Model with Adaptive Immunity and Distributed Delays, 2023, 11, 2079-3197, 217, 10.3390/computation11110217
    24. Nicola Bellomo, Jie Liao, Annalisa Quaini, Lucia Russo, Constantinos Siettos, Human behavioral crowds review, critical analysis and research perspectives, 2023, 33, 0218-2025, 1611, 10.1142/S0218202523500379
    25. Diletta Burini, Damian A. Knopoff, Epidemics and society — A multiscale vision from the small world to the globally interconnected world, 2024, 34, 0218-2025, 1567, 10.1142/S0218202524500295
    26. Ahmed M. Elaiw, Aeshah A. Raezah, Matuka A. Alshaikh, Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies, 2023, 11, 2227-7390, 3138, 10.3390/math11143138
    27. Nicola Bellomo, Massimo Egidi, From Herbert A. Simon’s legacy to the evolutionary artificial world with heterogeneous collective behaviors, 2024, 34, 0218-2025, 145, 10.1142/S0218202524400049
    28. Ryan Weightman, Benedetto Piccoli, 2024, Chapter 7, 978-3-031-56793-3, 157, 10.1007/978-3-031-56794-0_7
    29. Luca Serena, 2023, Methodological Aspects of Multilevel Modeling and Simulation, 979-8-3503-3784-6, 111, 10.1109/DS-RT58998.2023.00025
    30. Aeshah A. Raezah, A.M. Elaiw, M.A. Alshaikh, Global stability of secondary DENV infection models with non-specific and strain-specific CTLs, 2024, 10, 24058440, e25391, 10.1016/j.heliyon.2024.e25391
    31. Nicola Bellomo, Raluca Eftimie, Guido Forni, What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems, 2024, 19, 1556-1801, 655, 10.3934/nhm.2024029
    32. A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936
    33. Yunfeng Xiong, Chuntian Wang, Yuan Zhang, Tom Britton, Interacting particle models on the impact of spatially heterogeneous human behavioral factors on dynamics of infectious diseases, 2024, 20, 1553-7358, e1012345, 10.1371/journal.pcbi.1012345
    34. Ahmed M. Elaiw, Ghadeer S. Alsaadi, Aatef D. Hobiny, Global co-dynamics of viral infections with saturated incidence, 2024, 9, 2473-6988, 13770, 10.3934/math.2024671
    35. Matthew O. Adewole, Taye Samuel Faniran, Farah A. Abdullah, Majid K.M. Ali, COVID-19 dynamics and immune response: Linking within-host and between-host dynamics, 2023, 173, 09600779, 113722, 10.1016/j.chaos.2023.113722
    36. Giulia Bertaglia, Andrea Bondesan, Diletta Burini, Raluca Eftimie, Lorenzo Pareschi, Giuseppe Toscani, New trends on the systems approach to modeling SARS-CoV-2 pandemics in a globally connected planet, 2024, 34, 0218-2025, 1995, 10.1142/S0218202524500301
    37. Nicola Bellomo, Seung-Yeal Ha, Jie Liao, Wook Yoon, Behavioral swarms: A mathematical theory toward swarm intelligence, 2024, 34, 0218-2025, 2305, 10.1142/S0218202524500490
    38. Mohamed Zagour, 2024, Chapter 6, 978-3-031-56793-3, 127, 10.1007/978-3-031-56794-0_6
    39. Nisrine Outada, A forward look to perspectives, 2023, 47, 15710645, 133, 10.1016/j.plrev.2023.10.011
    40. Luca Serena, Moreno Marzolla, Gabriele D’Angelo, Stefano Ferretti, A review of multilevel modeling and simulation for human mobility and behavior, 2023, 127, 1569190X, 102780, 10.1016/j.simpat.2023.102780
    41. Christian Parkinson, Weinan Wang, Analysis of a Reaction-Diffusion SIR Epidemic Model with Noncompliant Behavior, 2023, 83, 0036-1399, 1969, 10.1137/23M1556691
    42. D. Burini, N. Chouhad, Cross-diffusion models in complex frameworks from microscopic to macroscopic, 2023, 33, 0218-2025, 1909, 10.1142/S0218202523500458
    43. Ahmed M. Elaiw, Raghad S. Alsulami, Aatef D. Hobiny, Global properties of SARS‐CoV‐2 and IAV coinfection model with distributed‐time delays and humoral immunity, 2024, 47, 0170-4214, 9340, 10.1002/mma.10074
    44. B. Bellomo, M. Esfahanian, V. Secchini, P. Terna, From a mathematical science of living systems to biology and economics, 2023, 47, 15710645, 264, 10.1016/j.plrev.2023.11.002
    45. Ahmed M. Elaiw, Amani S. Alsulami, Aatef D. Hobiny, Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity, 2024, 9, 2473-6988, 1046, 10.3934/math.2024052
    46. Bishal Chhetri, Krishna Kiran Vamsi Dasu, Stability and bifurcation analysis of a nested multi-scale model for COVID-19 viral infection, 2024, 12, 2544-7297, 10.1515/cmb-2024-0006
    47. Vinicius V. L. Albani, Jorge P. Zubelli, Stochastic transmission in epidemiological models, 2024, 88, 0303-6812, 10.1007/s00285-023-02042-z
    48. Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun, Mathematical modeling of trend cycle: Fad, fashion and classic, 2024, 01672789, 134500, 10.1016/j.physd.2024.134500
    49. Juan Pablo Agnelli, Claudio Armas, Damián A. Knopoff, Spatial Kinetic Modeling of Crowd Evacuation: Coupling Social Behavior and Infectious Disease Contagion, 2025, 17, 2073-8994, 123, 10.3390/sym17010123
    50. Gabriel Benedetti, Ryan Weightman, Benedetto Piccoli, Optimizing overlapping non-pharmaceutical interventions with a socio-demographic model, 2025, 1972-6724, 10.1007/s40574-025-00477-4
    51. Jorge P Zubelli, Jennifer Loria, Vinicius V L Albani, On the estimation of the time-dependent transmission rate in epidemiological models, 2025, 41, 0266-5611, 065001, 10.1088/1361-6420/add55b
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5045) PDF downloads(120) Cited by(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog